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Chapter 2. Quantum Computing

Introduction
Classical computers carry out logical operations using the “definite
position of a physical state” (also called classical state). These
are usually binary, meaning its operations are based on one of two
positions. A single state - such as on or off, up or down, 1 or 0 - is
called a bit.
In quantum computing, operations instead use the quantum state
of an object. These states have indefinite/undetermined positions
before they are measured, such as the spin of an electron (電子
自旋態) or the polarisation of a photon (光子極化態). Rather
than having a clear position, unmeasured quantum states occur in
a mixed “superposition”, not unlike a coin spinning through the air
before it lands in your hand. These superpositions can be entangled
with those of other objects, meaning their final outcomes will be
mathematically related even if we do not know yet what they are.
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Chapter 2. Quantum Computing

Introduction
In a classical computer, each number is in classical state. Call these
states |1y, |2y, ¨ ¨ ¨ , |N y (here we treat |1y, ¨ ¨ ¨ , |N y as N distinct
outcomes but not necessarily natural numbers from 1 to N ). A
superposition of these states is a quantum state

|ψy = α1|1y + α2|2y + ¨ ¨ ¨ + αN|N y ,

where α1, ¨ ¨ ¨ , αN are complex numbers satisfying |α1|2 + ¨ ¨ ¨ +

|αN|2 = 1 and this particular quantum state, upon measurement,
gives | j y with probability |αj|2. Quantum computers perform cal-
culations based on the probability of an object’s quantum state.
Quantum computation is the field that investigates the computa-
tional power and other properties of computers based on quantum-
mechanical principles. An important objective is to find quantum
algorithms that are significantly faster than any classical algorithm
solving the same problem.
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Chapter 2. Quantum Computing

§2.1 Quantum Mechanics
§2.1.1 Schrödinger equation
In “continuous” quantum mechanics, the Schrödinger equation for
a single non-relativistic particle with mass m is given by

ih̄ B

Btψ =
(

´
h̄
2m∆+ V

)
ψ in Rn ˆ tt ą 0u , (1)

where h̄ « 1.05457181765 ˆ 10´34J ¨ s is the reduced Planck con-
stant, ψ = ψ(x, t) is the wave function, a function that assigns a
complex number to each point x at each time t, and V = V(x, t)
is a real-valued function, called the potential, that represents the
environment in which the particle exists. The square of the abso-
lute value of the wave function at each point is taken to define a
probability density function: given a wave function in position space
ψ(x, t) as above, the function

ˇ

ˇψ(x, t)
ˇ

ˇ

2 denotes the probability den-
sity of the presence of the particle at position x at time t.
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§2.1 Quantum Mechanics
Taking the complex conjugate of the Schrödinger equation (1), we
obtain that

´ih̄ B

Bt
sψ =

(
´

h̄
2m∆+ V

)
sψ

thus

ih̄ sψ
B

Btψ = sψ
(

´
h̄
2m∆+ V

)
ψ , ih̄ψ B

Bt
sψ =´ψ

(
´

h̄
2m∆+ V

)
sψ .

Therefore,

ih̄ B

Bt |ψ|2 = ih̄ B

Bt(
sψψ) =

h̄
2m

(
ψ∆ sψ ´ sψ∆ψ

)
so that the divergence theorem implies that

ih̄ d
dt

ż

R3

ˇ

ˇψ(x, t)
ˇ

ˇ

2dx =
h̄
2m

ż

R3

[
ψ(x, t)∆ sψ(x, t) ´ sψ(x, t)∆ψ(x, t)

]
dx

= 0 .
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§2.1 Quantum Mechanics

Therefore,
ż

R3

ˇ

ˇψ(x, t)
ˇ

ˇ

2 dx is a constant (which is assumed to be 1 if

at a certain time this integral is 1). This shows that the probability
of the presence of a particle (whose dynamics is described by (1)) at
a certain point in R3 is 1. The physical interpretation of this identity
is “the position at which the particle locates is a superposition of all
the points in R3”.
On the other hand, when you try to figure out the location of the
particle by implementing some kind of measurements, you always
obtain an unambiguous result. The outcome of the measurement
follows the probability distribution that the probability density func-
tion

ˇ

ˇψ(¨, t)
ˇ

ˇ

2 provides: the probability of that the particle locations
in the region D Ď R3 at time t is given by

ż

D

ˇ

ˇψ(x, t)
ˇ

ˇ

2 dx.
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§2.1 Quantum Mechanics
Definition
A quantum state is a mathematical entity that provides a prob-
ability distribution for the outcomes of each possible measurement
on a system.
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§2.1 Quantum Mechanics
§2.1.2 Superposition
In quantum computing, each data is a superposition of “classical
data”. Consider some physical system that can be in N different,
mutually exclusive classical states |1y, |2y, ¨ ¨ ¨ , |N y. A superposition
of these states is described by the wave function

ψ(x) =

$

’

&

’

%

α1 if x = |1y ,
...
αN if x = |N y ,

where αj is a complex number called the amplitude of | j y in |ψy,
and α1, ¨ ¨ ¨ , αN satisfy |α1|2 + |α2|2 + ¨ ¨ ¨ + |αN|2 = 1. The wave
function above is a pure quantum state (usually just called state)
and is usually written as

|ψy =
N

ÿ

j=1

αj | j y = α1|1y + α2|2y + ¨ ¨ ¨ + αN|N y .
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§2.1 Quantum Mechanics
Intuitively, a system in quantum state |ψy is in all classical states at
the same time! It is in state |1y with amplitude α1 (and probability
|α1|2), in state |2y with amplitude α2 (and probability |α2|2), and
so on. Mathematically, the states |1y, ¨ ¨ ¨ , |N y form an orthonormal
basis of an N-dimensional Hilbert space (that is, an N-dimensional
vector space equipped with an inner product), and a quantum state
|ψy is a vector in this space.

Notation: Let (H, x¨, ¨y) be a Hilbert space over field F. Any vectors
v in H is expressed as |vy. For example, in “continuous” quantum
mechanics every quantum state |ψy lives in the Hilbert space L2(R3).
For a vector v P H, the notation xv | is an element in the dual space
of H satisfying xv |wy ” xv,wy. In other word, for each w P H, we
write w = αv + βv K for some α P F so that xv | : w ÞÑ α}v}2.
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§2.1 Quantum Mechanics
There are two things we can do with a quantum state: measure it
or let it evolve unitarily without measuring it.
§2.1.3 Measurement
‚ Measurement in the computational basis
If we measure state |ϕy we will see one and only one classical state
| j y. The specific | j y that we will see is not determined in advance;
the only thing we can say is that we will see state | j y with probability
|αj|2. This implies

N
ř

j=1

|αj|2 = 1, so the vector of amplitudes has

(Euclidean) norm 1. If we measure |ϕy and see classical state | j y as
a result, then |ϕy itself has“disappeared＂, and all that is left is | j y.
In other words, observing |ϕy “collapses” the quantum superposition
|ϕy to the classical state | j y that we saw, and all“information＂that
might have been contained in the amplitudes αi is gone.
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§2.1 Quantum Mechanics
‚ Projective measurement
A somewhat more general kind of measurement is called projective
measurement. Such a projective measurement is described by pro-
jectors P1, P2, ¨ ¨ ¨ , Pm (m ď N) which sum to identity. These
projectors are then pairwise orthogonal, meaning that Pi Pj = 0 if
i ‰ j. The projector Pj projects on some subspace Hj of the total
Hilbert space H, and every state |ϕy P H can be decomposed in
a unique way as |ϕy =

N
ř

j=1

|ϕjy, with |ϕjy = Pj|ϕy P Hj. Because

the projectors are orthogonal, the subspaces Hj are orthogonal as
well, as are the states |ϕjy. When we apply this measurement to
the pure state |ϕy, then we will get outcome in Hj with probability
}|ϕjy}2 = tr(Pj|ϕyxϕ|) and the state will then “collapse” to the new
state |ϕjy/}|ϕjy} = Pj|ϕy/}Pj|ϕy}.
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§2.1 Quantum Mechanics
Example
A measurement in the standard basis is the specific projective mea-
surement where m = N and Pj = | j yx j |; that is, Pj projects onto
the standard basis state | j y and the corresponding subspace Hj is

the space spanned by | j y. Consider the state |ϕy =
N
ř

j=1

αj | j y. Note

that Pj|ϕy = αj | j y, so applying our measurement to |ϕy will give
outcome in Hj with probability }αj | j y}2 = |αj|2, and in that case

the state collapses to αj | j y

}αj | j y}
=

αj
|αj|

| j y. The norm-1 factor αj
|αj|

may be disregarded because it has no physical significance, so we
end up with the state | j y as we saw before.
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§2.1 Quantum Mechanics
Example

A measurement that distinguishes between | j y with j ă
N
2

and | j y

with j ě
N
2

corresponds to the two projectors P1 =
ř

jăN/2

| j yx j | and

P2 =
ř

jěN/2

| j yx j |. Applying this measurement to the state

|ϕy =
1

2
|1y +

?
3

?
8

|2y +
1

2
|N ´ 1y +

1
?
8

|N y ,

where N ě 4, will give outcome 1 with probability }P1|ϕy}2 =
5

8
,

in which case the state collapses to
?
2

?
5

|1y +

?
3

?
5

|2y, and will give

outcome 2 with probability }P2|ϕy}2 =
3

8
, in which case the state

collapses to
?
2

?
3

|N ´ 1y +
1

?
3

|N y.
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§2.1 Quantum Mechanics
§2.1.4 Unitary evolution
We can change the state |ϕy =

N
ř

j=1

αj | j y to some other state

|ψy =
N

ÿ

j=1

βj| j y = β1|1y + β2|2y + ¨ ¨ ¨ + βN|N y .

Quantum mechanics only allows linear operations to be applied to
quantum states. What this means is: if we view a state like |ϕy

as an N-dimensional vector [α1, α2, ¨ ¨ ¨ , αN]T (sometimes called the
“qubit state vector”), then applying an operation that changes |ϕy

to |ψy corresponds to multiplying |ϕy with an NˆN complex-valued
matrix U:

U


α1

α2

...
αN

 =


β1
β2
...
βN

 .
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Chapter 2. Quantum Computing

§2.1 Quantum Mechanics
Note that by linearity we have

|ψy = U|ϕy = U
( N

ÿ

j=1

αj | j y

)
=

N
ÿ

j=1

αjU| j y .

Because measuring |ψy should also give a probability distribution,

we have the constraint
N
ř

j=1

|βj|2 = 1. This implies that the operation

U must preserve the norm of vectors, and U always maps a vector
of norm 1 to a vector of norm 1. Such a linear map is said to
be unitary and always has an inverse (since Ux = 0 if and only
if x = 0), and it follows that any (non-measuring) operation on
quantum states must be reversible: by applying U−1 we can always
“undo” the action of U, and nothing is lost in the process. On
the other hand, a measurement is clearly non-reversible, because we
cannot reconstruct |ϕy from the observed classical state | j y.
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
In the previous sections, we talked about the superposition

|ϕy =
N

ÿ

j=1

αj | j y = α1|1y + α2|2y + ¨ ¨ ¨ + αN|N y

of N classical states. In a quantum computer, |ϕy is used to ex-
pressed a random numbers. Each such number is created using
random bits, called qubits, and every qubit can be created with
different amplitude (or probability) of the 0 and 1 state. A 1-qubit
state is represented in braket notation as |ϕy = α|0y+ β|1y, and an
n-qubit state is represented as

|ϕy =
2n´1
ÿ

j=0

αj | j y or |ϕy =
2n´1
ÿ

j=0

αj | j0 ¨ ¨ ¨ jn´1y ,

where (0 j0 j1 ¨ ¨ ¨ jn´2 jn´1)2 is the binary representation of j ; that is,

j = 2n´1j0 + 2n´2j1 + ¨ ¨ ¨ + 21jn´2 + 20jn´1 .
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
§2.2.1 Quantum bits
Definition (Qubits)
A qubit is a quantum state with two possible outcomes of measure-
ment. A qubit is usually represented by

|ψy = α|0y + β|1y ,

where α, β P C satisfying |α|2 + |β|2 = 1. Two qubits |ψ1y =

α1|0y + β1|1y and |ψ2y = α2|0y + β2|1y are said to be equivalent if
there exists θ P R such that (α2, β2) = e iθ(α1, β1).

Remark: A qubit is more than a two-valued random variable.
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
Definition
A Bloch sphere B is a subset of C2 defined by (α, β) P B if and only
if |α|2 + |β|2 = 1. Each point (α, β) P B is represented by

|ψy = e iδ( cos θ
2

|0y + e iϕ sin θ

2
|1y

)
,

where θ P [0, π] and ϕ P [0, 2π).
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
§2.2.2 Quantum gates
A unitary transformation that acts on a small numer of qubits (say, at
most 3) is often called a gate, in analogy to classical logic gates. Two
simple but important 1-qubit gates are the bitflip-gate X (which
negates the bit; that is, swaps |0y and |1y) and the phaseflip gate
Z (which puts a minus sign “−” in front of |1y). Represented as
2 ˆ 2 matrices, these are

X =

[
0 1
1 0

]
and Z =

[
1 0
0 ´1

]
.

Remark: Let |ψy = e iδ
(

cos θ
2

|0y+e iϕ sin θ

2
|1y

)
be a 1-qubit quan-

tum state.
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
Then on the Bloch sphere,

1 X|ψy is the reflection of |ψy (or the rotation by angel π) about
the x-axis; that is,

X|ψy = e iδ
(

cos π ´ θ

2
|0y + e´iϕ sin π ´ θ

2
|1y

)
= e i (δ´ϕ)

(
e iϕ sin θ

2
|0y + cos θ

2
|1y

)
= e i (δ´ϕ)

(
cos θ

2
|1y + e iϕ sin θ

2
|0y

)
.

2 Z|ψy is the reflection of |ψy (or the rotation by angel π) about
the z-axis; that is, then

Z|ψy = e iδ
(

cos θ
2

|0y + e i (π+ϕ) sin θ

2
|1y

)
= e iδ

(
cos θ

2
|0y ´ e iϕ sin θ

2
|1y

)
.
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates
Possibly the most important 1-qubit gate is the Hadamard trans-
form, specified by:

H|0y =
1

?
2

|0y +
1

?
2

|1y and H|1y =
1

?
2

|0y ´
1

?
2

|1y .

The Hadamard transform is represented as

H =
1

?
2

[
1 1
1 ´1

]
.

If we apply H to initial state |0y and then measure, we have equal
probability of observing |0y or |1y. Similarly, applying H to |1y and
observing gives equal probability of |0y or |1y. However, if we apply
H to the superposition 1

?
2

|0y +
1

?
2

|1y then we obtain |0y: the
positive and negative amplitudes for |1y cancel out! This effect
is called interference, and is analogous to interference patterns
between light or sound waves.
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probability of observing |0y or |1y. Similarly, applying H to |1y and
observing gives equal probability of |0y or |1y. However, if we apply
H to the superposition 1

?
2

|0y +
1

?
2

|1y then we obtain |0y: the
positive and negative amplitudes for |1y cancel out! This effect
is called interference, and is analogous to interference patterns
between light or sound waves.
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§2.2 Qubits and Quantum Gates
Let us also consider the reflection (or the rotation by angle π) about
the y-axis. This rotation is denoted by Y and is given by

cos θ
2

|0y + e iϕ sin θ

2
|1y

Y
ÞÑ cos π ´ θ

2
|0y + e i (π´ϕ) sin π ´ θ

2
|1y

so that the matrix representation of Y is

Y =

[
0 ´i
i 0

]
.

These three gates X, Y, Z are called the Pauli gates. We note that
if A and B are two different Pauli gates, then AB + BA = 0.

Remark: In principle, the matrix representation of a quantum gate
can differ by a multiple of a constant whose modulus is 1 because
these representations give equivalent quantum states. We choose
X, Y and Z in such a way that X2 = Y2 = Z2 = I.
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§2.2 Qubits and Quantum Gates
In general, we can consider the rotation by angle τ about the x-axis,
y-axis and z-axis. These rotations are denoted by Rx(τ), Ry(τ) and
Rz(τ), respectively.
Theorem
For τ P R, the matrix representations of Rx(τ), Ry(τ) and Rz(τ)

are respectively given by

Rx(τ) =

 cos τ

2
´i sin τ

2

´i sin τ

2
cos τ

2

 , (2a)

Ry(τ) =

 cos τ

2
´ sin τ

2

sin τ

2
cos τ

2

 , (2b)

Rz(τ) =

[
e´iτ/2 0

0 e iτ/2

]
. (2c)
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§2.2 Qubits and Quantum Gates
Proof.
Let |ψy be a 1-qubit quantum state

|ψy = cos θ
2

|0y + e iϕ sin θ

2
|1y

whose Cartesian coordinate on the Bloch sphere is
ÝÑ
ψ ” cosϕ sin θi + sinϕ sin θj + cos θk .

1 On the unit sphere, the rotation of the vector ÝÑ
ψ by angle

τ about the x-axis leaves the x-coordinate unchanged, while
the y-coordinate and the z-coordinate are obtained, using the
rotation matrix, by[

cos τ ´ sin τ
sin τ cos τ

][
sinϕ sin θ

cos θ

]
=

[
cos τ sinϕ sin θ ´ sin τ cos θ
sin τ sinϕ sin θ + cos τ cos θ

]
. ˝
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§2.2 Qubits and Quantum Gates
Proof (cont’d).

Suppose that in Cartesian coordinate the state Rx(τ)|ψy on the
Bloch sphere is given by[

Rx(τ)|ψy
]
= cosϕ sin θi + (cos τ sinϕ sin θ ´ sin τ cos θ)j
+(sin τ sinϕ sin θ + cos τ cos θ)k

= cosφ sinϑi + sinφ sinϑj + cosϑk

for some φ and ϑ. Then

cos2 ϑ
2
=

1 + sin τ sinϕ sin θ + cos τ cos θ
2

. (3)

Next we show that Rx(τ) with matrix representation given by
(2a) indeed has the property that for some δ P R,

Rx(τ)|ψy = e iδ
(

cos ϑ
2

|0y + e iφ sin ϑ

2
|1y

)
. ˝
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Proof (cont’d).

Expanding the product cos τ
2

´i sin τ
2

´i sin τ
2

cos τ
2


 cos θ

2

e iϕ sin θ
2

,
it is to show that there exists δ P R such that

cos τ
2

cos θ
2

´ i sin τ

2
e iϕ sin θ

2
= e iδ cos ϑ

2
, (4a)

´i sin τ

2
cos θ

2
+ cos τ

2
e iϕ sin θ

2
= e i (δ+φ) sin ϑ

2
, (4b)

or
cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2
´ i cosϕ sin τ

2
sin θ

2
= e iδ cos ϑ

2
,

cosϕ cos τ

2
sin θ

2
+ i

(
sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)
= e i (δ+φ) sin ϑ

2
. ˝
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Proof (cont’d).

Using (3),(
cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2

)2
+ cos2 ϕ sin2 τ

2
sin2 θ

2

= cos2 τ

2
cos2 θ

2
+ sin2 τ

2
sin2 θ

2
+ 2 cos τ

2
cos θ

2
sinϕ sin τ

2
sin θ

2

=
(1 + cos τ)(1 + cos θ) + (1 ´ cos τ)(1 ´ cos θ)

4
+

sinϕ sin τ sin θ

2

=
1 + cos τ cos θ + sinϕ sin τ sin θ

2
= cos2 ϑ

2
;

thus there exists δ P R such that

cos τ
2

cos θ
2
+ sinϕ sin τ

2
sin θ

2
´ i cosϕ sin τ

2
sin θ

2
= e iδ cos ϑ

2
;

thus (4a) holds. ˝
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Proof (cont’d).

Moreover, by the fact that Rx(τ) given by (2a) is unitary,
ˇ

ˇ

ˇ
cosϕ cos τ

2
sin θ

2
+ i

(
sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)ˇ

ˇ

ˇ

2

= sin2 ϑ

2
.

Therefore, for some η P R we have

cosϕ cos τ
2

sin θ

2
+ i

(
sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)
= e iη sin ϑ

2
. (5)

To show (4b) it suffices to extract the phase information. Com-
puting the product of (5) and the complex conjugate of (4a),
we obtain that

1

2
e i (η´δ) sinϑ = e iη sin ϑ

2
e´iδ cos ϑ

2

=
1

2

[
cosϕ sin θ + i(sinϕ cos τ sin θ ´ cos θ sin τ)

]
. ˝
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Proof (cont’d).
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ˇ
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2
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.
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2
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Proof (cont’d).

Comparing with the first two component of [Rx(τ)|ψy],
e i (η´δ) sinϑ = cosϕ sin θ + i(sinϕ cos τ sin θ ´ cos θ sin τ)

= cosφ sinϑ+ i sinφ sinϑ = e iφ sinϑ ;

thus e iη = e i (δ+φ) in (5) so that (4b) holds.
2 The proof of this part is similar to the one in the first part, and

the proof is left as an exercise.
3 It is clear that Rz(τ) maps |ψy to the quantum state

cos θ

2
|0y + e i (ϕ+τ) sin θ

2
|1y .

Therefore, the matrix representations of Rz(τ) is given by

Rz(τ) =

[
e´iτ/2 0

0 e iτ/2

]
. ˝
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For a 2 ˆ 2 matrix A (with complex entries) satisfying A2 = I,

e iAx =
8
ÿ

k=0

(iAx)k

k ! =
8
ÿ

k=0

i 2kA2kx 2k

(2k)! +
8
ÿ

k=0

i 2k+1A2k+1x 2k+1

(2k + 1)!

=
8
ÿ

k=0

(´1)kx 2k

(2k)! I + i
8
ÿ

k=0

(´1)kx 2k+1

(2k + 1)!
A = cos x I + i sin x A .

Using the notation of exponential, we find the matrix representation
of Rx(τ), Ry(τ) and Rz(τ) given in (2) in fact can be expressed as

Rx(τ) = exp
(

´iτX
2

)
, Ry(τ) = exp

(
´iτY
2

)
, Rz(τ) = exp

(
´iτZ
2

)
.

Note that for a unit vector a = (ax, ay, az) in R3,
(axX + ayY + azZ)2 = a2xX2 + a2yY2 + a2zZ2 + axay(XY + YX)

+axaz(XZ + ZX) + ayax(YZ + ZY)

= (a2x + a2y + a2z)I = I .
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§2.2 Qubits and Quantum Gates
We now define the rotation about any axis.
Definition
For a general unit vector a = (ax, ay, az) in R3, the rotation of an
1-qubit state by angle ϕ about an axis in direction a, denoted by
Ra(ϕ), is a 1-qubit quantum gate given by

Ra(ϕ) = exp
(́ iϕ

2

(
axX + ayY + azZ

))
= cos ϕ

2
I ´ i sin ϕ

2
(axX + ayY + azZ) .

The matrix representation of Ra(ϕ) is given by

Ra(ϕ) =

 cos ϕ
2

´ iaz sin ϕ

2
´(ay + iax) sin ϕ

2

(ay ´ iax) sin ϕ

2
cos ϕ

2
+ iaz sin ϕ

2

 .
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§2.2 Qubits and Quantum Gates
Next we consider quantum gates acting on more than one qubit.
An example of a 2-qubit gate is the the controlled-not gate CNOT.
It negates the second bit of its input if the first bit is 1, and does
nothing if first bit is 0:

CNOT|aby = |ay b |a ‘ by @ a, b P t0, 1u .

Since the first qubit controls what action is applied to the second
qubit, the first qubit is called the control qubit, and the second
qubit is called the target qubit.

The matrix form of CNOT gate is CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 since

CNOT|00y = |00y , CNOT|01y = |01y ,

CNOT|10y = |11y , CNOT|11y = |10y .
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More generally, if U is some 1-qubit gate, the 2-qubit controlled-U
gate given by

|aby ÞÑ |ay b
(
(1 ‘ a)|by + aU |by

)
@ a, b P t0, 1u

or more precisely,

|0by ÞÑ |0by and |1by ÞÑ |1y b U |by @ b P t0, 1u

corresponds to the following 4 ˆ 4 matrix:
1 0 0 0
0 1 0 0
0 0 u11 u12
0 0 u21 u22

 .
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Adding another control qubit to CNOT, we get the 3-qubit Toffoli
gate, also called controlled-controlled-not (CCNOT) gate, which
negates the third bit of its input if both of the first two bits are 1:

CCNOT|abcy = |aby b |ab ‘ cy @ a, b, c P t0, 1u .

The matrix form of CCNOT gate is

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The Toffoli gate is important because it is complete for classical
reversible computation. We will see other quantum gates later.
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0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The Toffoli gate is important because it is complete for classical
reversible computation. We will see other quantum gates later.
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Chapter 2. Quantum Computing

§2.2 Qubits and Quantum Gates

Figure 1: Gate model or circuit model of quantum computing - it consists
of a lot of qubits, each qubit represents a digit of a number, and qubits
are manipulated using quantum gates.

Ching-hsiao Cheng 量子計算之數學基礎 MA5501*



Chapter 2. Quantum Computing

§2.3 Quantum Registers
A quantum register is a system comprising multiple qubits. It is the
quantum analog of the classical processor register. Quantum com-
puters perform calculations by manipulating qubits within a quantum
register.

Classically, information is represented by finite chunks of bits. These
are essentially words (x1, x2, x3, ¨ ¨ ¨ , xn) built from the alphabet t0, 1u;
that is, xℓ P t0, 1u for all 1 ď ℓ ď n. Hence, we need 2n classical
storage configurations in order to represent all such words.

Remark: There is a conceptual difference between the quantum and
classical register. A classical register of n bits refers to an array of n
flip flops (flip flops - 可儲存 0 或 1 狀態的電路), while a quantum
register of n qubits is merely a collection of n qubits.
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Chapter 2. Quantum Computing

§2.3 Quantum Registers
A classical two-bit word (x1, x2) is an element of the set t0, 1u ˆ

t0, 1u = t0, 1u2, and classically we can represent the words 00, 01,
10, 11 by storing the first letter x1 (the first bit or the highest
bit) and the second letter x2 (the second bit) accordingly. If we
represent each of these bits quantum mechanically by qubits, we are
dealing with a two-qubit quantum system composed of two quantum
mechanical sub-systems. A two-qubit word in a two-quit quantum
system is in superposition

α0|00y + α1|01y + α2|10y + α3|11y ,

where α0, α1, α2, α3 P C, |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1, and
|x1x2y denotes the state that the first qubit is in state |x1y and the
second qubit is in state |x2y.
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§2.3 Quantum Registers
More generally, a quantum register of n qubits has 2n basis states
of the form |b1b2 ¨ ¨ ¨ bny. Since bitstrings of length n can be viewed
as numbers between 0 and 2n−1, we can also write the basis states
as numbers |0y, |1y, |2y, ¨ ¨ ¨ , |2n−1y. In other words, for b =

b1b2 ¨ ¨ ¨ bn P t0, 1un we often use |b12n´1 + b22n´2 + ¨ ¨ ¨ + bny to
identify |b1b2 ¨ ¨ ¨ bny (recall that b1b2 ¨ ¨ ¨ bn in binary equals b12n´1+

b22n´2 + ¨ ¨ ¨ + bn in decimal). A quantum register of n qubits can
be in any superposition

α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y =
2n´1
ÿ

j=0

αj | j y ,

where
2n´1
ř

j=0

|αj|2 = 1. The superposition above sometimes is also

written as ř

j Pt0,1un
αj | j y.
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§2.3 Quantum Registers
In an n-qubit quantum system, one can perform measurement on
certain qubits. A measuement of m qubits, where m ă n, is a
projective measurement, and the quantum register

α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y

under such a projective measurement collapses to another quantum
register

β0|0y + β1|1y + ¨ ¨ ¨ + β2n´1|2n ´ 1y ,

where at most 2n´m βj’s are non-zero, and β0, β1, ¨ ¨ ¨ , β2n´1 are
determined by the outcomes of the measurement, the exact position
of the qubits on which the measurement is performed, and α0, α1,
¨ ¨ ¨ , α2n´1.
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§2.3 Quantum Registers
Example
Suppose we perform a (projective) measurement on the second qubit
of the 3-qubit register

α0|000y + α1|001y + α2|010y + α3|011y

+α4|100y + α5|101y + α6|110y + α7|111y

and obtain value 0, then the 3-qubit register above collapses to the
quantum register

α0

}α}
|000y +

α1

}α}
|001y +

α4

}α}
|100y +

α5

}α}
|101y

where }α} =
a

|α0|2 + |α1|2 + |α4|2 + |α5|2.
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§2.3 Quantum Registers
§2.3.1 Tensor products - preview
Suppose that two single qubit states |ψ1y = α0|0y + α1|1y and
|ψ2y = β0|0y + β1|1y are given, and a quantum register of two
qubits is formed from these two single qubits: the output of the first
and the second qubit of the quantum register upon measurement
follows the distribution given by states |ψ1y and |ψ2y, respectively.
Therefore, measuring this quantum register of two qubits gives |00y,
|01y, |10y and |11y with probability |α0β0|2, |α0β1|2, |α1β0|2 and
|α1β2|2, respectively. This motivates us to consider the quantum
state of two qubits

|ψy = α0β0|00y + α0β1|01y + α1β0|10y + α1β1|11y .

We will write the quantum state |ψy above as |ψ1y b |ψ2y, called
the tensor product of states |ψ1y and |ψ2y.
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§2.3 Quantum Registers
In general, let |ψ1y and |ψ2y be two quantum states of n qubits and
m qubits, respectively. The tensor product of |ψ1y and |ψ2y is a
quantum state of (n + m) qubits. Let us first consider the “con-
tinuous” case to illustrate the idea of the tensor product. Suppose
that the states of two non-relativistic particles of the same mass m,
labeled as particle 1 and particle 2, are described by Schrödinger
equations

ih̄ B

Btψ1 =
(

´
h̄
2m∆+ V1

)
ψ1 in Rn ˆ tt ą 0u

and
ih̄ B

Btψ2 =
(

´
h̄
2m∆+ V2

)
ψ2 in Rn ˆ tt ą 0u ,

respectively. Then at time t the probability of the presence of
particle 1 at location x and particle 2 at location y is given by
ˇ

ˇψ1(x, t)
ˇ

ˇ

2ˇ

ˇψ2(y, t)
ˇ

ˇ

2
=

ˇ

ˇψ1(x, t)ψ2(y, t)
ˇ

ˇ

2.
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§2.3 Quantum Registers
This motivates of considering the function ψ(x, y, t) = ψ1(x, t)ψ2(y, t).
This function ψ satisfies

ih̄ B

Btψ =
(

´
h̄
2m∆+ V

)
ψ in Rn ˆ Rn ˆ tt ą 0u ,

where V(x, y, t) = V1(x, t) + V2(y, t) and

(∆ψ)(x, y, t) = (∆x +∆y)ψ(x, y, t) .

If there is no interference between the two particles (which is the
case if V1 and V2 satisfy certain conditions), then the state of the
“combined system” (meaning that we use (x, y) P Rn ˆ Rn to write
the position of these two particles) is described by the wave function
ψ. In other words, the state of the combined system is simply the
“product” (which is exactly the tensor product) of the individual
states.
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§2.3 Quantum Registers
Now suppose the states of two qubits are given by |ψ1y = α0|0y +

α1|1y and |ψ2y = β0|0y + β1|1y. Recall that this is a shorthand
notation for the quantum states

ψ1(x1) =
"

α0 if x1 = 0 ,
α1 if x1 = 1 ,

and ψ2(x2) =
"

β0 if x2 = 0 ,
β1 if x2 = 1 ,

Then the state of the combined system (which can be used to de-
scribe for random numbers (0)10 = (00)2, (1)10 = (01)2, (2)10 =

(10)2 and (3)10 = (11)2) is given by

ψ(x1, x2) ” ψ1(x1)ψ2(x2) =

$

’

’

&

’

’

%

α0β0 if (x1, x2) = (0, 0) ,
α0β1 if (x1, x2) = (0, 1) ,
α1β0 if (x1, x2) = (1, 0) ,
α1β1 if (x1, x2) = (1, 1) ,

which is abbreviated as
|ψy = α0β0|00y + α0β1|01y + α1β0|10y + α1β1|11y .
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§2.3 Quantum Registers
In general, if

|ψ1y = α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y

and
|ψ2y = β0|0y + β1|1y + ¨ ¨ ¨ + β2m´1|2m ´ 1y

are two quantum states, then

|ψy = |ψ1y b |ψ2y =
(2n´1

ř

k=0

αk|ky

)
b

(2m´1
ř

ℓ=0

βℓ|ℓy
)

=
2n´1
ř

k=0

2m´1
ř

ℓ=0

αkβℓ|ky b |ℓy ,

where by writing k = (k1k2 ¨ ¨ ¨ kn)2 and ℓ = (ℓ1ℓ2 ¨ ¨ ¨ ℓm)2,

|ky b |ℓy = |k1k2 ¨ ¨ ¨ kn ℓ1ℓ2 ¨ ¨ ¨ ℓmy .

Sometimes |ψ1y b |ψ2y is written as |ψ1y|ψ2y.
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§2.3 Quantum Registers
§2.3.2 Entanglements
An important property that deserves to be mentioned is entangle-
ment, which refers to quantum correlations between different qubits.
For instance, consider a 2-qubit register that is in the state

1
?
2

|00y +
1

?
2

|11y .

Initially neither of the two qubits has a classical value |0y or |1y;
however, if we measure the first qubit and observe, say, a |0y, then
the whole state collapses to |00y. Thus observing the first qubit
immediately fixes also the second, unobserved qubit to a classical
value. This example illustrates some of the non-local effects that
quantum systems can exhibit. In general, a bipartite state |ϕy is
called entangled if it cannot be written as a tensor product |ϕAy b

|ϕBy, where |ϕAy lives in the first space and |ϕBy lives in the second.
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Chapter 2. Quantum Computing

§2.3 Quantum Registers
At this point, a comparison with classical probability distributions
may be helpful. Suppose we have two probability spaces, A and
B, the first with 2n possible outcomes, the second with 2m possible
outcomes. A distribution on the first space can be described by
2n parameters (non-negative reals summing to 1; actually there are
only 2n−1 degrees of freedom here) and a distribution on the sec-
ond by 2m parameters. Accordingly, a product distribution on the
joint space can be described by 2n + 2m parameters. However, an
arbitrary (non-product) distribution on the joint space takes 2n+m

numbers, since there are 2n+m possible outcomes in total. Anal-
ogously, an n-qubit state |ϕAy can be described by 2n parameters
(complex numbers whose squared moduli sum to 1), an m-qubit
state |ϕBy by 2m parameters, and their tensor product |ϕAy b |ϕBy

by 2n + 2m parameters.
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Chapter 2. Quantum Computing

§2.3 Quantum Registers
However, an arbitrary (possibly entangled) state in the joint space
takes 2n+m numbers, since it lives in a 2n+m-dimensional space.
We see that the number of parameters required to describe quan-
tum states is the same as the number of parameters needed to
describe probability distributions. Also note the analogy between
statistical independence of two random variables A and B and non-
entanglement of the product state |ϕAy b |ϕBy. However, despite
the similarities between probabilities and amplitudes, quantum states
are much more powerful than distributions, because amplitudes may
have negative parts which can lead to interference effects. Ampli-
tudes only become probabilities when we square them. The art of
quantum computing is to use these special properties for interesting
computational purposes.
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
A quantum circuit (also called quantum network or quantum gate
array) generalizes the idea of classical circuit families, replacing the
AND, OR, and NOT gates by elementary quantum gates. A quan-
tum gate is a unitary transformation on a small (usually 1, 2, or 3)
number of qubits. We saw a number of examples already in Section
2.2: the bitflip-gate X, the phaseflip gate Z, the Hadamard gate
H. Mathematically, these gates can be composed by taking tensor
products (if gates are applied in parallel to different parts of the
register) and ordinary products (if gates are applied sequentially).
Simple examples of such circuits of elementary gates are given in
the next section.
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
For example, if we apply the Hadamard gate H to each bit in a reg-
ister of n zeroes, we obtain 1

?
2n

ř

jPt0,1un
| j y which is a superposition

of all n-bit strings. More generally, if we apply Hbn to an initial
state | i y, with i P t0, 1un, we obtain

Hbn| i y =
1

?
2n

ÿ

jPt0,1un

(−1)i ‚ j| j y , (6)

where i ‚ j =
n
ř

k=1

ik jk denotes the bitwise product of the n-bit strings

i, j P t0, 1un. For instance,

Hb2|01y”(H|0y)b(H|1y)=
|0y+|1y

?
2

b
|0y´|1y

?
2

=
1

2

ÿ

j Pt0,1u2

(´1)01 ‚ j| j y.

The n-fold Hadamard transform Hbn will be very useful for all the
quantum algorithms explained later.
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
Theorem
For each n P N and j = ( j1 j2 ¨ ¨ ¨ jn)2,

Hbn| jy ” Hbn| j1 j2 ¨ ¨ ¨ jny =
1

?
2n

2n´1
ÿ

k=0

(´1) j ‚ k|ky , (6)

where we recall that with k = (k1k2 ¨ ¨ ¨ kn)2, j ‚ k ” j1k1 + ¨ ¨ ¨ jnkn.

Proof.

Note that for jℓ P t0, 1u, H| jℓy =
1

?
2

1
ř

kℓ=0

(´1) jℓkℓ |kℓy. Therefore,

Hbn| j1 j2 ¨ ¨ ¨ jny ” (H| j1y) b ¨ ¨ ¨ b (H| jny)

=
(

1
?
2

1
ÿ

k1=0

(´1) j1k1 |k1y

)
b ¨ ¨ ¨ b

(
1

?
2

1
ÿ

kn=0

(´1) jnkn |kny

)
=

1
?
2n

1
ÿ

k1=0

¨ ¨ ¨
1

ÿ

kn=0

(´1) j1k1+¨¨¨+jnkn |k1y b ¨ ¨ ¨ b |kny . ˝
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
A quantum circuit is a finite directed acyclic graph of input nodes,
gates, and output nodes. There are n nodes that contain the input;
in addition we may have some more input nodes that are initially
|0y (“workspace”). The internal nodes of the quantum circuit are
quantum gates that each operate on at most 2 qubits of the state.
The gates in the circuit transform the initial state vector into a final
state, which will generally be a superposition. We measure some
dedicated output bits of this final state to (probabilistically) obtain
an answer.
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
To draw such circuits, we typically let time progress from left to
right: we start with the initial state on the left. Each qubit is
pictured as a wire, and the circuit prescribes which gates are to be
applied to which wires. Single-qubit gates like X and H just act on
one wire, while multi-qubit gates such as the CNOT act on multiple
wires simultaneously. When one qubit “controls” the application of
a gate to another qubit, then the controlling wire is drawn with a
dot linked vertically to the gate that is applied to the target qubit.
This happens for instance with the CNOT, where the applied single-
qubit gate is X (sometimes drawn as ‘‘’).
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
Figure 2 gives a simple example on two qubits, initially in basis state
|00y: first apply the Hadamard gate H to the first qubit, then CNOT
to both qubits (with the first qubit acting as the control), and then
Z to the last qubit.

|0y H

|0y Z
Figure 2: Simple circuit for turning |00y into an entangled state

Let A b B be defined by (A b B)(|ay b |by) = (A|ay) b (B|by):

|00y
HbI
ÞÑ H|0y b I|0y =

1
?
2

(
|00y + |10y

) CNOT
ÞÑ

1
?
2

(
|00y + |11y

)
IbZ
ÞÑ

1
?
2

(
I|0y b Z|0y + I|1y b Z|1y

)
=

1
?
2

(
|00y ´ |11y

)
.

Therefore, the resulting state of the circuit above is 1
?
2
(|00y´|11y).
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
Example
One possible implementation of a 2-bit full adder (using CNOT
gates and TOFFOLI gates):

q0
q1

q2

q3

Figure 3: Circuit diagram of a quantum full adder

where the inputs are q0 = A, q1 = B, q2 = Cin, and the ouputs are
q0 = A, q1 = B, q2 = Sumout, q3 = Cout.

Ching-hsiao Cheng 量子計算之數學基礎 MA5501*



Chapter 2. Quantum Computing

§2.4 Quantum Circuits
Example (cont.)
The validity of that the quantum circuit above is indeed a full adder
can be verified by the following truth table:

INPUT OUTPUT
q3 q2 q1 q0 q3 q2 q1 q0

Cin B A Cout S B A
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0
0 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1
0 0 1 1 1 0 1 1
0 1 1 1 1 1 1 1
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§2.4 Quantum Circuits
§2.4.1 Quantum Teleportation
As an example of the use of elementary gates, we will explain tele-
portation. Suppose there are two parties, Alice and Bob. Alice has
a qubit α0|0y + α1|1y that she wants to send to Bob via a classical
channel. Without further resources this would be impossible, but
Alice also shares an EPR-pair

1
?
2

(
|00y + |11y

)
with Bob (say Alice holds the first qubit and Bob the second). Ini-
tially, their joint state is(
α0|0y+α1|1y

)
b

|00y + |11y
?
2

=
α0
?
2

(
|000y+|011y

)
+
α1
?
2

(
|100y+|111y

)
.

The first two qubits belong to Alice, the third to Bob.
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§2.4 Quantum Circuits
Alice performs a CNOT on her two qubits to obtain

α0
?
2

(
|000y + |011y

)
+

α1
?
2

(
|110y + |101y

)
and then a Hadamard transform on her first qubit so that their joint
state now becomes
α0

2

[(
|0y+ |1y

)
b
(
|00y+ |11y

)]
+
α1

2

[(
|0y ´ |1y

)
b
(
|10y+ |01y

)]
=
α0

2

(
|000y+ |011y+ |100y+ |111y

)
+
α1

2

(
|010y+ |001y´|110y´|101y

)
=

1

2
|00y b

(
α0|0y+α1|1y

)
+

1

2
|01y b

(
α0|1y+α1|0y

)
+
1

2
|10y b

(
α0|0y´α1|1y

)
+

1

2
|11y b

(
α0|1y´α1|0y

)
.
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§2.4 Quantum Circuits
Alice then measures her two qubits in the computational basis and
sends the result b1b2, a 2 random classical bits, to Bob over a
classical channel. In order to recover Alice’s qubit, Bob applies
the transformation Zb1Xb2 , where X is the bitflip-gate and Z is the
phaseflip gate, to the qubit he has now. For example, if Alice sent 11
to Bob over a classical channel, Bob then applies ZX to the qubit
α0|1y ´ α1|0y (which is the qubit Bob has now since Alice’s two
qubits has been measured) and obtain α0|0y + α1|1y which is the
qubit Alice has originally. In fact, if Alice’s qubit had been entangled
with other qubits, then teleportation preserves this entanglement:
Bob then receives a qubit that is entangled in the same way as
Alice’s original qubit was.
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Chapter 2. Quantum Computing

§2.4 Quantum Circuits
Note that the qubit on Alice’s side has been destroyed: teleporting
moves a qubit from A to B, rather than copying it. In fact, copying
an unknown qubit is impossible. This can be seen as follows. Sup-
pose C were a 1-qubit copier; that is, C |ϕy|0y = |ϕy|ϕy for every
qubit |ϕy. In particular, C |0y|0y = |0y|0y and C |1y|0y = |1y|1y. But
then C would not copy |ϕy = H|0y =

1
?
2

(
|0y + |1y

)
correctly, since

by linearity

C |ϕy|0y=
1

?
2

(
C |0y|0y+C |1y|0y

)
=

1
?
2

(
|0y|0y+|1y|1y

)
‰ |ϕy|ϕy .

Remark: The fact that copying an unknown qubit is impossible
implies that not all the Boolean function can be implemented by
current quantum computers. The lack of the ability of performing
all Boolean functions will put a lot of constraints to the use of
quantum computers.
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Chapter 2. Quantum Computing

§2.5 Universality of Various Sets of Elementary Gates
Definition
Let tU1, ¨ ¨ ¨ ,Uku be a collection of quantum gates. The collection
of all quantum gates that can be constructed from U1, U2, ¨ ¨ ¨ ,
Uk, denoted by F[U1, ¨ ¨ ¨ ,Uk], is the set satisfying the following
construction rules:

1 For any 1 ď j ď k, Uj P F[U1, ¨ ¨ ¨ ,Uk].
2 For any n P N, 1bn P F[U1, ¨ ¨ ¨ ,Uk], where 1 denotes the

identity gate.
3 For any n-qubit quantum gates V1,V2, we have

V1,V2 P F[U1, ¨ ¨ ¨ ,Uk] ñ V1V2 P F[U1, ¨ ¨ ¨ ,Uk] .

4 For any two quantum gates V1,V2, we have

V1,V2 P F[U1, ¨ ¨ ¨ ,Uk] ñ V1 b V2 P F[U1, ¨ ¨ ¨ ,Uk] .
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§2.5 Universality of Various Sets of Elementary Gates
Definition (Cont.)
A collection of quantum gates U = tU1, ¨ ¨ ¨ ,Uku is called universal
if any quantum gate U can be constructed with gates from U ; that
is, for every quantum gate U, U P F[U1, ¨ ¨ ¨ ,Uk].

Proposition
For quantum gates V1, ¨ ¨ ¨ ,Vℓ, U1, ¨ ¨ ¨ ,Uk, we have

V1, ¨ ¨ ¨ ,Vℓ P F[U1, ¨ ¨ ¨ ,Uk] ñ F[V1, ¨ ¨ ¨ ,Vℓ] Ď F[U1, ¨ ¨ ¨ ,Uk] .

In particular, F
[
F[U1, ¨ ¨ ¨ ,Uk]

]
= F[U1, ¨ ¨ ¨ ,Uk].
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Chapter 2. Quantum Computing

§2.5 Universality of Various Sets of Elementary Gates
Which set of elementary gates should we allow? There are several
reasonable choices.

1 The set of all 1-qubit operations together with the 2-qubit
CNOT gate is universal, meaning that any other unitary trans-
formation can be built from these gates.

Allowing all 1-qubit gates is not very realistic from an implementa-
tional point of view, as there are uncountably many of them. How-
ever, the model is usually restricted, only allowing a small finite set
of 1-qubit gates from which all other 1-qubit gates can be efficiently
approximated.
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§2.5 Universality of Various Sets of Elementary Gates
Theorem (Solovay-Kitaev)
Let G be a finite set of elements in SU(2) containing its own inverses
and such that the group xG y they generate is dense in SU(2). There
exists c ą 0 such that for any ε ą 0 and U P SU(2), there is
a sequence S of gates from G of length O(logc(1/ε)) such that
}S ´ U} ď ε.

2 The set consisting of CNOT, Hadamard, and the Rz gate
Rz

(π
4

)
is universal in the sense of approximation, meaning that

any other unitary can be arbitrarily well approximated using
circuits of only these gates. The Solovay-Kitaev Theorem says
that this approximation is quite efficient: we can approximate
any gate on 1 or 2 qubits up to error ε using polylog(1/ε) gates
from our small set.
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Chapter 2. Quantum Computing

§2.5 Universality of Various Sets of Elementary Gates
Recall that Rx(τ), Ry(τ) and Rz(τ) denote 1-qubit gates that rotate
a 1-qubit state, on the Bloch sphere, by angle τ about the x-axis,
y-axis, and the z-axis, respectively. The matrix representation of
Rx(τ), Ry(τ) and Rz(τ) are

Rx(τ)=

 cos τ

2
´i sin τ

2

´i sin τ

2
cos τ

2

,Ry(τ)=

cos τ

2
´ sin τ

2

sin τ

2
cos τ

2

,Rz(τ)=

[
e´iτ/2 0

0 e iτ/2

]
.

Then
3 The set of Hadamard H, CNOT, Ry(τ), Rz(τ) (for all τ P R)

and SWAP is universal.
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Chapter 2. Quantum Computing

§2.6 Quantum Parallelism
One uniquely quantum-mechanical effect that we can use for build-
ing quantum algorithms is quantum parallelism. Suppose we can
build a quantum circuit to represent a boolean function f : t0, 1un Ñ

t0, 1um. Then we can build a quantum circuit U that maps |xy|0y

to |xy|f (x)y for every x P t0, 1un and we have

U
(

1
?
2n

ÿ

x Pt0,1un
|xy|0y

)
=

1
?
2n

ÿ

x Pt0,1un
|xy|f (x)y .

We applied U just once, but the final superposition contains f (x) for
all 2n input values x! However, by itself this is not very useful and
does not give more than classical randomization, since observing the
final superposition will give just one random |xy|f (x)y and all other
information will be lost. As we will see below, quantum parallelism
needs to be combined with the effects of interference and entangle-
ment in order to get something that is better than classical.
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Chapter 2. Quantum Computing

§2.7 The Early Algorithms
Virtually all quantum algorithms work with queries in some form or
other. For a given N-bit data x = (x0, ¨ ¨ ¨ , xN´1) P t0, 1uN, where
N = 2n, let Ox be a linear map on n + 1 qubits given by

Ox : |i y|by ÞÑ |i y|b ‘ xiy ,

where i P t0, 1un, b P t0, 1u, ‘ denotes exclusive-or (addition mod-
ulo 2), and the value of xi is obtained through a memory access via
a so-called “black-box”, which is equipped to output the bit xi on
input i. The first n qubits of the state are called the address bits (or
address register), while the (n + 1)-th qubit is called the target bit.

Since Ox is equivalent to a swap of basis, it is unitary. Note that
a quantum computer can apply Ox on a superposition of various i,
something a classical computer cannot do.
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Chapter 2. Quantum Computing

§2.7 The Early Algorithms
Given the ability to make a query of the above type, we can also
make a query of the form |i y ÞÑ (−1)xi |i y by setting the target bit
to the state |´y ” H|1y =

1
?
2

(
|0y ´ |1y

)
:

Ox(|i y|´y) = |i y 1
?
2

(
|xiy ´ |1 ´ xiy

)
= (−1)xi |i y|´y .

This ˘-kind of query puts the output variable in the phase of the
state: if xi is 1 then we get a −1 in the phase of basis state |i y; if xi =

0 then nothing happens to |i y. This “phase-oracle” is sometimes
more convenient than the standard type of query. We sometimes
denote the corresponding n-qubit unitary transformation (ignoring
the last qubit |´y) by Ox,˘.
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Chapter 2. Quantum Computing

§2.7 The Early Algorithms
§2.7.1 Deutsch-Jozsa Algorithm
Deutsch-Jozsa problem: For N = 2n, we are given x P t0, 1uN

such that either
1 all xi have the same value (“constant”), or
2 N/2 of the xi are 0 and N/2 of the xi are 1 (“balanced”).

The goal is to find out whether x is constant or balanced.

The algorithm of Deutsch and Jozsa is as follows. We start in
the n-qubit zero state |0ny, apply a Hadamard transform to each
qubit, apply a query (in its ˘-form), apply another Hadamard to
each qubit, and then measure the final state. As a unitary transfor-
mation, the algorithm would be HbnO˘Hbn. We have drawn the
corresponding quantum circuit in Figure 4 (where time progresses
from left to right).
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Figure 4: The Deutsch-Jozsa algorithm for n = 3

Let us follow the state through these operations. Initially we have
the state |0ny. After the first Hadamard transforms we have obtained
the uniform superposition of all i :

1
?
2n

ÿ

iPt0,1un

|i y .
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The O˘-query turns this into

1
?
2n

ÿ

i Pt0,1un

(´1)xi |i y .

Applying the second batch of Hadamards gives the final superposi-
tion

1

2n

ÿ

i Pt0,1un

(´1)xi
ÿ

j Pt0,1un

(´1)i ‚ j| j y ,

where i ‚ j =
n
ř

k=1

ik jk is the bitwise dot product of i and j as before.

Since i ‚ 0n = 0 for all i P t0, 1un, we see that the amplitude of the
|0ny-state in the final superposition is

1

2n

ÿ

i Pt0,1un

(´1)xi =

$

&

%

1 if xi = 0 for all i ,
´1 if xi = 1 for all i ,
0 if x is balanced .
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§2.7 The Early Algorithms
Hence the final observation will yield |0ny if x is constant and will
yield some other state if x is balanced. Accordingly, the Deutsch-
Jozsa problem can be solved with certainty using only 1 quantum
query and O(n) other operations. In contrast, it is easy to see that
any classical deterministic algorithm needs N/2 + 1 queries in the
worst case scenario: if it has made only N/2 queries and seen only
0s, the correct output is still undetermined. However, a classical
algorithm can solve this problem efficiently if we allow a small error
probability: just query x at two random positions, output “constant”
if those bits are the same and “balanced” if they are different. This
algorithm outputs the correct answer with probability 1 if x is con-
stant and outputs the correct answer with probability 1/2 if x is
balanced. Thus the quantum-classical separation of this problem
only holds if we consider algorithms without error probability.
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§2.7 The Early Algorithms
Remark: In a lot of literatures, the Deutsch-Jozsa problem is for-
mulated as: Let f : t0, 1un Ñ t0, 1u satisfy either f is a constant
function or #f ´1(t0u) = #f ´1(t1u) = 2n´1 (such f is said to be
balanced). Determine if f is constant or balanced. In such a case,
the Ox operator is usually denoted by Uf, and the quantum circuit
for the Deutsch-Jozsa algorithm is usually drawn as

|0ny Hbn

Uf

Hbn

|1y H

x x

y y ‘ f (x)

Figure 5: Another way of drawing the quantum circuit for the Deutsch-
Jozsa algorithm
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Remark: In general it is not easy to construct a quantum circuit for
the oracle Uf ; however, for some specific f a quantum implementa-
tion of Uf is possible. For example, let f : t0, 1un Ñ t0, 1u be given
by f (x) = xn if x = (x1, ¨ ¨ ¨ , xn); that is, the value of f is identical
to the lowest digits of the input. Then Uf = In´1 b CNOT, where
In´1 is the identity map on (n ´ 1) qubit system, since

(In´1 b CNOT)(|xy|yy) = (In´1 b CNOT)(|x1 ¨ ¨ ¨ xn´1xny|yy)

= (In´1 b CNOT)(|x1 ¨ ¨ ¨ xn´1y|xnyy)

=
(
In´1|x1 ¨ ¨ ¨ xn´1y

)
b
(
CNOT(|xny|yy)

)
= |x1 ¨ ¨ ¨ xn´1y|xny|y ‘ xny = |x1 ¨ ¨ ¨ xny|y ‘ xny

= |xy|y ‘ f (x)y .
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Therefore, Uf can be implemented by the following quantum circuit

|x1 ¨ ¨ ¨ xn´1y

Uf|xny

|yy

x x

y y ‘ f (x)

=

Figure 6: A quantum circuit for Uf with f (x1, ¨ ¨ ¨ , xn) = xn
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§2.7.2 Bernstein-Vazirani
Bernstein-Vazirani problem: For N = 2n, we are given x P t0, 1uN

with the property that there is some unknown a P t0, 1un such that
xi = (i ‚ a) mod 2. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-
Jozsa algorithm, but now the final observation miraculously yields a.
Since (−1)xi = (−1)(i ‚ a) mod 2 = (−1)i ‚ a, we can write the state
obtained after the query as:

1
?
2n

ÿ

iPt0,1un

(´1)xi |i y =
1

?
2n

ÿ

iPt0,1un

(´1)i ‚ a|i y .

Since Hadamard is its own inverse, applying a Hadamard to each
qubit will turn this into the classical state |ay and hence solves the
problem with 1 query and O(n) other operations.
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In contrast, any classical algorithm (even a randomized one with
small error probability) needs to ask n queries for information-theoretic
reasons: the final answer consists of n bits and one classical query
gives at most 1 bit of information. Bernstein and Vazirani also de-
fined a recursive version of this problem, which can be solved exactly
by a quantum algorithm in poly(n) steps, but for which any classical
randomized algorithm needs nΩ(log n) steps.
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