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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates
Question: What is a classical computer or what does a classical
computer do?
In a classical computer the processor essentially performs nothing
more than a sequence of transformations of a classical state into
another one. In mathematical terminology, a classical processor per-
forms a sequence of evaluation of maps of the form

f : t0, 1un Ñ t0, 1um

x ÞÑ f (x)
This is what we will refer to as the classical computational process,
which is realized with a concatenation of classical gates and cir-
cuits.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates
Definition
A classical logical gate, also called a Boolean function, is a map

g : t0, 1un Ñ t0, 1u

(x1, ¨ ¨ ¨ , xn) ÞÑ g(x1, ¨ ¨ ¨ , xn)
.

We define an extended classical logical gate g as a map
g : t0, 1un Ñ t0, 1um

(x1, ¨ ¨ ¨ , xn) ÞÑ
(
g1(x1, ¨ ¨ ¨ , xn), ¨ ¨ ¨ , gm(x1, ¨ ¨ ¨ , xn)

) ,

where each gj is a classical logic gate. A classical gate g is called
reversible if it is a bijection and thus invertible.

Example
The addition ‘ on Z2 can be treated as a classical logic gate from
t0, 1u2 to t0, 1u given by (a, b) ÞÑ a ‘ b.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - NOT gate
The NOT gate, also called an inverter, is a logic gate which im-
plements logical negation. It behaves according to the truth table
below:

INPUT OUTPUT
0 1
1 0

The analytical form of the NOT gate is given by NOT(a) = 1 ´ a
for a P t0, 1u. We note that the NOT gate is reversible, and the
inverse of the NOT gate is itself.

Figure 1: Traditional NOT Gate (Inverter) symbol
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - AND and OR gates
The AND gate (及閘) is a basic digital logic gate that implements
logical conjunction, and the OR gate (或閘) is a digital logic gate
that implements logical disjunction. They behave according to the
truth tables below:

INPUT OUTPUT
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

INPUT OUTPUT
A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

Analytically, the function of AND finds the product of binary digits,
while the function of OR finds the maximum between two binary
digits; that is,

AND(a, b) = a ¨ b and OR(a, b) = maxta, bu @ a, b P t0, 1u .
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - AND and OR gates
The logic gate symbols for the AND and OR gates are

Figure 2: Logic gate symbols for AND (left) and OR (right) gates

We note that the AND gate and the OR gate are not reversible.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - NAND and NOR gates
The NAND gate (NOT-AND，反及閘) is a logic gate whose output
is complement to that of an AND gate. In other words, the NAND
gate produces an output which is false only if all its inputs are true.
On the other hand, the NOR gate (NOT-OR，反或閘) is a logic
gate whose output is complement to that of an OR gate. They
behave according to the truth tables below:

INPUT OUTPUT
A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

INPUT OUTPUT
A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - NAND and NOR gates
The logic gate symbols for the NAND and NOR gates are

Figure 3: Logic gate symbols for NAND (left) and NOR (right) gates

We also note that the NAND gate and the NOR gates are not
reversible.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - XOR and XNOR gates
The XOR gate (sometimes EOR, or EXOR and pronounced as
Exclusive OR，互斥或閘) is a digital logic gate (from t0, 1u2 to
t0, 1u) that gives a true (1 or HIGH) output when the number of
true inputs is odd. The XNOR gate (sometimes ENOR, EXNOR
or NXOR and pronounced as Exclusive NOR，反互斥或閘) is a
digital logic gate whose function is the logical complement of the
Exclusive OR (XOR) gate. The XOR and XNOR gates behave
according to the truth table below:

INPUT OUTPUT
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

INPUT OUTPUT
A B A XNOR B
0 0 1
0 1 0
1 0 0
1 1 1
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - XOR and XNOR gates
The analytic form of the XOR and the XNOR gates are

XOR(a, b) = a ‘ b = a + b ´ 2ab @ a, b P t0, 1u ,

XNOR(a, b) = 1 ‘ a ‘ b = 1 + 2ab ´ a ´ b @ a, b P t0, 1u .

The logic gate symbols for the XOR and XNOR gates are

Figure 4: Logic gate symbols for XOR and XNOR gates

The XOR and XNOR gates are not reversible.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - the TOFFOLI gate
The Toffoli gate, also called CCNOT (pronounced controlled-controlled-
not) gate, is a digital logic gate which behaves according to the truth
table below:

INPUT OUTPUT
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

The Toffoli gate is a reversible logic gate.
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Chapter 1. Logic Circuits

§1.1 Classical Logic Gates - the TOFFOLI gate
The analytic form of the Toffoli gate is

TOF(a, b, c) = (a, b, ab ‘ c) @ a, b, c P t0, 1u

and the symbol for the Toffoli gate is

Figure 5: Circuit representation of Toffoli gate

The n-bit Toffoli gate is a generalization of Toffoli gate. It takes n
bits x1, x2, ¨ ¨ ¨ , xn as inputs and outputs n bits: the first n−1 output
bits are just x1, ¨ ¨ ¨ , xn´1, and the last output bit is x1x2 ¨ ¨ ¨ xn´1‘xn.
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Universal gates can be “combined” to perform “all” Boolean func-
tions. Before talking about the precise definition of the universality
of classical logic gates, we need to introduce two basic operations
that can be easily performed by classical computers (via storing/
swapping data in the memory, maybe?).

Definition (Restriction/Re-ordering)
Let n, ℓ P N and ℓ ď n. For a pairwise distinct set t j1, ¨ ¨ ¨ , jℓu Ď

t1, ¨ ¨ ¨ , nu, the restriction and/or re-ordering operation r (n)j1 j2 ¨¨¨jℓ is
a classical gate from t0, 1un to t0, 1uℓ given by

r (n)j1 j2 ¨¨¨jℓ(x1, ¨ ¨ ¨ , xn) = (xj1 , xj2 , ¨ ¨ ¨ , xjℓ) .
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Definition (Padding - 填充)
Let n, ℓ P N. For a given point (y1, y2, ¨ ¨ ¨ , yℓ) P t0, 1uℓ and a
pairwise distinct set t j1, ¨ ¨ ¨ , jℓu Ď t1, 2, ¨ ¨ ¨ , n + ℓu, the padding
operation p (n)

y1,¨¨¨ ,yℓ ; j1,¨¨¨ ,jℓ is a classical gate from t0, 1un to t0, 1un+ℓ

given by
p (n)

y1,¨¨¨ ,yℓ ; j1,¨¨¨ , jℓ(x1, ¨ ¨ ¨ , xn) = (z1, ¨ ¨ ¨ , zn+ℓ) ,

where

zk =

#

xk´#tr Pt j1,¨¨¨ , jℓu | răku if k R t j1, j2, ¨ ¨ ¨ , jℓu ,
yjr if k P t j1, j2, ¨ ¨ ¨ , jℓu and k = jr .

In other words, the padding operation p (n)
y1,¨¨¨ ,yℓ; j1,¨¨¨ , jℓ inserts pre-

determined bit values y1, ¨ ¨ ¨ , yℓ P t0, 1u at pre-determined slots
j1, ¨ ¨ ¨ , jℓ P t1, ¨ ¨ ¨ , n + ℓu.
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Definition
Let tg1, g2, ¨ ¨ ¨ , gku be a collection of classical gates. The collection
of all gates that can be constructed from g1, g2, ¨ ¨ ¨ , gk, denoted
by F[g1, ¨ ¨ ¨ , gk], is the set satisfying the following five construction
rules:

1 For any pairwise distinct j1, ¨ ¨ ¨ , jℓ P t1, ¨ ¨ ¨ , ℓu, where ℓ, n P N
and ℓ ď n,

r (n)j1 j2 ¨¨¨jℓ P F[g1, ¨ ¨ ¨ , gk] .

2 For any y1, ¨ ¨ ¨ , yℓ P t0, 1u and pairwise distinct j1, ¨ ¨ ¨ , jℓ P

t1, ¨ ¨ ¨ , n + ℓu, where ℓ, n P N,

p (n)
y1,¨¨¨ ,yℓ ; j1,¨¨¨ , jℓ P F[g1, ¨ ¨ ¨ , gk] .

3 For any 1 ď j ď k, gj P F[g1, ¨ ¨ ¨ , gk].
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Definition (Cont.)

4 Compositions of elements of F[g1, ¨ ¨ ¨ , gk] belong to
F[g1, ¨ ¨ ¨ , gk]; that is, for any h1 : t0, 1un Ñ t0, 1um and
h2 : t0, 1uℓ→t0, 1un, we have

h1, h2 P F[g1, ..., gk] ñ h1 ˝ h2 P F[g1, ..., gk] .

5 Cartesian products of elements of F[g1, ¨ ¨ ¨ , gk] belong to
F[g1, ¨ ¨ ¨ , gk]; that is, for any h = (h1, ¨ ¨ ¨ , hm) : t0, 1un Ñ

t0, 1um and k = (k1, ¨ ¨ ¨ , kq) : t0, 1up Ñ t0, 1uq, we have
h, k P F[g1, ¨ ¨ ¨ , gk] ñ h ˆ k P F[g1, ¨ ¨ ¨ , gk] ,

where with x1 and x2 denoting vectors (x1, ¨ ¨ ¨ , xn) and
(xn+1, ¨ ¨ ¨ , xn+p), respectively, h ˆ k : t0, 1un+p Ñ t0, 1um+q

is the Cartesian product of h and k defined by
(h ˆ k)(x1, x2) =

(
h1(x1), ¨ ¨ ¨ , hm(x1), k1(x2), ¨ ¨ ¨ , kq(x2)

)
.
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Example
Let ID be classical gates given by

ID(a) = a @ a P t0, 1u .

Then ID(a) = AND(a, 1) = (AND ˝ p (1)
1;2 )(a) which implies that

ID = AND ˝ p (1)
1;2 .

Therefore, ID P F[AND].

Example
For n P N, let COPY(n) be a classical gate given by COPY(n)(a) =
(a, a) for a P t0, 1un. Using the identity

COPY(n) = r (2n)
1,3,¨¨¨ ,2n´1,2,4,¨¨¨ ,2n ˝ COPY(1)

ˆ ¨ ¨ ¨ ˆ COPY(1)

l jh n

n copies of COPY(1)

;

we find that COPY(n) P F[COPY(1)] for all n P N.
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Example
For a, b, c P t0, 1u,(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID) ˝ r (5)1,3,2,4,5...

... ˝ (COPY(1)
ˆCOPY(1)

ˆID)
)
(a, b, c)

=
(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID) ˝ r (5)1,3,2,4,5

)
(a, a, b, b, c)

=
(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID)

)
(a, b, a, b, c)

= (ID ˆ IDˆXOR)(a, b,AND(a, b), c) = (a, b, ab ‘ c)
= TOF(a, b, c) .

Therefore, TOF P F
[
ID,XOR,AND,COPY(1)

]
, and the previous

example further shows that TOF P F
[
XOR,AND,COPY(1)

]
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Example
In this example we show that AND, OR and NOT can be con-
structed solely by NAND or NOR. The AND and OR gates can
be implemented using NAND or NOR by the following logic circuit:

Figure 6: The construction of AND and OR from NAND or NOR
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Example (cont.)
and the NOT gate can be constructed by NAND or NOR by the
following logic circuit:

Figure 7: The construction of NOT from NAND or NOR

Therefore, AND,OR,NOT P F[NAND] X F[NOR].

On the other hand, NAND,NOR P F[AND,OR,NOT] since
NAND = NOT ˝ AND and NOR = NOT ˝ OR .

As a consequence,
F[AND,OR,NOT] = F[NAND] = F[NOR] .
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§1.2 Universal Gates
Example (cont.)
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Therefore, AND,OR,NOT P F[NAND] X F[NOR].

On the other hand, NAND,NOR P F[AND,OR,NOT] since
NAND = NOT ˝ AND and NOR = NOT ˝ OR .

As a consequence,
F[AND,OR,NOT] = F[NAND] = F[NOR] .
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§1.2 Universal Gates
Remark:

1 In the construction of basic logic gate using NAND or NOR,
the gate COPY(1) is used implicitly. In other words, to be more
precise we should write

F[NAND] Ď F[AND,OR,NOT] Ď F[NAND,COPY(1)] ,

F[NOR] Ď F[AND,OR,NOT] Ď F[NOR,COPY(1)] .

2 A logic gate in F[AND,OR,NOT] is called a Boolean circuit.
3 The XOR and XNOR gates can be constructed from NAND

or NOR gates (with the help of COPY(1)). See the lecture
note for the detail circuits.

Proposition
Let tg1, ¨ ¨ ¨ , gku be a collection of classical gates, and h1, ¨ ¨ ¨ , hℓ P

F[g1, ¨ ¨ ¨ , gk]. Then F[h1, ¨ ¨ ¨ , hℓ] Ď F[g1, ¨ ¨ ¨ , gk].

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 1. Logic Circuits

§1.2 Universal Gates
Remark:

1 In the construction of basic logic gate using NAND or NOR,
the gate COPY(1) is used implicitly. In other words, to be more
precise we should write

F[NAND] Ď F[AND,OR,NOT] Ď F[NAND,COPY(1)] ,

F[NOR] Ď F[AND,OR,NOT] Ď F[NOR,COPY(1)] .

2 A logic gate in F[AND,OR,NOT] is called a Boolean circuit.
3 The XOR and XNOR gates can be constructed from NAND

or NOR gates (with the help of COPY(1)). See the lecture
note for the detail circuits.

Proposition
Let tg1, ¨ ¨ ¨ , gku be a collection of classical gates, and h1, ¨ ¨ ¨ , hℓ P

F[g1, ¨ ¨ ¨ , gk]. Then F[h1, ¨ ¨ ¨ , hℓ] Ď F[g1, ¨ ¨ ¨ , gk].

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 1. Logic Circuits

§1.2 Universal Gates
Definition
A collection tg1, ¨ ¨ ¨ , gku of classical gates is said to be universal if
g P F[g1, ¨ ¨ ¨ , gk] for every classical gate g.

Theorem
The classical TOFFOLI-gate is universal and reversible.

Proof of the universality of the Toffoli gate.
We have known that TOF is reversible, so it suffices to show the
universality of TOF.
Since every gate g : t0, 1un Ñ t0, 1um is a Cartesian product of
m gates g1, g2, ¨ ¨ ¨ , gm : t0, 1un Ñ t0, 1u, it suffices to show the
universality only for a gate of the form f : t0, 1un Ñ t0, 1u, which
we shall do by induction in n. ˝
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Proof of the universality of the Toffoli gate (cont.)
Before initiating the induction argument, let us first construct the
AND, XOR and COPY(n) gates using the Toffoli gate. Since

TOF(a, b, 0) = (a, b, ab) ,
TOF(1, a, b) = (1, a, a ‘ b) ,

@ a, b P t0, 1u ,

we find that
AND(a, b) = ab = (r (3)3 ˝ TOF)(a, b, 0) = (r (3)3 ˝ TOF ˝ p (2)

0;3 )(a, b) ,
XOR(a, b) = a ‘ b = (r (3)3 ˝ TOF)(1, a, b) = (r (3)3 ˝ TOF ˝ p (2)

1;1 )(a, b) ,
COPY(1)(a) = (r (3)1,3 ˝ TOF)(a, 1, 0) = (r (3)1,3 ˝ TOF ˝ p (1)

1,0;2,3)(a) .

Therefore, AND,XOR,COPY(1) P F[TOF]. Together with the fact
that COPY(n) P F[COPY(1)], we also conclude that COPY(n) P

F[TOF] for all n P N. ˝
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Proof of the universality of the Toffoli gate (cont.)
Now we initiate the induction process. First we need to show that
TOF is universal for gates of the form f : t0, 1u Ñ t0, 1u. There
are four gates in this case: the identity gate ID, the NOT gate, the
TRUE gate whose output is always 1, and the FALSE gate whose
output is always 0. Note that for a P t0, 1u,

TOF(1, 0, a) = (1, 0, a) and TOF(1, 1, a) = (1, 1, 1 ‘ a) .
Using the identity p (1)

1,0;1,2(a) = (1, 0, a), we find that
ID(a) = (r (3)3 ˝ TOF)(1, 0, a) = (r (3)3 ˝ TOF ˝ p (1)

1,0;1,2)(a) ,

TRUE(a) = (r (3)1 ˝ TOF)(1, 0, a) = (r (3)1 ˝ TOF ˝ p (1)
1,0;1,2)(a) ,

FALSE(a) = (r (3)2 ˝ TOF)(1, 0, a) = (r (3)2 ˝ TOF ˝ p (1)
1,0;1,2)(a) ,

NOT(a) = (r (3)3 ˝ TOF)(1, 1, a) = (r (3)3 ˝ TOF ˝ p (1)
1,1;1,2)(a) . ˝
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Proof of the universality of the Toffoli gate (cont.)
Therefore, TOF is universal for gates of the form f : t0, 1u Ñ t0, 1u.
Suppose that TOF is universal for gates of the form f : t0, 1un´1 Ñ

t0, 1u. Let f : t0, 1un Ñ t0, 1u be a classical gate. Define classical
gates g0, g1 : t0, 1un´1 Ñ t0, 1u by

g0(x1, ¨ ¨ ¨ , xn´1) = f (x1, ¨ ¨ ¨ , xn´1, 0) ,

g1(x1, ¨ ¨ ¨ , xn´1) = f (x1, ¨ ¨ ¨ , xn´1, 1) ,

and h : t0, 1un Ñ t0, 1u by
h(x1, ¨ ¨ ¨ , xn) = XOR

(
AND(g0(x1, ¨ ¨ ¨ , xn´1),NOT(xn)),

AND(g1(x1, ¨ ¨ ¨ , xn´1), xn)
)
.

Next, we show that h = f and use this fact to establish that f P

F[TOF]. The theorem is then concluded by induction. ˝
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Proof of the universality of the Toffoli gate (cont.)
For a fixed pxn ” (x1, ¨ ¨ ¨ , xn´1) P t0, 1un´1, there are four cases:

1 g0(pxn) = g1(pxn) = 0: in this case
h(x1, ¨ ¨ ¨ , xn) = XOR

(
AND(0,NOT(xn)),AND(0, xn)

)
= 0

= f (x1, ¨ ¨ ¨ , xn) .

2 g0(pxn) = g1(pxn) = 1: in this case
h(x1, ¨ ¨ ¨ , xn) = XOR

(
AND(1,NOT(xn)),AND(1, xn)

)
= 1

= f (x1, ¨ ¨ ¨ , xn) .

3 g0(pxn) = 0 and g1(pxn) = 1: in this case,
h(x1, ¨ ¨ ¨ , xn) = XOR

(
AND(0,NOT(xn)),AND(1, xn)

)
= ID(xn) = f (x1, ¨ ¨ ¨ , xn) . ˝
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Chapter 1. Logic Circuits

§1.2 Universal Gates
Proof of the universality of the Toffoli gate (cont.)

4 g0(pxn) = 1 and g1(pxn) = 0: in this case,
h(x1, ¨ ¨ ¨ , xn) = XOR

(
AND(1,NOT(xn)),AND(0, xn)

)
= NOT(xn) = f (x1, ¨ ¨ ¨ , xn) .

Therefore, h = f. By the induction assumption, g0, g1 P F[TOF];
thus the identity

h = XOR˝(ANDˆAND)˝
(
(g0ˆNOT)ˆ(g1ˆID)

)
˝COPY(n)

and the fact that XOR,AND,NOT, ID,COPY(n) P F[TOF] show
that f P F[TOF]. ˝

Remark: Since XOR can be constructed using NAND, previous
example shows that TOF P F

[
NAND,COPY(1)

]
. Therefore,

F[TOF] = F
[
NAND,COPY(1)

]
Ě F[AND,OR,NOT] .
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
In a (classical) computer, each number is stored as a binary number
which is a number expressed in the base-2 numeral system. In an
N-bit system, the first bit is always used to store the sign of the
number, and the rest (N ´ 1) bits are used to express the number
(we will not go further into the fixed point or floating point system).

Every non-negative binary number takes the form 0inin´1in´2 ¨ ¨ ¨ i1
(or more precisely, (0inin´1 ¨ ¨ ¨ i1)2), where ik P t0, 1u for each k, and
is the same as the number

2n´1in + 2n´2in´2 + ¨ ¨ ¨ + 21i2 + i1 =
n

ÿ

k=1

2k´1ik

in the usual base-10 numeral system. For example, the number 13 in
the base-10 numeral system is expressed as 0 ¨ ¨ ¨ 01101 in the base-2
numeral system.
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
Every negative binary number takes the form 1inin´1in´2 ¨ ¨ ¨ i1 (or
more precisely, (1inin´1 ¨ ¨ ¨ i1)2), where ik P t0, 1u for each k, and is
the same as the number

´2n´1(1´ in)´¨ ¨ ¨´21(1´ i2)´20(1´ i1)´1=´1´
n

ÿ

k=1

2k´1(1´ ik)

in the usual base-10 numeral system (here the two’s-complement
number system - 二補數系統 - is used). For example, the number
´13 is 1 ¨ ¨ ¨ 10011 (which is obtained by exchanging 0 and 1 in
the binary expression of 13 and the outcome plus 1 is the binary
expression of ´13). We also note that the number 1inin´1in´2 ¨ ¨ ¨ i1
is the same as ´2n + 0inin´1 ¨ ¨ ¨ i1, where 0inin´1 ¨ ¨ ¨ i1 denotes the
non-negative number given previously.
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
Example
Since 7 in the base-10 numeral system is the same as 0 ¨ ¨ ¨ 0111 is
the base-2 numeral system, the classical computers compute 7+ 13

and 7 ´ 13 (which is the same as 7 + (´13)) as follows:

7 + 13 = (0 ¨ ¨ ¨ 00111)2 + (0 ¨ ¨ ¨ 01101)2

= (0 ¨ ¨ ¨ 010100)2 = 24 + 22 = 20 ,

7 + (´13) = (0 ¨ ¨ ¨ 00111)2 + (1 ¨ ¨ ¨ 10011)2

= (1 ¨ ¨ ¨ 111010)2 = ´22 ´ 20 ´ 1 = ´6 .
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
Remark: For a non-negative integer k = (kn´1kn´2 ¨ ¨ ¨ k0)2, in
matlab® kj is the ( j + 1)-th component of the vector x given by

x = de2bi(k, n) .

In other words, x given above lists the lowest bit to the highest bit
of k from left to right. To obtain the bit expression in exactly the
same order, we use the flip function so that

(kn´1, kn´2, ¨ ¨ ¨ , k0) = flip(de2bi(k, n)) .

We also remark that in matlab® the input of de2bi has to be non-
negative integers (so it will not output the bit expression of negative
integer in the two’s complement number system).
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
An adder (加法器) is a digital circuit that performs addition of
numbers.
‚ Half adders (半加法器): The half adder adds two single binary
digits A and B. It has two outputs, sum (S) and carry (C, 進位).
The carry signal represents an overflow into the next digit of a multi-
digit addition. The sum of A and B is 2C + S. The truth table for
the half adder is:

INPUT OUTPUT
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
The simplest half-adder design, pictured below,

Figure 8: The logic diagram of the half adder

incorporates an XOR gate (that gives a true output when the num-
ber of true inputs is odd) for S and an AND gate for C. The
Boolean logic for the sum (in this case S) will be A1B+AB1 (which
is (1´ A)B+A(1´ B)) whereas for the carry (C) will be AB. The
half adder adds two input bits and generates a carry and sum, which
are the two outputs of a half adder.
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
‚ Full adder (全加法器): A one-bit full-adder adds three one-
bit numbers, often written as A, B, and Cin; A and B are the
operands, and Cin is a bit carried in from the previous stage. The
circuit produces a two-bit output. Output carry and sum typically
represented by the signals Cout and S, where the sum of A and B
equals 2Cout + S. The truth table for the full adder is:

INPUT OUTPUT
A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
A circuit design for the full adder is given below:

Figure 9: The logic diagram of the full adder (left) and a schematic symbol
for a 1-bit full adder (right), here Cin and Cout drawn on sides of block to
emphasize their use in a multi-bit adder

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 1. Logic Circuits

§1.3 How A Classical Computer Adds Numbers
We can create a logical circuit using multiple full adders to add N-
bit numbers. Each full adder inputs a Cin, which is the Cout of the
previous adder. This kind of adder is called a ripple-carry adder
(RCA), since each carry bit “ripples” to the next full adder. Note
that the first (and only the first) full adder may be replaced by a half
adder (under the assumption that Cin = 0). The following figure
provides a symbol for a 4-bit full adder:

here two input 4-bit numbers is A = (A3A2A1A0)2, B = (B3B2B1B0)2
and the sum of A and B is a 5-bit number S = (C4S3S2S1S0)2.
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