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Chapter 12. Theory of Constrained Optimization

Introduction
The second part of the textbook is about minimizing functions sub-
ject to constraints on the variables:

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I ,
(1)

where f and the functions ci are all smooth, real-valued functions
on a subset of Rn, and I and E are two finite sets of indices. As
before, we call f the objective function, while ci, i P E , are the
equality constraints and ci, i P I, are the inequality constraints. We
define the feasible set Ω by

Ω =
␣

x
ˇ

ˇ (@ i P E)(ci (x) = 0) and (@ i P I)(ci (x) ě 0)
(

,

so that we can rewrite (1) more compactly as
min
xPΩ

f (x) . (2)
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Introduction
In this chapter we derive mathematical characterizations of the so-
lutions of (2). Two types of optimality conditions are discussed:

1 Necessary conditions are conditions that must be satisfied by
any solution point (under certain assumptions).

2 Sufficient conditions are those that, if satisfied at a certain point
x˚, guarantee that x˚ is in fact a solution.

Optimality conditions for unconstrained optimization problems are:
1 Necessary conditions: Local unconstrained minimizers x˚ satis-

fies that (∇f )(x˚) = 0 and (∇2f )(x˚) positive semi-definite.
2 Sufficient conditions: Any point x˚ at which (∇f )(x˚) = 0 and

(∇2f )(x˚) is positive definite is a strong local minimizer of f .
In this chapter, we derive analogous conditions to characterize the
solutions of constrained optimization problems.
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Introduction
‚ Local and global solutions
We have seen already that global solutions are difficult to find even
when there are no constraints. The situation may be improved when
we add constraints, since the feasible set might exclude many of the
local minima and it may be comparatively easy to pick the global
minimum from those that remain. However, constraints can also
make things more difficult. As an example, consider the problem

min(x2 + 100)2 + 0.01x 2
1 subject to x2 ´ cos x1 ě 0 ,

illustrated in Figure 1. Without the constraint, the problem has
the unique solution (0,´100)T. With the constraint, there are local
solutions near the points

x(k) = (kπ,´1)T for k = ˘1,˘3,˘5, ¨ ¨ ¨ .
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Figure 1: Constrained problem with many isolated local solutions.
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Introduction
Definitions of the different types of local solutions are simple exten-
sions of the corresponding definitions for the unconstrained case.
Definition

1 A vector x˚ is a local solution of the problem (2) if x˚ P Ω and
there is a neighborhood N of x˚ such that f (x) ě f (x˚) for
x P N X Ω.

2 A vector x˚ is a strict local solution (also called a strong local
solution) if x˚ P Ω and there is a neighborhood N of x˚ such
that f (x) ą f (x˚) for all x P N X Ω with x ‰ x˚.

3 A point x˚ is an isolated local solution if x˚ P Ω and there is
a neighborhood N of x˚ such that x˚ is the only local solution
in N X Ω.

Note that isolated local solutions are strict, but that the reverse is
not true.
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Introduction
‚ Smoothness
Smoothness of objective functions and constraints is an important
issue in characterizing solutions, just as in the unconstrained case.
It ensures that the objective function and the constraints all behave
in a reasonably predictable way and therefore allows algorithms to
make good choices for search directions.

We saw in Chapter 2 that graphs of non-smooth functions contain
“kinks” or “jumps” where the smoothness breaks down. If we plot
the feasible region for any given constrained optimization problem,
we usually observe many kinks and sharp edges. Does this mean that
the constraint functions that describe these regions are non-smooth?
The answer is often no, because the non-smooth boundaries can
often be described by a collection of smooth constraint functions.
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Introduction
For example, Figure 2 shows a diamond-shaped feasible region in R2

that could be described by the single non-smooth constraint

}x}1 ” |x1| + |x2| ď 1 .

It can also be described by the following set of smooth (in fact,
linear) constraints:

x1 + x2 ď 1 , x1 ´ x2 ď 1 , ´x1 + x2 ď 1 , ´x1 ´ x2 ď 1 . (3)

Each of the four constraints represents one edge of the feasible poly-
tope. In general, the constraint functions are chosen so that each
one represents a smooth piece of the boundary of Ω.
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Figure 2: A feasible region with a non-smooth boundary can be described
by smooth constraints.
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Introduction
Non-smooth, unconstrained optimization problems can sometimes
be reformulated as smooth constrained problems. An example is
the unconstrained minimization of a function

f (x) = maxtx 2, xu ,

which has kinks at x = 0 and x = 1, and the solution at x˚ = 0. We
obtain a smooth, constrained formulation of this problem by adding
an artificial variable t and writing

min t s.t. t ě x, t ě x 2 . (4)

Reformulation techniques such as (3) and (4) are used often in cases
where f is a maximum of a collection of functions or when f is a
1-norm or 8-norm of a vector function.
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Introduction
In the examples above we expressed inequality constraints in a slightly
different way from the form ci (x) ě 0 that appears in the definition
(1). However, any collection of inequality constraints with ě and ď

and nonzero right-hand sides can be expressed in the form ci (x) ě 0

by simple rearrangement of the inequality.
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§12.1 Examples
To introduce the basic principles behind the characterization of so-
lutions of constrained optimization problems, we work through three
simple examples.

We begin with the definition of one important terminology.
Definition
The active set A(x) at any feasible x consists of the equality con-
straint indices from E together with the indices of the inequality
constraints i for which ci (x) = 0; that is,

A(x) = E Y
␣

i P I
ˇ

ˇ ci (x) = 0
(

.

At a feasible point x, the inequality constraint i P I is said to be
active if ci (x) = 0 and inactive if the strict inequality ci (x) ą 0 is
satisfied.
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§12.1 Examples
‚ A Single equality constraint
Example
Our first example is a two-variable problem with a single equality
constraint:

min(x1 + x2) subject to x 2
1 + x 2

2 ´ 2 = 0 (5)
(see Figure 12.3). In the language of (1), we have f (x) = x1 + x2,
I = H, E = t1u, and c1(x) = x 2

1 + x 2
2 ´ 2. We can see by

inspection that the feasible set for this problem is the circle of radius
?
2 centered at the origin – just the boundary of this circle, not its

interior. The solution x˚ is obviously (´1,´1)T. From any other
point on the circle, it is easy to find a way to move that stays feasible
(that is, remains on the circle) while decreasing f . For instance, from
the point x = (

?
2, 0)T any move in the clockwise direction around

the circle has the desired effect.
Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.1 Examples
‚ A Single equality constraint
Example
Our first example is a two-variable problem with a single equality
constraint:

min(x1 + x2) subject to x 2
1 + x 2

2 ´ 2 = 0 (5)
(see Figure 12.3). In the language of (1), we have f (x) = x1 + x2,
I = H, E = t1u, and c1(x) = x 2

1 + x 2
2 ´ 2. We can see by

inspection that the feasible set for this problem is the circle of radius
?
2 centered at the origin – just the boundary of this circle, not its

interior. The solution x˚ is obviously (´1,´1)T. From any other
point on the circle, it is easy to find a way to move that stays feasible
(that is, remains on the circle) while decreasing f . For instance, from
the point x = (

?
2, 0)T any move in the clockwise direction around

the circle has the desired effect.
Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.1 Examples
Example (cont’d)

Figure 3: Problem (5), showing constraint and function gradients at various
feasible points.
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§12.1 Examples
Example (cont’d)
We also see from Figure 3 that at the solution x˚, the constraint
normal ∇c1(x˚) is parallel to (∇f )(x˚). That is, there is a scalar λ˚

1

(in this case λ˚
1 = ´1/2) such that

(∇f )(x˚) = λ˚
1∇c1(x˚) . (6)

We can derive (6) by examining first-order Taylor series approxima-
tions to the objective and constraint functions. To retain feasibility
with respect to the function c1(x) = 0, we require any small (but
nonzero) step s to satisfy that c1(x + s) = 0; that is,

0 = c1(x + s) « c1(x) +∇c1(x)Ts = ∇c1(x)Ts .
Hence, the step s retains feasibility with respect to c1, to first order,
when it satisfies

∇c1(x)Ts = 0 . (7)
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§12.1 Examples
Similarly, if we want s to produce a decrease in f , we would have

0 ą f (x + s) ´ f (x) « ∇f (x)Ts ,
or, to first order,

∇f (x)Ts ă 0 . (8)
Existence of a small step s that satisfies both (7) and (8) strongly
suggests existence of a direction d (where the size of d is not small;
we could have d « s/}s} to ensure that the norm of d is close to 1)
with the same properties, namely

∇c1(x)Td = 0 and ∇f (x)Td ă 0 . (9)

If, on the other hand, there is no direction d with the properties (9),
then is it likely that we cannot find a small step s with the properties
(7) and (8). In this case, x˚ would appear to be a local minimizer.
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By drawing a picture, the reader can check that the only way that
a d satisfying (9) does not exist is if ∇f (x) and ∇c1(x) are parallel;
that is, if the condition ∇f (x) = λ1∇c1(x) holds at x, for some
scalar λ1. If in fact ∇f (x) and ∇c1(x) are not parallel, we can set

sd = ´

(
I ´

∇c1(x)∇c1(x)T

}∇c1(x)}2
)
∇f (x); d =

sd
}sd}

.

It is easy to verify that this d satisfies (9).
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Introduce the Lagrangian function

L(x, λ1) = f (x) ´ λ1c1(x) . (10)

Since ∇x L(x, λ1) = ∇f (x)´ λ1∇c1(x), we can state the condition

(∇f )(x˚) = λ˚
1∇c1(x˚) (6)

equivalently as follows: At the solution x˚, there is a scalar λ˚
1 such

that
∇x L(x˚, λ

˚
1) = 0 . (11)

This observation suggests that we can search for solutions of the
equality-constrained problem (5) by seeking stationary points of the
Lagrangian function. The scalar quantity λ1 in (10) is called a
Lagrange multiplier for the constraint c1(x) = 0.
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§12.1 Examples
Though the condition (6) (equivalently, (11)) appears to be nec-
essary for an optimal solution of the problem (5), it is clearly not
sufficient. For instance, in the example above, condition (6) is sat-
isfied at the point x = (1, 1)T (with λ1 = 1/2), but this point is
obviously not a solution – in fact, it maximizes the function f on the
circle. Moreover, in the case of equality-constrained problems, we
cannot turn the condition (6) into a sufficient condition simply by
placing some restriction on the sign of λ1. To see this, consider re-
placing the constraint x 2

1 +x 2
2 ´2 = 0 by its negative 2´x 2

1 ´x 2
2 = 0

in the example above. The solution of the problem is not affected,
but the value of λ˚

1 that satisfies the condition (6) changes from
λ˚
1 = ´1/2 to λ˚

1 = 1/2.
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§12.1 Examples
‚ A single inequality constraint
Example
This is a slight modification of the first example, in which the equal-
ity constraint is replaced by an inequality. Consider

min(x1 + x2) s.t. 2 ´ x 2
1 ´ x 2

2 ě 0 , (12)
for which the feasible region consists of the circle of problem (5)
and its interior (see Figure 4). Note that the constraint normal ∇c1
points toward the interior of the feasible region at each point on
the boundary of the circle. By inspection, we see that the solution
is still (´1,´1)T and that the condition (6) holds for the value
λ˚
1 = 1/2. However, this inequality-constrained problem differs from

the equality-constrained problem (5) of the first example in that the
sign of the Lagrange multiplier plays a significant role.
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and its interior (see Figure 4). Note that the constraint normal ∇c1
points toward the interior of the feasible region at each point on
the boundary of the circle. By inspection, we see that the solution
is still (´1,´1)T and that the condition (6) holds for the value
λ˚
1 = 1/2. However, this inequality-constrained problem differs from

the equality-constrained problem (5) of the first example in that the
sign of the Lagrange multiplier plays a significant role.
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§12.1 Examples
Example (cont’d)

Figure 4: Improvement directions s from two feasible points x for the prob-
lem c at which the constraint is active and inactive, respectively.
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§12.1 Examples
As before, we conjecture that a given feasible point x is not optimal
if we can find a small step s that both retains feasibility and de-
creases the objective function f to first order. The main difference
between problems (5) and (12) comes in the handling of the feasibil-
ity condition. As in (8), the step s improves the objective function,
to first order, if ∇f (x)Ts ă 0. Meanwhile, s retains feasibility if

0 ď c1(x + s) « c1(x) +∇c1(x)Ts ,

so, to first order, feasibility is retained if

c1(x) +∇c1(x)Ts ě 0 . (13)

In determining whether a step s exists that satisfies both (8) and
(13), we consider two cases, which are illustrated in Figure 4.
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Chapter 12. Theory of Constrained Optimization

§12.1 Examples
Case I: Consider first the case in which x lies strictly inside the

circle, so that the strict inequality c1(x) ą 0 holds. In this
case, any step vector s satisfies the condition

c1(x) +∇c1(x)Ts ě 0 , (13)

provided only that its length is sufficiently small. In fact, when-
ever ∇f (x) ‰ 0, we can obtain a step s that satisfies both

∇f (x)Ts ă 0 (8)
and (13) by setting

s = ´α∇f (x)
for any positive scalar α sufficiently small. However, this defi-
nition does not give a step s with the required properties when

∇f (x) = 0 . (14)
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§12.1 Examples
Case II: Consider now the case in which x lies on the boundary

of the circle, so that c1(x) = 0. The conditions (8) and (13)
therefore become

∇f (x)Ts ă 0 , ∇c1(x)Ts ě 0 .

The first of these conditions defines an open half-space, while
the second defines a closed half-space, as illustrated in Figure 5
in the next slide. It is clear from this figure that the intersection
of these two regions is empty only when ∇f (x) and ∇c1(x)
point in the same direction; that is, when

∇f (x) = λ1∇c1(x) for some λ1 ě 0. (15)
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§12.1 Examples

Figure 5: A direction d that satisfies both (8) and (13) lies in the intersec-
tion of a closed half-plane and an open half-plane.
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§12.1 Examples
Note that the sign of the multiplier is significant here. If (6) were
satisfied with a negative value of λ1, then ∇f (x) and ∇c1(x) would
point in opposite directions, and we see from Figure 5 that the set
of directions that satisfy both (8) and (13) would make up an entire
open half-plane.

The optimality conditions for both cases I and II can again be sum-
marized neatly using the Lagrangian function L defined in

L(x, λ1) = f (x) ´ λ1c1(x) . (10)
When no first-order feasible descent direction exists at some point
x˚, we have that

∇xL(x˚, λ
˚
1) = 0 for some λ˚

1 ě 0 , (16)
where we also require that

λ˚
1c1(x˚) = 0 . (17)
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§12.1 Examples
Condition

λ˚
1c1(x˚) = 0 (17)

is known as a complementarity condition (互補條件); it implies
that the Lagrange multiplier λ1 can be strictly positive only when the
corresponding constraint c1 is active. Conditions of this type play
a central role in constrained optimization, as we see in the sections
that follow. In case I, we have that c1(x˚) ą 0, so (17) requires that
λ˚
1 = 0. Hence,

(∇f )(x˚) = λ˚
1∇c1(x˚) (6)

reduces to (∇f )(x˚) = 0, as required by (14). In case II, (17) allows
λ˚
1 to take on a non-negative value, so (16) becomes equivalent to

∇f (x) = λ1∇c1(x) for some λ1 ě 0. (15)
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§12.1 Examples
‚ Two inequality constraints
Example
Suppose we add an extra constraint to the problem (12) to obtain

min(x1 + x2) s.t. 2 ´ x 2
1 ´ x 2

2 ě 0 , x2 ě 0 , (18)

for which the feasible region is the half-disk illustrated in Figure
6. It is easy to see that the solution lies at (´

?
2, 0)T, a point at

which both constraints are active. By repeating the arguments for
the previous examples, we would expect a direction d of first-order
feasible descent to satisfy

∇ci (x)Td ě 0 for i P I = t1, 2u (19a)
and

∇f (x)Td ă 0 . (19b)

∇ci (x)Td ě 0 for i P I = t1, 2u , (19a)

∇f (x)Td ă 0 . (19b)
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§12.1 Examples
Example (cont’d)

Figure 6: Problem (18), illustrating the gradients of the active constraints
and objective at the solution.

However, it is clear from Figure 6 that no such direction can exist
when x = (´

?
2, 0)T. The conditions ∇ci (x)Td ě 0 are satisfied for

i = 1, 2 only if d = α1∇c1(x) + α2∇c2(x) for some c1, c2 ě 0, but
it is clear by inspection that all such vectors d satisfy ∇f (x)Td ě 0.
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§12.1 Examples
Example (cont’d)
Let us see how the Lagrangian and its derivatives behave for the
problem (18) and the solution point (´

?
2, 0)T. First, we include

an additional term λi ci (x) in the Lagrangian for each additional
constraint, so the definition of L becomes

L(x, λ) = f (x) ´ λ1c1(x) ´ λ2c2(x) ,
where λ = (λ1, λ2)

T is the vector of Lagrange multipliers. The
extension of condition (16) to this case is

∇x L(x˚, λ˚) = 0 for some λ˚ ě 0, (20)
where the inequality λ˚ ě 0 means that all components of λ˚ are re-
quired to be non-negative. The non-negativity of the Lagrange mul-
tipliers is an important feature in the inequality constrained problem,
and (20) will be shown in the next slide.
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§12.1 Examples
Example (cont’d)
By applying the complementarity condition (17) to both inequality
constraints, we obtain

λ˚
1c1(x˚) = 0 , λ˚

2c2(x˚) = 0 . (21)

When x˚ = (´
?
2, 0)T, we have

(∇f )(x˚) =

[
1
1

]
, ∇c1(x˚) =

[
2

?
2

0

]
, ∇c2(x˚) =

[
0
1

]
,

so that it is easy to verify that ∇x L(x˚, λ˚) = 0 when we select λ˚

as follows:
λ˚ =

[
1/(2

?
2)

1

]
.

Note that both components of λ˚ are positive, so that (20) is sat-
isfied.
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§12.1 Examples
Example (cont’d)
We consider now some other feasible points that are not solutions of
(18), and examine the properties of the Lagrangian and its gradient
at these points. For the point x = (

?
2, 0)T, we again have that both

constraints are active (see Figure 7 in the next slide). However, it
is easy to identify vectors d that satisfies

∇ci (x)Td ě 0 for i P I = t1, 2u , (19a)
∇f (x)Td ă 0 . (19b)

In fact, d = (´1, 0)T is one such vector (there are many others). For
this value of x it is easy to verify that the condition ∇x L(x, λ) = 0

is satisfied only when λ = (´1/(2
?
2), 1)T. Note that the first com-

ponent λ1 is negative, so that the conditions (20) are not satisfied
at this point.
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§12.1 Examples
Example (cont’d)

Figure 7: Problem (18), illustrating the gradients of the active constraints
and objective at a non-optimal point.
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§12.1 Examples
Example (cont’d)
Finally, we consider the point x = (1, 0)T, at which only the second
constraint c2 is active. Since any small step s away from this point
will continue to satisfy c1(x + s) ą 0, we need to consider only the
behavior of c2 and f in determining whether s is indeed a feasible
descent step. Using the same reasoning as in the earlier examples,
we find that the direction of feasible descent d must satisfy

∇c2(x)Td ě 0 , ∇f (x)Td ă 0 . (22)
By noting that

∇f (x) =
[
1
1

]
, ∇c2(x) =

[
0
1

]
,

it is easy to verify that the vector d = (´1/2, 1/4)T satisfies (22)
and is therefore a descent direction.
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§12.1 Examples
Example (cont’d)
To show that optimality conditions

∇x L(x˚, λ˚) = 0 for some λ˚ ě 0 (20)
and

λ˚
1c1(x˚) = 0 , λ˚

2c2(x˚) = 0 , (21)

fail, we note first from (21) that since c1(x) ą 0, we must have
λ1 = 0. Therefore, in trying to satisfy ∇x L(x, λ) = 0, we are left to
search for a value λ2 such that ∇f (x)´ λ2∇c2(x) = 0. No such λ2

exists, and thus this point fails to satisfy the optimality conditions.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
In the previous section, we determined whether or not it was possible
to take a feasible descent step from a given feasible point x by
examining the first derivatives of the objective function f and the
constraint functions ci. We used the first-order Taylor series of these
functions about x to form an approximate problem in which both
objective and constraints are linear. This approach makes sense
only if the linearized approximation captures the essential geometric
features of the feasible set near the point x in question. If the
linearization is fundamentally different from the feasible set, then we
cannot expect the linear approximation to yield useful information
about the original problem. Hence, we need to make assumptions
about the nature of the constraints ci that are active at x to ensure
that the linear approximation is similar to the feasible set, near x.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
In this section we define the tangent cone TΩ(x) to the closed con-
vex set Ω at a point x P Ω, and also the set F(x) of first-order
feasible directions at x. We also discuss constraint qualifications,
assumptions that ensure similarity of the constraint set Ω and its
linearized approximation, in a neighborhood of x.
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§12.2 Tangent Cone and Constraint Qualifications
Recall that the feasible set is denoted by Ω.
Definition

1 Given a feasible point x, we call tzku a feasible sequence ap-
proaching x if zk P Ω (for all k sufficiently large) and zk Ñ x.

2 A tangent is a limiting direction of a feasible sequence. To be
more precise, a vector d is said to be a tangent (or tangent
vector) to Ω at a point x if there are a feasible sequence tzku

approaching x and a sequence of positive scalars ttku with tk Ñ

0 such that
lim

kÑ8

zk ´ x
tk

= d . (23)

The collection of all tangents to Ω at x is called the tangent
cone to the set Ω at x and is denoted by TΩ(x).
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§12.2 Tangent Cone and Constraint Qualifications
It is easy to see that the tangent cone TΩ(x) is indeed a cone:

1 0 P TΩ(x): zk ” x for all k is a feasible sequence.
2 d P TΩ(x) and α ą 0 ñ αd P TΩ(x): If tzku and ttku satisfy

(23), then by replacing tk by α´1tk, we find that αd P TΩ(x).

Later, we characterize a local solution of

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I ,
(1)

as a point x at which all feasible sequences approaching x have
the property that f (zk) ě f (x) for all k sufficiently large, and we
will derive practical, verifiable conditions under which this property
holds. We lay the groundwork in this section by characterizing the
directions in which we can step away from x while remaining feasible.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
We turn now to the linearized feasible direction set. Recall that for
a feasible point x, the active set A(x) is E Y

␣

i P I
ˇ

ˇ ci (x) = 0
(

.

Definition
Given a feasible point x and the active constraint set A(x), the set
of linearized feasible directions F(x) is

F(x) =
#

d
ˇ

ˇ

ˇ

ˇ

ˇ

dT∇ci (x) = 0 for all i P E ,
dT∇ci (x) ě 0 for all i P A(x) X I

+

.

As with the tangent cone, it is easy to verify that F(x) is a cone.

It is important to note that the definition of tangent cone does not
rely on the algebraic specification of the set Ω, only on its geometry.
The linearized feasible direction set does, however, depend on the
definition of the constraint functions ci, i P E Y I.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
We illustrate the tangent cone and the linearized feasible direction
set by revisiting two examples in Section 12.1.
Example (Revisit of the 1st example)
Recall the equality-constrained problem

min(x1 + x2) s.t. x 2
1 + x 2

2 ´ 2 = 0 . (5)
Near the non-optimal point x = (´

?
2, 0)T, Figure 8 shows a feasible

sequence approaching x given by

zk =

[
´
a

2 ´ 1/k2
´1/k

]
. (24)

By choosing tk = }zk ´ x}, we find that d = (0,´1)T is a tangent.
Note that the objective function f (x) = x1 + x2 increases strictly as
we move along the sequence (24); that is, f (zk+1) ą f (zk) for all
k = 2, 3, ¨ ¨ ¨ . So x cannot be a solution of (5).
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (cont’d)

Figure 8: Constraint normal, objective gradient, and feasible sequence for
problem (5).
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (cont’d)
Another feasible sequence is one that approaches x = (´

?
2, 0)T

from the opposite direction given by

zk =

[
´
a

2 ´ 1/k2
1/k

]
.

It is easy to show that f decreases along this sequence and that
the tangents corresponding to this sequence are d = (0, α)T. In
summary, the tangent cone at x = (´

?
2, 0)T is

␣

(0, d2)T
ˇ

ˇ d2 P R
(

.

By the definition of the linearized feasible direction, we have

d = (d1, d2)T P F(x) ô 0 = ∇c1(x)Td = ´2
?
2d1.

Therefore, we obtain F(x) =
␣

(0, d2)T
ˇ

ˇ d2 P R
(

. In this case, we
have TΩ(x) = F(x).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (cont’d)
Suppose that the feasible set is defined instead by the formula Ω =
␣

x
ˇ

ˇ c1(x) = 0
(

, where
c1(x) = (x 2

1 + x 2
2 ´ 2)2 = 0 . (25)

Note that Ω is the same, but its algebraic specification has changed.
The vector d belongs to the linearized feasible set if

0 = ∇c1(x)Td =
[
4(x 2

1 + x 2
2 ´ 2)x1 4(x 2

1 + x 2
2 ´ 2)x2

] [ d1
d2

]
=

[
0 0

] [ d1
d2

]
,

which is true for all (d1, d2)T. Hence, we have F(x) = R2, so for this
algebraic specification of Ω, the tangent cone and linearized feasible
sets differ.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (Revisit of the 2nd example)
We now reconsider the problem

min(x1 + x2) s.t. 2 ´ x 2
1 ´ x 2

2 ě 0. (12)
The solution x = (´1,´1)T is the same as the previous case, but
there is a much more extensive collection of feasible sequences that
converge to any given feasible point (see Figure 9).

Figure 9: Feasible sequences converg-
ing to a particular feasible point for
the region defined by x 2

1 + x 2
2 ď 2.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (cont’d)
From the point x = (´

?
2, 0)T, the various feasible sequences de-

fined above for the equality-constrained problem are still feasible for
(12). There are also infinitely many feasible sequences that converge
to x = (´

?
2, 0)T along a straight line from the interior of the circle.

These sequences have the form

zk = (´
?
2, 0)T + (1/k)w ,

where w is any vector whose first component is positive (w1 ą 0).
The point zk is feasible provided that }zk} ď

?
2; that is,

(´
?
2 + w1/k)2 + (w2/k)2 ď 2 ,

which is true when k ě (w 2
1 + w 2

2 )/(2
?
2w1).
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§12.2 Tangent Cone and Constraint Qualifications
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Example (cont’d)
In addition to these straight-line feasible sequences, we can also
define an infinite variety of sequences that approach (´

?
2, 0)T along

a curve from the interior of the circle. To summarize, the tangent
cone to this set at (´

?
2, 0)T is

␣

(w1,w2)
T ˇ

ˇw1 ě 0
(

.

For the definition (12) of this feasible set, we have

d P F(x) ô 0 ď ∇c1(x)Td =
[

´2x1 ´2x2
] [ d1

d2

]
= 2

?
2d1 .

Hence, we obtain F(x) = TΩ(x) for this particular algebraic specifi-
cation of the feasible set.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
In general, we have the following
Lemma
Let x be a feasible point. Then TΩ(x) Ď F(x).

Proof.
Let d P TΩ(x). Then there exist a feasible sequence tzku and a
sequence of positive scalars ttku satisfying lim

kÑ8
tk = 0 and

lim
kÑ8

zk ´ x
tk

= d .

From the limit above, we have
zk = x + tkd + o(tk) ;

thus Taylor’s Theorem implies that
ci (zk) = ci (x) +∇ci (x)T(zk ´ x) + o(}zk ´ x})

= ci (x) + tk∇ci (x)Td + o(tk) . ˝
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
thus (from previous page) Taylor’s Theorem implies that

ci (zk) = ci (x) +∇ci (x)T(zk ´ x) + o(}zk ´ x})

= ci (x) + tk∇ci (x)Td + o(tk) .

Therefore, for i P E , we have
0 =

1

tk
ci (zk) = ∇ci (x)Td +

o(tk)

tk
,

while for i P A(x) X I we have
0 ď

1

tk
ci (zk) = ∇ci (x)Td +

o(tk)

tk
.

Passing to the limit as k Ñ 8, we obtain
1 ∇ci (x)Td = 0 if i P E .
2 ∇ci (x)Td ě 0 if i P A(x) X I.

This shows that d P F(x); thus TΩ(x) Ď F(x). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
thus (from previous page) Taylor’s Theorem implies that

ci (zk) = ci (x) +∇ci (x)T(zk ´ x) + o(}zk ´ x})

= ci (x) + tk∇ci (x)Td + o(tk) .

Therefore, for i P E , we have
0 =

1

tk
ci (zk) = ∇ci (x)Td +

o(tk)

tk
,

while for i P A(x) X I we have
0 ď

1

tk
ci (zk) = ∇ci (x)Td +

o(tk)

tk
.

Passing to the limit as k Ñ 8, we obtain
1 ∇ci (x)Td = 0 if i P E .
2 ∇ci (x)Td ě 0 if i P A(x) X I.

This shows that d P F(x); thus TΩ(x) Ď F(x). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Constraint qualifications are conditions under which the linearized
feasible set F(x) is similar to the tangent cone TΩ(x). In fact, most
constraint qualifications ensure that these two sets are identical. As
mentioned earlier, these conditions ensure that the F(x), which is
constructed by linearizing the algebraic description of the set Ω at x,
captures the essential geometric features of the set Ω in the vicinity
of x, as represented by TΩ(x).

Both TΩ(x) and F(x) in the first example consist of the vertical axis,
which is qualitatively similar to the set Ωztxu in the neighborhood
of x. As a further example, consider the constraints

c1(x) = 1 ´ x 2
1 ´ (x2 ´ 1)2 ě 0 , c2(x) = ´x2 ě 0 , (26)

for which the feasible set is the single point Ω = t(0, 0)Tu (see
Figure 10).
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Figure 10: Problem (26), for which the feasible set is the single point of
intersection between circle and line.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
For this point x = (0, 0)T, it is obvious that tangent cone is TΩ(x) =
t(0, 0)Tu, since all feasible sequences approaching x must have zk =

x = (0, 0)T for all k sufficiently large. Moreover, it is easy to show
that linearized approximation to the feasible set F(x) is

F(x) =
␣

(d1, 0)T
ˇ

ˇ d1 P R
(

,

that is, the entire horizontal axis. In this case, the linearized feasible
direction set does not capture the geometry of the feasible set, so
constraint qualifications are not satisfied. The constraint qualifica-
tion most often used in the design of algorithms is the subject of
the next definition.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Definition (LICQ)
For a given feasible point x (with corresponding active set A(x)),
we say that the linear independence constraint qualification (LICQ)
holds at x if the set of active constraint gradients

␣

∇ci (x)
ˇ

ˇ i P A(x)
(

is linearly independent.

Note that this condition is not satisfied for the examples (25) and
(26). In general, if LICQ holds, none of the active constraint gradi-
ents can be zero. We will mention other constraint qualifications in
Section 12.6.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
‚ The relation between TΩ(x) and F(x) given LICQ
In the following, we use A(x) to represent the matrix whose rows
are the active constraint gradients at the optimal point; that is,

A(x)T = [∇ci (x)]iPA(x) . (27)

We first establish the following
Lemma
Let x be a feasible point at which the LICQ condition holds. Then
for every d P F(x) and sequence ttku of positive scalars satisfying
lim

kÑ8
tk = 0, there exists a feasible sequence tzku such that

lim
kÑ8

zk ´ x
tk

= d (23)

and
ci (zk) = tk∇ci (x)Td @ i P A(x) and k " 1 . (28)
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof.
W.L.O.G. we can assume that all the constraints ci, i = 1, 2, ¨ ¨ ¨ ,m
are active at x. Let d P F(x) be given, and suppose that ttku8

k=0

is any sequence of positive scalars such lim
kÑ8

tk = 0. We first note
that the m ˆ n matrix A(x) of active constraint gradients has full
row rank m since the LICQ holds at x. By the fact that

the null space of A(x) ‘ the range of A(x)T= Rn ,

there exists an n ˆ (n ´ m) matrix Z whose columns are a basis for
the null space of A(x); that is,

Z P Rnˆ(n´m), Z has full column rank, A(x)Z = 0 . (29)
With c ” [ci ]iPA(x), define R : Rn ˆ R Ñ Rn by

R(z, t) =
[

c(z) ´ tA(x)d
Z T(z ´ x ´ td)

]
. ˝
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that the m ˆ n matrix A(x) of active constraint gradients has full
row rank m since the LICQ holds at x. By the fact that

the null space of A(x) ‘ the range of A(x)T= Rn ,

there exists an n ˆ (n ´ m) matrix Z whose columns are a basis for
the null space of A(x); that is,

Z P Rnˆ(n´m), Z has full column rank, A(x)Z = 0 . (29)
With c ” [ci ]iPA(x), define R : Rn ˆ R Ñ Rn by

R(z, t) =
[

c(z) ´ tA(x)d
Z T(z ´ x ´ td)

]
. ˝
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
Note that R(x, 0) = 0. Moreover, the Jacobian of R(¨, ¨) with respect
to z at point (z, t) = (x, 0) is

∇z R(x, 0) =
[ A(x)

Z T

]
,

which is non-singular by construction of Z. Therefore, the Implicit
Function Theorem implies that the system

R(z, t) =
[

c(z) ´ tA(x)d
Z T(z ´ x ´ td)

]
=

[
0
0

]
(30)

has a unique solution zk (« x) for all tk ą 0 sufficiently small. The
Implicit Function Theorem also shows that lim

kÑ8
zk = x.

We claim that tzku is a feasible sequence and satisfies desired prop-
erties (23) and (28). ˝
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
First we show that

lim
kÑ8

zk ´ x
tk

= d (23)

holds for this choice of tzku. Using the facts that
1 R(zk, tk) = 0 for sufficiently large k and
2 c(x)= [ci (x)]iPA(x) = 0,

Taylor’s Theorem implies that for k sufficiently large,

0 = R(zk, tk) =
[ c(zk) ´ tkA(x)d

Z T(zk ´ x ´ tkd)

]
=

[ A(x)(zk ´ x) + o(}zk ´ x}) ´ tkA(x)d
Z T(zk ´ x ´ tkd)

]
=

[ A(x)
Z T

]
(zk ´ x ´ tkd) + o(}zk ´ x}).

˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
By dividing this expression by tk and using non-singularity of the
coefficient matrix in the first term, we obtain

zk ´ x
tk

= d + o
(

}zk ´ x}

tk

)
,

from which it follows that (23) is satisfied (details required). More-
over, since

R(zk, tk ) =
[ c(zk) ´ tkA(x)d

Z T(zk ´ x ´ tkd)

]
=

[
0
0

]
for sufficiently large k, we find that

ci (zk) = tk∇ci (x)Td @ i P A(x) and k " 1 . (28)
To conclude the lemma, we show that tzku is a feasible sequence;
that is, ci(zk) = 0 if i P E and ci(zk) ě 0 if i P I for all sufficiently
large k. ˝
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Proof (cont’d).
Since d P F(x), the definition of the set of linearized feasible direc-
tions implies that for sufficiently large k,

i P E ñ ci (zk) = tk∇ci (x)Td = 0 ,

i P A(x) X I ñ ci (zk) = tk∇ci (x)Td ě 0 .

Moreover, if i P I XA(x)A, we must have ci (x) ą 0; thus by the fact
that lim

kÑ8
zk = x we have

ci (zk) ą 0 @ k " 1 .

Therefore, the continuity of ci shows that for sufficiently large k,

i P I X A(x)A
ñ ci (zk) ą 0 .

Combining all the cases discussed above, we conclude that tzku is
indeed feasible. ˝
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
Note that for a feasible point x, by the definition of the tangent cone
TΩ(x), the lemma above shows that F(x) Ď TΩ(x) provided that
the LICQ condition holds at x. Combining with the lemma about
TΩ(x) Ď F(x), gives the following
Corollary
Let x be a feasible point at which the LICQ condition holds. Then
TΩ(x) = F(x).
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
In this section, we state first-order necessary conditions for x˚ to
be a local minimizer and show how these conditions are satisfied on
a small example. The proof of the result is presented in subsequent
sections.
As a preliminary to stating the necessary conditions, we define the
Lagrangian function for the general problem (1):

L(x, λ) = f (x) ´
ÿ

i PEYI
λi ci (x) . (31)

The necessary conditions defined in the following theorem are called
first-order conditions because they are concerned with properties of
the gradients (first-derivative vectors) of the objective and constraint
functions. These conditions are the foundation for many of the
algorithms described in the remaining chapters of the book.
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
Theorem (First-Order Necessary Conditions)
Suppose that x˚ is a local solution of problem

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I ,
(1)

that the functions f and ci in (1) are continuously differentiable,
and that the LICQ holds at x˚. Then there is a Lagrange multiplier
vector λ˚, with components λ˚

i , i P E Y I, such that the following
conditions are satisfied.

∇xL(x˚, λ˚) = 0 , (32a)
ci (x˚) = 0 for all i P E , (32b)
ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)

∇xL(x˚, λ˚) = 0 , (32a)

ci (x˚) = 0 for all i P E , (32b)

ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
1 The conditions (32) are often known as the Karush-Kuhn-Tucker

conditions, or KKT conditions for short.
2 The conditions

λ˚
i ci (x˚) = 0 for all i P E Y I (32e)

are complementarity conditions; they imply that either con-
straint i is active or λ˚

i = 0, or possibly both. In particular, the
Lagrange multipliers corresponding to inactive inequality con-
straints are zero, we can omit the terms for indices i R A(x˚)

from (32a) and rewrite this condition as
0 = ∇xL(x˚, λ˚) = ∇f (x˚) ´

ÿ

i PA(x )̊

λ˚
i ∇ci (x˚) .

The proof of the 1st order necessary condition is quite complex, but
it is important to our understanding of constrained optimization, so
we present it in the next section.
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
A special case of complementarity is important and deserves its own
definition.
Definition (Strict Complementarity)
Given a local solution x˚ of problem (1) and a vector λ˚ satisfy-
ing (32), we say that the strict complementarity condition holds if
exactly one of λ˚

i and ci (x˚) is zero for each index i P I; that is,
λ˚

i ą 0 for each i P I X A(x˚).

Satisfaction of the strict complementarity property usually makes it
easier for algorithms to determine the active set A(x˚) and converge
rapidly to the solution x˚. For a given problem (1) and solution
point x˚, there may be many vectors λ˚ for which the conditions
(32) are satisfied. When the LICQ holds at x˚, however, the optimal
λ˚ is unique.
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
We illustrate the KKT conditions with another example before fin-
ishing this section.
Example
Consider the minimization problem

min
x

(
x1 ´

3

2

)2
+

(
x2 ´

1

2

)4
s.t.


1 ´ x1 ´ x2
1 ´ x1 + x2
1 + x1 ´ x2
1 + x1 + x2

 ě 0 . (33)

From Figure 11 we see that the solution is x˚ = (1, 0)T at which
the first and second constraints in (33) are active. Denoting them
by c1 and c2 (and the inactive constraints by c3 and c4), we have

∇f (x˚) =

[
´1

´
1

2

]
, ∇c1(x˚) =

[
´1
´1

]
, ∇c2(x˚) =

[
´1
1

]
.
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
Example (cont’d)

Figure 11: Inequality-constrained problem (33) with solution at (1, 0)T.

Therefore, the KKT conditions (32a)-(32e) are satisfied when we
set λ˚ = (3/4, 1/4, 0, 0)T.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
‚ A fundamental necessary condition
As mentioned above, a local solution of

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I ,
(1)

is a point x at which all feasible sequences have the property that
f (zk) ě f (x) for all k sufficiently large. The following result shows
that if such a sequence exists, then its limiting directions must make
a non-negative inner product with the objective function gradient.
Theorem
If x˚ is a local solution of (1), then we have

(∇f )(x˚)
Td ě 0 for all d PTΩ(x˚) .
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof.
Suppose the contrary that there exists d P TΩ(x˚) for which
(∇f )(x˚)

Td ă 0. Let tzku Ď Ω and ttku Ď R+ be sequences
satisfying

lim
kÑ8

tk = 0 and lim
kÑ8

zk ´ x˚

tk
= d .

By Taylor’s Theorem,
f (zk) = f (x˚) + (zk ´ x˚)

T(∇f )(x˚) + o(}zk ´ x˚})

= f (x˚) + tkdT(∇f )(x˚) + o(tk) .

Since dT(∇f )(x˚) ă 0, the remainder term is eventually dominated
by the first-order term; thus

f (zk) ă f (x˚) +
1

2
tkdT(∇f )(x˚) @ k " 1 .

Since dT(∇f )(x˚) ă 0, x˚ cannot be a local solution. ˝
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
The converse of this result is not necessarily true. That is, we may
have (∇f )(x˚)

Td ě 0 for all d P TΩ(x˚), yet x˚ is not a local
minimizer. An example is the following problem in two unknowns,
illustrated in Figure 12.

min x2 subject to x2 ě ´x 2
1 . (34)

Figure 12: Problem (34), show-
ing various limiting directions of
feasible sequences at the point
(0, 0)T.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
This problem is actually unbounded, but let us examine its behavior
at x˚ = (0, 0)T. It is not difficult to show that all limiting directions
d of feasible sequences must have d2 ě 0, so that

(∇f )(x˚)
Td = d2 ě 0 .

However, x˚ is clearly not a local minimizer; the point (α,´α2)T

for α ą 0 has a smaller function value than x˚, and can be brought
arbitrarily close to x˚ by setting α sufficiently small.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
‚ Farkas’ lemma
The most important step in proving the 1st-order necessary condition
is a classical theorem of the alternative known as Farkas’ Lemma.
This lemma considers a cone K defined as follows:

K =
␣

By + Cw
ˇ

ˇ y ě 0
(

, (35)

where B and C are given matrices of dimension n ˆ m and n ˆ

p, respectively, and y and w are arbitrary vectors of appropriate
dimensions. Given a vector g P Rn, Farkas’ Lemma states that one
(and only one) of two alternatives is true: either g P K, or else there
is a vector d P Rn such that

gTd ă 0, BTd ě 0, CTd = 0 . (36)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
The two cases are illustrated in Figure 13 for the case of B with
three columns, C null, and n = 2. Note that in the second case,
the vector d defines a separating hyperplane, which is a plane in Rn

that separates the vector g from the cone K.

Figure 13: Farkas’ Lemma: either g P K (left) or there is a separating
hyperplane (right).
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Lemma (Farkas)
Let B P Rnˆm, C P Rnˆp be given, and K be a set defined by

K =
␣

By + Cw
ˇ

ˇ y ě 0 ,w P Rp( . (35)
For a given vector g P Rn, we have either that g P K or that there
exists d P Rn satisfying

gTd ă 0, BTd ě 0, CTd = 0 , (36)
but not both.
Proof.
We show first that the two alternatives cannot hold simultaneously.
If g P K, there exist vectors y ě 0 and w such that g = By+ Cw. If
there also exists a d with the property (36), we have

0 ą dTg = dTBy + dTCw = (BTd)Ty + (CTd)Tw ě 0 .

Hence, we cannot have both alternatives holding at once. ˝
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof (cont’d).
We now show that one of the alternatives holds. To be precise, we
show how to construct d with the properties (36) in the case that
g R K. For this part of the proof, we need to use the property that
K is a closed set – a fact that is intuitively obvious but not trivial
to prove (see Lemma 12.15 in the textbook). Let tsku Ď K be a
minimizing sequence satisfying

inf
sPK

}s ´ g} ď }sk ´ g} ă inf
sPK

}s ´ g} +
1

k .

Then the fact that tsku Ď K X B
[
g, inf

s PK
}s ´ g}+1

]
implies that there

exists a convergent subsequence tskju with limit ps P K. Such ps is the
vector in K that is closet to g in the sense of the Euclidean norm.
Since ps P K, we have from the fact that K is a cone that αps P K for
all scalars α ě 0. ˝
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof (cont’d).
Since }αps ´ g}2 is minimized by α = 1, we have

d
dα

ˇ

ˇ

ˇ

α=1
}αps ´ g}2 = 0 ñ psT(ps ´ g) = 0 . (37)

Now, let s be any other vector in K. Since K is convex, we have by
the minimizing property of ps that

}ps + θ(s ´ ps ) ´ g}2 ě }ps ´ g}2 for all θ P [0, 1] ,

and hence
2θ(s ´ ps )T(ps ´ g) + θ2}s ´ ps }2 ě 0 for all θ P [0, 1] .

By dividing this expression by θ and taking the limit as θ Œ 0, we
have (s ´ ps )T(ps ´ g) ě 0. Therefore, because of (37),

sT(ps ´ g) ě 0 for all s P K . (38)̋

d
dα

ˇ

ˇ

ˇ

α=1
}αps ´ g}2 = 0 ñ psT(ps ´ g) = 0 . (37)
sT(ps ´ g) ě 0 for all s P K . (38)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof (cont’d).
We claim now that the vector d = ps ´ g satisfies the conditions

gTd ă 0, BTd ě 0, CTd = 0 . (36)
Note that d ‰ 0 because g R K. We have from (37) that

dTg = dT(ps ´ d) = (ps ´ g)Tps ´ dTd = ´}d}2 ă 0 ,

so that d satisfies the first property in (36).
From (38), we have that dTs ě 0 for all s P K, so that

dT(By + Cw) ě 0 for all y ě 0 and all w.

By fixing y = 0 we have that (CTd)Tw ě 0 for all w, which is true
only if CTd = 0. By fixing w = 0, we have that (BTd)Ty ě 0 for
all y ě 0, which is true only if BTd ě 0. Hence, d also satisfies the
second and third properties in (36), and our proof is complete. ˝
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
By applying Farkas’ Lemma to the cone N defined by

N =

"

ÿ

i PA(x )̊

λi∇ci (x˚)

ˇ

ˇ

ˇ

ˇ

tλiuiPA(x )̊ Ď R, λi ě 0 if i P A(x˚) X I
*

,(
with B =

[
∇ci (x˚)

]
iPA(x )̊XI and C =

[
∇ci (x˚)

]
iPA(x )̊z I in the

definition of the cone K in Farkas’ Lemma
)

and setting g = (∇f )(x˚),
we have that either

(∇f )(x˚) =
ÿ

i PA(x )̊

λi∇ci (x˚)

for some collection of multipliers tλiuiPA(x )̊ Ď R with λi ě 0 if
i P A(x˚) X I, or else there is a direction d such that
dT(∇f )(x˚)ă 0,

[
∇ci (x˚)

]T
i PA(x*)XI

d ě 0,
[
∇ci (x˚)

]T
i PA(x*)zI

d = 0 .

Note that by the definition of the linearized feasible direction, the
latter two imply that d P F(x˚) (and vice versa).
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Td ě 0 for all d P F(x˚), then (∇f )(x˚) belongs

to N.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Theorem (First-Order Necessary Conditions)
Suppose that x˚ is a local solution of problem

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I ,
(1)

that the functions f and ci in (1) are continuously differentiable,
and that the LICQ holds at x˚. Then there is a Lagrange multiplier
vector λ˚, with components λ˚

i , i P E Y I, such that the following
conditions are satisfied.

∇xL(x˚, λ˚) = 0 , (32a)
ci (x˚) = 0 for all i P E , (32b)
ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof.
Suppose that x˚ P Rn is a local solution of (1) at which the LICQ
holds. Then the established lemmas and theorem show that

TΩ(x˚) = F(x˚) and dT(∇f )(x˚) ě 0 @ d PTΩ(x˚) .

Therefore, dT(∇f )(x˚) ě 0 for all d P F(x˚); thus Farkas’ Lemma
implies that there are multipliers tλiuiPA(x )̊ Ď R such that

(∇f )(x˚) =
ÿ

i PA(x )̊

λi∇ci (x˚), λi ě 0 if i P A(x˚) X I . (39)

Define the vector λ˚ by

λ˚
i =

#

λi if i P A(x˚),

0 if i P I zA(x˚),
(40)

We claim that this choice of λ˚, together with our local solution x˚,
satisfies the conditions (32). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof.
Suppose that x˚ P Rn is a local solution of (1) at which the LICQ
holds. Then the established lemmas and theorem show that

TΩ(x˚) = F(x˚) and dT(∇f )(x˚) ě 0 @ d PTΩ(x˚) .

Therefore, dT(∇f )(x˚) ě 0 for all d P F(x˚); thus Farkas’ Lemma
implies that there are multipliers tλiuiPA(x )̊ Ď R such that

(∇f )(x˚) =
ÿ

i PA(x )̊

λi∇ci (x˚), λi ě 0 if i P A(x˚) X I . (39)

Define the vector λ˚ by

λ˚
i =

#

λi if i P A(x˚),

0 if i P I zA(x˚),
(40)

We claim that this choice of λ˚, together with our local solution x˚,
satisfies the conditions (32). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof.
Suppose that x˚ P Rn is a local solution of (1) at which the LICQ
holds. Then the established lemmas and theorem show that

TΩ(x˚) = F(x˚) and dT(∇f )(x˚) ě 0 @ d PTΩ(x˚) .

Therefore, dT(∇f )(x˚) ě 0 for all d P F(x˚); thus Farkas’ Lemma
implies that there are multipliers tλiuiPA(x )̊ Ď R such that

(∇f )(x˚) =
ÿ

i PA(x )̊

λi∇ci (x˚), λi ě 0 if i P A(x˚) X I . (39)

Define the vector λ˚ by

λ˚
i =

#

λi if i P A(x˚),

0 if i P I zA(x˚),
(40)

We claim that this choice of λ˚, together with our local solution x˚,
satisfies the conditions (32). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
Proof (cont’d).
We check these conditions in turn.

1 The condition (32a) follows immediately from (39) and the
definitions (31) of the Lagrangian function and (40) of λ˚.

2 Since x˚ is feasible, the conditions (32b) and (32c) are satisfied.
3 We have from (39) that λ˚

i ě 0 for i P A(x˚) X I, while from
(40), λ˚

i = 0 for i P I zA(x˚). Hence, λ˚
i ě 0 for i P I, so that

(32d) holds.
4 We have for i P A(x˚) X I that ci (x˚) = 0, while for i P

I zA(x˚), we have λ˚
i = 0. Hence λ˚

i ci (x˚) = 0 for i P I, so
that (32e) is satisfied as well.

The proof is complete. ˝
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
From the proof of the theorem, the requirement of LICQ at a local
solution x˚ is to motivate the condition

TΩ(x˚) = F(x˚) . (41)
Therefore, we indeed have the following
Theorem (First-Order Necessary Conditions)
Suppose that x˚ is a local solution of (1) in which the functions f
and ci are continuously differentiable. If (41) holds, then there is a
Lagrange multiplier vector λ˚ with components λ˚

i such that
∇xL(x˚, λ˚) = 0 , (32a)

ci (x˚) = 0 for all i P E , (32b)
ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)
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λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
So far, we have described first-order conditions – the KKT condi-
tions – which tell us how the first derivatives of f and the active
constraints ci are related to each other at a solution x˚. When these
conditions are satisfied, a move along any vector w from F(x˚) ei-
ther increases the first-order approximation to the objective function
(that is, wT(∇f )(x˚) ą 0), or else keeps this value the same (that
is, wT(∇f )(x˚) = 0).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
What role do the second derivatives of f and the constraints ci

play in optimality conditions? We see in this section that second
derivatives play a “tiebreaking” role. For the directions w P F(x˚)

for which wT(∇f )(x˚) = 0, we cannot determine from first derivative
information alone whether a move along this direction will increase or
decrease the objective function f . Second-order conditions examine
the second derivative terms in the Taylor series expansions of f and
ci, to see whether this extra information resolves the issue of increase
or decrease in f . Essentially, the second-order conditions concern the
curvature of the Lagrangian function in the “undecided” directions
– the directions w P F(x˚) for which wT(∇f )(x˚) = 0.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Given F(x˚) and some Lagrange multiplier vector λ˚ satisfying the
KKT conditions (32), we define the critical cone C(x˚, λ˚) as follows:

C(x˚, λ˚) =
!

w P F(x˚)
ˇ

ˇ

ˇ
∇ci (x˚)

Tw = 0 if i PA(x˚)X I & λ˚
i ą 0

)

or equivalently,
w P C(x˚, λ˚)

ô

$

’

&

’

%

∇ci (x˚)
Tw = 0 if i P E ,

∇ci (x˚)
Tw = 0 if i PA(x˚)X I and λ˚

i ą 0,
∇ci (x˚)

Tw ě 0 if i PA(x˚)X I and λ˚
i = 0.

(42)

The critical cone contains those directions w that would tend to
“adhere” to the active inequality constraints even when we were to
make small changes to the objective (those indices i P I for which
the Lagrange multiplier component λ˚

i is positive), as well as to the
equality constraints.
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The critical cone contains those directions w that would tend to
“adhere” to the active inequality constraints even when we were to
make small changes to the objective (those indices i P I for which
the Lagrange multiplier component λ˚

i is positive), as well as to the
equality constraints.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
From the definition (42) and the fact that λ˚

i = 0 for all inactive
components i P I zA(x˚), it follows immediately that

w P C(x˚, λ˚) ñ λ˚
i ∇ci (x˚)

Tw = 0 if i P E Y I. (43)

Hence, from the first KKT condition (32a) and the definition (31)
of the Lagrangian function, we have that

w P C(x˚, λ˚) ñ wT(∇f )(x˚) =
ÿ

i PEYI
λ˚

i wT∇ci (x˚) = 0 .

Hence the critical cone C(x˚, λ˚) contains directions from F(x˚) for
which it is not clear from first derivative information alone whether
f will increase or decrease.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example
Consider the problem

min x1 subject to x2 ě 0 , 1 ´ (x1 ´ 1)2 ´ x 2
2 ě 0 , (44)

illustrated in Figure 14. It is not difficult to see that the solution is
x˚ = (0, 0)T, with active set A(x˚) = t1, 2u and a unique optimal
Lagrange multiplier λ˚ = (0, 0.5)T. Since the gradients of the active
constraints at x˚ are (0, 1)T and (2, 0)T, respectively, the LICQ holds,
so the optimal multiplier is unique. The linearized feasible set is then

F(x˚) =

"

d
ˇ

ˇ

ˇ

ˇ

dT
[
0
1

]
ě 0, dT

[
2
0

]
ě 0

*

=
␣

d
ˇ

ˇ d ě 0
(

,

while the critical cone is

C(x˚, λ˚) =

"

w P F(x˚)

ˇ

ˇ

ˇ

ˇ

wT
[
2
0

]
= 0

*

=
␣

(0,w2)
T ˇ

ˇw2 ě 0
(

.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example (cont’d)

Figure 14: Problem (44), showing F(x˚) and C(x˚, λ˚).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
The theorem in the next slide defines a necessary condition involving
the second derivatives: If x˚ is a local solution, then the Hessian of
the Lagrangian has nonnegative curvature along critical directions
(that is, the directions in C(x˚, λ˚)).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Theorem (Second-Order Necessary Conditions)
Suppose that x˚ is a local solution of

min
xPRn

f (x) subject to
#

ci (x) = 0 , i P E ,
ci (x) ě 0 , i P I,

(1)

and that the LICQ condition is satisfied at x˚. Let λ˚ be the La-
grange multiplier vector for which the KKT conditions

∇xL(x˚, λ˚) = 0 , (32a)
ci (x˚) = 0 for all i P E , (32b)
ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)

are satisfied. Then
wT∇2

xxL(x˚, λ˚)w ě 0 for all w P C(x˚, λ˚) . (45)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof.
Let w P C(x˚, λ˚) be given. Since the LICQ condition holds at x˚ and
C(x˚, λ˚) Ď F(x˚), there exist a feasible sequence tzku approaching
x˚ and a sequence ttku of positive scalars approaching 0 such that

lim
kÑ8

zk ´ x˚

tk
= w (23)

and
ci (zk) = tk∇ci (x˚)

Tw @ i P A(x˚) and k " 1 . (28)
The fact that the multiplier corresponding to inactive constraint is
zero implies that for k sufficiently large,

L(zk, λ˚) = f (zk) ´
ÿ

i PEYI
λ˚

i ci (zk) = f (zk) ´
ÿ

i PA(x )̊

λ˚
i ci (zk)

= f (zk) ´ tk
ÿ

i PA(x )̊

λ˚
i ∇ci (x˚)

Tw . ˝
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Since w P C(x˚, λ˚), using (43) (which shows that λ˚

i ∇ci (x˚)
Tw = 0

for all i P E Y I) we obtain that
L(zk, λ˚) = f (zk) .

On the other hand, using Taylor’s Theorem expression and continuity
of the Hessians ∇2f and ∇2ci, i P E Y I, we obtain
L(zk, λ˚) = L(x˚, λ˚)+(zk ´ x˚)

T∇xL(x˚, λ˚) (46)

+
1

2
(zk ´x˚)

T∇2
xxL(x˚, λ˚)(zk ´x˚) + o(}zk ´x˚}2) .

By the complementarity conditions (32e), L(x˚, λ˚) = f (x˚). From
(32a), ∇xL(x˚, λ˚) = 0 so the second term on the right-hand side
is zero. Also note that the limit (23) can be rewritten as

zk ´ x˚ = tkw + o(tk) . ˝

L(zk, λ˚) = L(x˚, λ˚)+(zk ´ x˚)
T∇xL(x˚, λ˚) (46)

zk ´ x˚ = tkw + o(tk) . (47)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
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T∇2
xxL(x˚, λ˚)(zk ´x˚) + o(}zk ´x˚}2) .
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Therefore,

f (zk) = f (x˚) +
1

2
t 2k wT∇2

xxL(x˚, λ˚)w + o(t 2k ) .

If wT∇2
xxL(x˚, λ˚)w ă 0, then f (zk) ă f (x˚) for k " 1, contradict-

ing the fact that x˚ is a local solution. Hence, the condition
wT∇2

xxL(x˚, λ˚)w ě 0 for all w P C(x˚, λ˚) (45)
must hold, as claimed. ˝

The second-order sufficient condition stated in the next theorem
looks very much like the necessary condition just discussed, but it
differs in that

1 the constraint qualification is not required, and
2 the inequality in (45) is replaced by a strict inequality

wT∇2
xxL(x˚, λ˚)w ą 0 for all w P C(x˚, λ˚)zt0u . (48)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Theorem (Second-Order Sufficient Conditions)
Suppose that for some feasible point x˚ P Rn there is a Lagrange
multiplier vector λ˚ such that the KKT conditions

∇xL(x˚, λ˚) = 0 , (32a)
ci (x˚) = 0 for all i P E , (32b)
ci (x˚) ě 0 for all i P I, (32c)

λ˚
i ě 0 for all i P I, (32d)

λ˚
i ci (x˚) = 0 for all i P E Y I. (32e)

are satisfied. Suppose also that
wT∇2

xxL(x˚, λ˚)w ą 0 for all w P C(x˚, λ˚)zt0u . (48)
Then x˚ is a strict local solution for

min
xPRn

f (x) subject to
#

ci (x) = 0, i P E ,

ci (x) ě 0, i P I .
(1)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof.
Before proceeding, note that the set sC =

␣

d P C(x˚, λ˚)
ˇ

ˇ }d} = 1
(

is a compact subset of C(x˚, λ˚), so by (48),

min
dP sC

dT∇2
xxL(x˚, λ˚)d ” σ ą 0 .

Since C(x˚, λ˚) is a cone, we have that w/}w} P sC if and only if
w P C(x˚, λ˚)zt0u. Therefore, condition (48) implies that

wT∇2
xxL(x˚, λ˚)w ě σ}w}2 for all w P C(x˚, λ˚) , (49)

where σ ą 0 is defined above. Moreover, by Taylor’s Theorem the
KKT condition (32a) shows that

L(x, λ˚) = f (x˚) +
1

2
(x ´ x˚)

T∇2
xxL(x˚, λ˚)(x ´ x˚)

+ o(}x ´ x˚}2) .
(50)

˝

L(x, λ˚) = f (x˚) +
1

2
(x ´ x˚)

T∇2
xxL(x˚, λ˚)(x ´ x˚)

+ o(}x ´ x˚}2) .
(50)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Now we prove the result by showing that every feasible sequence
tzku approaching x˚ satisfies

f (zk) ě f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 .

Suppose the contrary that there is a feasible sequence tzku approach-
ing x˚ with

f (zk) ă f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 . (51)

By taking a subsequence if necessary, we can identify a limiting
direction d such that

lim
kÑ8

zk ´ x˚

}zk ´ x˚}
= d .

We then have d P TΩ(x˚), and the fact that TΩ(x˚) Ď F(x˚) shows
that d P F(x˚). Next we show that d P C(x˚, λ˚). ˝

f (zk) ă f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 . (51)
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}zk ´ x˚}2 @ k " 1 . (51)

By taking a subsequence if necessary, we can identify a limiting
direction d such that

zk ´ x˚ = tkd + o(tk), tk = }zk ´ x˚} .

We then have d P TΩ(x˚), and the fact that TΩ(x˚) Ď F(x˚) shows
that d P F(x˚). Next we show that d P C(x˚, λ˚). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Now we prove the result by showing that every feasible sequence
tzku approaching x˚ satisfies

f (zk) ě f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 .

Suppose the contrary that there is a feasible sequence tzku approach-
ing x˚ with

f (zk) ă f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 . (51)

By taking a subsequence if necessary, we can identify a limiting
direction d such that

zk ´ x˚ = tkd + o(tk), tk = }zk ´ x˚} .

We then have d P TΩ(x˚), and the fact that TΩ(x˚) Ď F(x˚) shows
that d P F(x˚). Next we show that d P C(x˚, λ˚). ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
If d were not in C(x˚, λ˚), we could identify some index j P A(x˚)XI
such that the strict positivity condition

λ˚
j ∇cj (x˚)

Td ą 0 (52)

is satisfied, while for the remaining indices i P A(x˚), we have

λ˚
i ∇ci (x˚)

Td ě 0 .

From Taylor’s Theorem, for this particular value of j we have that
λ˚

j cj (zk) = λ˚
j cj(x˚) + λ˚

j ∇cj (x˚)
T(zk ´ x˚) + o(}zk ´ x˚})

= tkλ˚
j ∇cj (x˚)

Td + o(tk).

Recall the Lagrange function
L(x, λ) = f (x) ´

ÿ

i PEYI
λici (x) . ˝
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Since tzku is feasible, the KKT condition (32d) implies that

L(zk, λ˚) = f (zk) ´
ÿ

i PEYI
λ˚

i ci (zk) ď f (zk) ´ λ˚
j cj (zk)

ď f (zk) ´ tkλ
˚
j ∇cj (x˚)

Td + o(tk). (53)

On the other hand, (50) shows that

L(zk, λ˚) = f (x˚) +
1

2
t 2k dT∇2

xxL(x˚, λ˚)d + o(t 2k ) ;

thus, combining the equality above and (53), we conclude that

f (zk) ě f (x˚) + tkλ
˚
j ∇cj (x˚)

Td + o(tk),

which, because of (52), is a contradiction to

f (zk) ă f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 . (51)

˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Since tzku is feasible, the KKT condition (32d) implies that

L(zk, λ˚) = f (zk) ´
ÿ

i PEYI
λ˚

i ci (zk) ď f (zk) ´ λ˚
j cj (zk)

ď f (zk) ´ tkλ
˚
j ∇cj (x˚)

Td + o(tk). (53)

On the other hand, (50) shows that

L(zk, λ˚) = f (x˚) +
1

2
t 2k dT∇2

xxL(x˚, λ˚)d + o(t 2k ) ;

thus, combining the equality above and (53), we conclude that

f (zk) ě f (x˚) + tkλ
˚
j ∇cj (x˚)

Td + o(tk),

which, because of (52), is a contradiction to

f (zk) ă f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1 . (51)

˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Proof (cont’d).
Therefore, d P C(x˚, λ˚), and hence (49) shows that

dT∇2
xxL(x˚, λ˚)d ě σ}d}2.

By the Taylor series estimate (50), we obtain that
f (zk) ě f (zk) ´

ÿ

i PEYI
λ˚

i ci (zk) = L(zk, λ˚)

= f (x˚) +
1

2
t 2k dT∇2

xxL(x˚, λ˚)d + o(t 2k )

ě f (x˚) +
σ

2
}zk ´ x˚}2 + o(}zk ´ x˚}2).

This inequality again yields the contradiction to (51). Therefore,
every feasible sequence tzku approaching x˚ must satisfy

f (zk) ě f (x˚) +
σ

4
}zk ´ x˚}2 @ k " 1,

so x˚ is a strict local solution. ˝
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example
We now return to the 2nd example in Section 12.1 to check the
second-order conditions for problem

min(x1 + x2) s.t. 2 ´ x 2
1 ´ x 2

2 ě 0 . (12)
In this problem we have the Lagrange function

L(x, λ) = (x1 + x2) ´ λ1(2 ´ x 2
1 ´ x 2

2 ),

and E = H, I = t1u. The KKT conditions (32) are satisfied by
x˚ = (´1,´1)T, with λ˚

1 = 1/2. The Lagrangian Hessian at x˚ is

∇2
xxL(x˚, λ˚) =

[
2λ˚

1 0
0 2λ˚

1

]
=

[
1 0
0 1

]
which is positive definite, so it certainly satisfies the conditions of
the theorem above. We conclude that x˚ = (´1,´1)T is a strict
local solution for (12).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example
For a more complex example, consider the problem

min ´0.1(x1 ´ 4)2 + x 2
2 s.t. x 2

1 + x 2
2 ´ 1 ě 0 , (54)

in which we seek to minimize a non-convex function over the ex-
terior of the unit circle. Obviously, the objective function is not
bounded below on the feasible region, since we can take the feasible
sequence [

10
0

]
,

[
20
0

]
,

[
30
0

]
,

[
40
0

]
, ¨ ¨ ¨ ¨ ¨ ¨

and note that f (x) approaches ´8 along this sequence. Therefore,
no global solution exists, but it may still be possible to identify a
strict local solution on the boundary of the constraint. We search for
such a solution by using the KKT conditions (32) and the second-
order conditions of in the previous theorem.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example (cont’d)
By defining the Lagrangian for (54) in the usual way, it is easy to
verify that

∇xL(x, λ) =
[

´0.2(x1 ´ 4) ´ 2λ1x1
2x2 ´ 2λ1x2

]
, (55a)

∇2
xxL(x, λ) =

[
´0.2 ´ 2λ1 0

0 2 ´ 2λ1

]
. (55b)

The point x˚ = (1, 0)T satisfies the KKT conditions with λ˚
1 = 0.3

and the active set A(x˚) = t1u. To check that the second-order
sufficient conditions are satisfied at this point, we note that

∇c1(x˚) =

[
2
0

]
so that the critical cone is simply

C(x˚, λ˚) =
␣

(0,w2)
T ˇ

ˇw2 P R
(

.

∇xL(x, λ) =
[

´0.2(x1 ´ 4) ´ 2λ1x1
2x2 ´ 2λ1x2

]
, (55a)

∇2
xxL(x, λ) =

[
´0.2 ´ 2λ1 0

0 2 ´ 2λ1

]
. (55b)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Example (cont’d)
Now, by substituting x˚ and λ˚ into (55b), we have for any w P

C(x˚, λ˚) with w ‰ 0 that w2 ‰ 0 and thus

wT∇2
xxL(x˚, λ˚)w =

[
0 w2

] [ ´0.4 0
0 1.4

] [
0

w2

]
= 1.4w 2

2 ą 0.

Hence, the second-order sufficient conditions are satisfied, and we
conclude from the previous theorem that (1, 0)T is a strict local
solution for (54).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
‚ Second-order conditions and projected Hessians
The second-order conditions are sometimes stated in a form that is
slightly weaker but easier to verify than

wT∇2
xxL(x˚, λ˚)w ě 0 for all w P C(x˚, λ˚) (45)

and
wT∇2

xxL(x˚, λ˚)w ą 0 for all w P C(x˚, λ˚)zt0u . (48)

This form uses a two-sided projection of the Lagrangian Hessian
∇2

xxL(x˚, λ˚) onto subspaces that are related to C(x˚, λ˚).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
The simplest case is obtained when the multiplier λ˚ that satisfies
the KKT conditions (32) is unique (as happens, for example, when
the LICQ condition holds) and strict complementarity (λ˚

i ą 0 for
each i P I X A(x˚)) holds. In this case, the definition of C(x˚, λ˚)

reduces to
C(x˚, λ˚) = Null

([
∇ci (x˚)

T]
iPA(x )̊

)
= Null(A(x˚)),

where A(x˚) ”
[
∇ci (x˚)

T]
iPA(x )̊

is defined as in (27). In other
words, in such a case C(x˚, λ˚) is the null space of the matrix whose
rows are the active constraint gradients at x˚. As in (29), we can
define the matrix Z with full column rank whose columns span the
space C(x˚, λ˚); that is,

C(x˚, λ˚) =
!

Zu
ˇ

ˇ

ˇ
u P Rn´|A(x )̊|

)

.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Hence, the condition

wT∇2
xxL(x˚, λ˚)w ě 0 for all w P C(x˚, λ˚) (45)

can be restated as
uTZT∇2

xxL(x˚, λ˚)Zu ě 0 @ u P R|A(x )̊|,

or, more succinctly,
ZT∇2

xxL(x˚, λ˚)Z is positive semi-definite.
Similarly, the condition

wT∇2
xxL(x˚, λ˚)w ą 0 for all w P C(x˚, λ˚)zt0u (48)

can be restated as
ZT∇2

xxL(x˚, λ˚)Z is positive definite.
As we show next, Z can be computed numerically, so that the pos-
itive (semi-)definiteness conditions can actually be checked.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
One way to compute the matrix Z is to apply a QR factorization
to the matrix of active constraint gradients A(x˚) whose null space
we seek. In the simplest case above (in which the multiplier λ˚ is
unique and strictly complementary holds), we define A(x˚) as in (27)
and write the QR factorization of its transpose as

A(x˚)
T = Q

[
R
0

]
=

[
Q1 Q2

] [ R
0

]
= Q1R,

where R is a square upper triangular matrix and Q is nˆn orthogonal.
If R is non-singular, we can set Z = Q2. If R is singular (indicating
that the active constraint gradients are linearly dependent), a slight
enhancement of this procedure that makes use of column pivoting
during the QR procedure can be used to identify Z.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
We now reconsider constraint qualifications, the conditions discussed
in Sections 12.2 and 12.4 that ensure that the linearized approxima-
tion to the feasible set Ω captures the essential shape of Ω in a
neighborhood of x˚.

One situation in which the linearized feasible direction set F(x˚)

is obviously an adequate representation of the actual feasible set
occurs when all the active constraints are already linear; that is,

ci (x) = aT
i x + bi, (56)

for some ai P Rn and bi P R. It is not difficult to prove a version of
the following lemma for this situation.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Lemma
Suppose that at some x˚ P Ω, all active constraints ci (¨), i P A(x˚),
are linear functions. Then F(x˚) = TΩ(x˚).

Proof.
From previous lemma it suffices to show that F(x˚) Ď TΩ(x˚).

Let w P F(x˚). By the definition of feasible direction set and the
form (56) of the constraints, we have

F(x˚) =

#

d
ˇ

ˇ

ˇ

ˇ

ˇ

aT
i d = 0 for all i P E ,

aT
i d ě 0 for all i P A(x˚) X I

+

.

First, note that there is a positive scalar st such that the inactive
constraint remain inactive at x˚ + tw, for all t P [0,st ]; that is,

ci (x˚ + tw) ą 0 for all i P I zA(x˚) and all t P [0,st ]. ˝
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are linear functions. Then F(x˚) = TΩ(x˚).

Proof.
From previous lemma it suffices to show that F(x˚) Ď TΩ(x˚).

Let w P F(x˚). By the definition of feasible direction set and the
form (56) of the constraints, we have

F(x˚) =

#

d
ˇ

ˇ

ˇ

ˇ

ˇ

aT
i d = 0 for all i P E ,

aT
i d ě 0 for all i P A(x˚) X I

+

.

First, note that there is a positive scalar st such that the inactive
constraint remain inactive at x˚ + tw, for all t P [0,st ]; that is,
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Proof (cont’d).
Now define the sequence zk by

zk = x˚ + (st/k)w, k = 1, 2, ¨ ¨ ¨ .

By the choice of st , we find that zk is feasible with respect to the
inactive inequality constraints i P I zA(x˚). Moreover, since aT

i w ě

0 for all i P I X A(x˚), we find that for all i P I X A(x˚),

ci (zk) = ci (zk) ´ ci (x˚) = aT
i (zk ´ x˚) =

st
kaT

i w ě 0,

so that zk is also feasible with respect to the active inequality con-
straints ci, i P I X A(x˚). Finally, for i P E , by the fact that x˚ is
feasible and w P F(x˚), we have aT

i w = 0 so that
aT

i zk + bi = aT
i (x˚ + (st/k)w) + bi = aT

i x˚ + bi = 0 ;

thus zk is feasible with respect to the equality constraints ci, i P E . ˝
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Proof (cont’d).
Hence, zk is feasible for each k = 1, 2, ¨ ¨ ¨ . In addition, we have that

zk ´ x˚

st/k =
(st/k)w
st/k = w,

so that w is the limiting direction of tzku. Hence, w P TΩ(x˚), and
the proof is complete. ˝

We conclude from this result that the condition that all active con-
straints be linear is another possible constraint qualification. It is
neither weaker nor stronger than the LICQ condition; that is, there
are situations in which one condition is satisfied but not the other.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Another useful generalization of the LICQ is the Mangasarian–Fro-
movitz constraint qualification (MFCQ).
Definition (MFCQ)
We say that the Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at x˚ if there exists a vector w P Rn such that

∇ci (x˚)
Tw ą 0 for all i P A(x˚) X I,

∇ci (x˚)
Tw = 0 for all i P E ,

and the set of equality constraint gradients
␣

∇ci (x˚)
ˇ

ˇ i P E
(

is
linearly independent.

Note the “strict” inequality involving the active inequality constraints.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Remark: (Applying the duality theory in §12.9) we can show that

There exists w P Rn satisfying
∇ci (x˚)

Tw ą 0 for all i P A(x˚) X I,
∇ci (x˚)

Tw = 0 for all i P E .

is equivalent to that

The extreme value of the constrained optimization problem

max
λPR|A(x )̊|

ř

iPA(x )̊XI
λi subject to

$

&

%

ř

iPA(x )̊

λi∇ci (x˚) = 0 ,

λi ě 0 , i P A(x˚) X I ,
is zero.

Note that the extreme value is zero means that
![

∇ci (x˚)
]

i PA(x )̊XI
y
ˇ

ˇ

ˇ
y ě 0

)

X

![
∇ci (x˚)

]
i PE

w
ˇ

ˇ

ˇ
w P R|E|

)

= t0u .
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Adding the condition that the set

␣

∇ci (x˚)
ˇ

ˇ i P E
(

is linearly inde-
pendent, we obtain that
Theorem
Let x P Ω. Then MFCQ holds at x if and only if the system (for λ)

ÿ

i PEYI
λi∇ci (x) = 0 ,

λi ci (x) = 0 , i P I ,
λi ě 0 , i P I ,

only has zero solution.

因此，MFCQ 條件與 LICQ 條件不同之處在於驗證向量間的 “線
性獨立性”時，在 active constraint gradients 的 “線性組合” 中不
等式限制所對應的係數必須非負。然後該注意到的是我們無法由

上述定理下結論說若 MFCQ 在 local solution x˚ 滿足，則其對應

滿足 KKT 條件的 λ˚（若存在的話）的唯一性。
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
The MFCQ is a weaker condition than LICQ. If LICQ is satisfied,
then the system of equalities defined by

∇ci (x˚)
Tw = 1 for all i P A(x˚) X I,

∇ci (x˚)
Tw = 0 for all i P E ,

has a solution w, by full rank of the active constraint gradients.
Hence, we can choose this w be precisely the vector in the definition
of MFCQ. On the other hand, it is easy to construct examples in
which the MFCQ is satisfied but the LICQ is not.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Example
Let

c1(x1, x2) = 2 ´ (x1 ´ 1)2 ´ (x2 ´ 1)2 ,

c2(x1, x2) = 2 ´ (x1 ´ 1)2 ´ (x2 + 1)2 ,

c3(x1, x2) = x1
be the constraint functions for inequality constraints. Then MFCQ
holds at x = (0, 0)T but LICQ does not hold at x.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
It is possible to prove a version of the first-order necessary condition
result in which MFCQ replaces LICQ in the assumptions. MFCQ
gives rise to the nice property that it is equivalent to boundedness
of the set of Lagrange multiplier vectors λ˚ for which the KKT
conditions (32) are satisfied. (In the case of LICQ, this set consists
of a unique vector λ˚, and so is trivially bounded.)

Note that constraint qualifications are sufficient conditions for the
linear approximation to be adequate, not necessary conditions. For
instance, consider the set defined by x2 ě ´x 2

1 and x2 ď x 2
1 and the

feasible point x˚ = (0, 0)T. None of the constraint qualifications we
have discussed are satisfied, but the linear approximation

F(x˚) =
␣

(w1, 0)
T ˇ

ˇw1 P R
(

accurately reflects the geometry of the feasible set near x˚.
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint
Finally, we mention an alternative first-order optimality condition
that depends only on the geometry of the feasible set Ω and not on
any of its algebraic description in terms of the constraint functions
ci, i P E Y I. In geometric terms, our problem (1) can be stated as

min f (x) subject to x P Ω, (57)
where Ω is the feasible set.
We first define the normal cone to the set Ω at a feasible point x.
Definition
The normal cone to the set Ω at a point x P Ω is defined as

NΩ(x) =
!

v
ˇ

ˇ

ˇ
vTw ď 0 for all w P TΩ(x)

)

,

where TΩ(x) is the tangent cone to the set Ω at x. Each vector
v P NΩ(x) is said to be a normal vector.
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint
The first-order necessary condition for (57) is delightfully simple.
Theorem
Suppose that x˚ is a local minimizer of f in Ω. Then

´∇f (x˚) P NΩ(x˚) .

Proof.
Let d P TΩ(x˚) be given, there exist a feasible sequence tzku and a
sequence of positive scalars ttku such that

zk = x˚ + tkd + o(tk) @ k P N .

Since x˚ is a local solution and f is continuously differentiable, by
Taylor’s Theorem we have

0 ď f (zk) ´ f (x˚) = tk∇f (x˚)
Td + o(tk) .

By dividing by tk and passing to the limit as k Ñ 8, we find that
∇f (x˚)

Td ě 0. ˝
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§12.7 A Geometric Viewpoint
Proof (cont’d).
Therefore,

´∇f (x˚)
Td ď 0 @ d P TΩ(x˚) .

We then conclude from the definition of the normal cone that
´∇f (x˚) P NΩ(x˚). ˝

This result suggests a close relationship between NΩ(x˚) and the
conic combination of active constraint gradients given by

N =

"

ÿ

i PA(x )̊

λi∇ci (x˚)

ˇ

ˇ

ˇ

ˇ

tλiuiPA(x )̊ Ď R, λi ě 0 if i P A(x˚) X I
*

.

When the linear independence constraint qualification holds, identi-
cal (to within a change of sign).
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§12.7 A Geometric Viewpoint
Lemma
Suppose that the LICQ holds at x˚. Then the normal cone NΩ(x˚)

is simply ´N, where N is the set defined by

N =

"

ÿ

i PA(x )̊

λi∇ci (x˚)

ˇ

ˇ

ˇ

ˇ

tλiuiPA(x )̊ Ď R, λi ě 0 if i P A(x˚) X I
*

.

Proof.
By Farkas’ Lemma, we have that

g P N ô gTd ě 0 for all d P F(x˚).

Since LICQ holds at x˚, F(x˚) = TΩ(x˚); thus it follows by switching
the sign of this expression that

g P ´N ô gTd ď 0 for all d P TΩ(x˚).

We then conclude from the definition of the normal cone that
NΩ(x˚) = ´N, as claimed. ˝
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity
What are the intuitive significance of Lagrange multipliers in opti-
mality theory? We will “show” in this section that each Lagrange
multiplier λ˚

i tells us something about the sensitivity of the optimal
objective value f (x˚) to the presence of the constraint ci. To put it
another way, λ˚

i indicates how hard f is “pushing” or “pulling” the
solution x˚ against the particular constraint ci.

When we choose an inactive constraint i R A(x˚) such that ci (x˚) ą

0, the solution x˚ and function value f (x˚) are indifferent to whether
this constraint is present or not. If we perturb ci by a tiny amount,
it will still be inactive and x˚ will still be a local solution of the
optimization problem. Since λ˚

i = 0 from the KKT condition (32e),
the Lagrange multiplier indicates accurately that constraint i is not
significant.
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity
Suppose instead that constraint i is active, and let us perturb the
right-hand side of this constraint a little, requiring, say, that ci (x) ě

´ε}∇ci (x˚)} instead of ci (x) ě 0. Suppose that ε is sufficiently
small that the perturbed solution x˚(ε) still has the same set of
active constraints, and that the Lagrange multipliers are not much
affected by the perturbation (these conditions can be made more
rigorous with the help of strict complementarity and second-order
conditions). We then find that

´ε}∇ci (x˚)} = ci (x˚(ε)) ´ ci (x˚) « (x˚(ε) ´ x˚)
T∇ci (x˚),

0 = cj (x˚(ε)) ´ cj (x˚) « (x˚(ε) ´ x˚)
T∇cj (x˚),

for all j P A(x˚) with j ‰ i.
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity
The value of f (x˚(ε)), meanwhile, can be estimated with the help
of the KKT condition

∇xL(x˚, λ˚) = 0 . (32a)
By Taylor’s Theorem we have

f (x˚(ε)) ´ f (x˚) « (x˚(ε) ´ x˚)
T∇f (x˚)

=
ÿ

j PA(x )̊

λ˚
j (x˚(ε) ´ x˚)

T∇cj (x˚)

« ´ε}∇ci (x˚)}λ
˚
i .

By taking limits, we see that the family of solutions x˚(ε) satisfies

d
dε

ˇ

ˇ

ˇ

ε=0
f (x˚(ε)) = ´λ˚

i }∇ci (x˚)}. (58)
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity
A sensitivity analysis would conclude that if λ˚

i }∇ci (x˚)} is large,
then the optimal value is sensitive to the placement of the i-th con-
straint, while if this quantity is small, the dependence is not too
strong. If λ˚

i is exactly zero for some active constraint, small per-
turbations to ci in some directions will hardly affect the optimal
objective value at all; the change is zero, to first order. This discus-
sion motivates the definition below.
Definition
Let x˚ be a solution of the problem (1), and suppose that the KKT
conditions (32) are satisfied. We say that an inequality constraint
ci is strongly active or binding if i P A(x˚) and λ˚

i ą 0 for some
Lagrange multiplier λ˚ satisfying (32). We say that ci is weakly
active if i P A(x˚) and λ˚

i = 0 for all λ˚ satisfying (32).
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity
Note that the analysis above is independent of scaling of the individ-
ual constraints. For instance, we might change the formulation of
the problem by replacing some active constraint ci by 10ci. The new
problem will actually be equivalent (that is, it has the same feasible
set and same solution), but the optimal multiplier λ˚

i correspond-
ing to ci will be replaced by λ˚

i /10. However, since }∇ci (x˚)} is
replaced by 10}∇ci (x˚)}, the product λ˚

i }∇ci (x˚)} does not change.
If, on the other hand, we replace the objective function f by 10f , the
multipliers λ˚

i in (32) all will need to be replaced by 10λ˚
i . Hence in

(58) we see that the sensitivity of f to perturbations has increased
by a factor of 10, which is exactly what we would expect.
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
在本節中，我們介紹非線性規劃的對偶理論 (duality theory)中的
一些要素。對偶理論被用來啟發和發展一些重要的演算法，包括

第 17章要提到的 Augmented Lagrangian Method。對偶理論的完
整論述將超越了非線性規劃，為 convex non-smooth optimization
甚至離散最佳化領域提供了重要的洞見。其對線性規劃的特殊應

用對該領域的發展至關重要；這個部份請參考第 13 章。

對偶理論告訴我們如何從原本最佳化問題的函數和數據去構建一

個替代問題。這個替代原問題的「對偶」問題 (dual problem) 與
原本的最佳化問題有著迷人的相關性（為了對比起見，在這種情

況下有時被稱為 primal problem）。在某些情況下，對偶問題在計
算上比原本的問題更容易解決。在其他情況下，對偶問題可以用

來輕鬆地取得原問題中目標函數的下界。
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
As remarked above, the dual has also been used to design algorithms
for solving the primal problem. Our results in this section are mostly
restricted to the special case of (1) in which

1 there are no equality constraints, and
2 the objective f and ´ci (the negatives of the inequality con-

straints) are all convex functions.
For simplicity we assume that there are m inequality constraints.
Define a vector-valued function c(x) ”

(
c1(x), c2(x), ¨ ¨ ¨ , cm(x)

)T,
we can rewrite the problem as

min
xPRn

f (x) subject to c(x) ě 0 (59)

for which the Lagrangian function (10) with Lagrange multiplier
vector λ P Rm is simply expressed as L(x, λ) = f (x) ´ λTc(x).
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
The dual objective function q : Rn Ñ R is defined by

q(λ) ” inf
x
L(x, λ) , (60)

where the domain of q is the set of λ for which q is finite; that is,

D ” Dom(q) =
␣

λ
ˇ

ˇ q(λ) ą ´8
(

.

Note that calculation of the infimum in (60) requires finding the
global minimizer of the function L(¨, λ) for the given λ which, as
we have noted in Chapter 2, may be extremely difficult in practice.
However, when f and ´ci are convex functions and λ ě 0 (the
case in which we are most interested), the function L(¨, λ) is also
convex. In this situation, all local minimizers are global minimizers,
so computation of q(λ) becomes a more practical proposition.
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Chapter 12. Theory of Constrained Optimization

Convexity
Before proceeding, we develop some basic knowledge about convex
functions. First we recall the definition of convex sets.
Definition
A subset C of a vector space is said to be convex if

(1´ t)x + ty P C @ x, y P C , t P [0, 1] .

The definition of convex functions are given as follows.
Definition
Let C be a convex set, and f : C Ñ R be a function.

1 f is said to be convex if for all x, y P C and t P [0, 1],
f ((1´ t)x + ty) ď (1 ´ t)f (x) + tf (y) .

2 f is said to be strictly convex if for all distinct x, y P C and
t P (0, 1),

f ((1´ t)x + ty)ă (1 ´ t)f (x) + tf (y) .
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Chapter 12. Theory of Constrained Optimization

Convexity
Theorem
Let C be a convex set, and f : C Ñ R be a differentiable function.

1 f is convex if and only if
f (y) ě f (x) +∇f (x)T(y ´ x) @ x, y P C .

2 f is strictly convex if and only if
f (y) ą f (x) +∇f (x)T(y ´ x) @ x, y P C , x ‰ y .

Proof.
1 (ñ) Let x, y P C. For all t P [0, 1],

f ((1´ t)x + ty) ď (1 ´ t)f (x) + tf (y);
thus for t P (0, 1],

∇f (x)T(y ´ x) = lim
tÑ0+

f ((1´ t)x + ty) ´ f (x)
t ď f (y) ´ f (x) .

Note that the limit is the directional derivative of f at x along
direction y ´ x ; thus ˝
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Chapter 12. Theory of Constrained Optimization

Convexity
Proof (cont’d).

1 (ð) Let x, y P C, t P [0, 1], and suppose that
f (w) ě f (z) +∇f (z)T(w ´ z) @ w, z P C .

Let z = (1´ t)x + ty and w = x or w = y in the inequality
above, we obtain

f (x) ě f ((1´ t)x + ty) +∇f ((1´ t)x + ty)T(t(y ´ x))
and

f (y) ě f ((1´ t)x + ty) +∇f ((1´ t)x + ty)T((1´ t)(x ´ y)) .
Therefore,

(1 ´ t)f (x) + tf (y)
ě (1 ´ t)f ((1´ t)x + ty) + tf ((1´ t)x + ty)
= f ((1´ t)x + ty);

thus f is convex. ˝
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Chapter 12. Theory of Constrained Optimization

Convexity
Proof (cont’d).

2 (ð) Let x, y P C, x ‰ y, t P (0, 1), and suppose that
f (w) ą f (z) +∇f (z)T(w ´ z) @ w, z P C,w ‰ z .

Let z = (1´ t)x + ty and w = x or w = y in the inequality
above (w ‰ z since t P (0, 1)), we obtain

f (x) ą f ((1´ t)x + ty) + t∇f ((1´ t)x + ty)T( y ´ x )
and

f (y) ą f ((1´ t)x + ty) + (1 ´ t)∇f ((1´ t)x + ty)T(x ´ y) .
Therefore,

(1 ´ t)f (x) + tf (y)
ą (1 ´ t)f ((1´ t)x + ty) + tf ((1´ t)x + ty)
= f ((1´ t)x + ty);

thus f is strictly convex. ˝
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Chapter 12. Theory of Constrained Optimization

Convexity
Proof (cont’d).

2 (ñ) From 1⃝ we have
f (y) ě f (x) +∇f (x)T(y ´ x) @ x, y P C , x ‰ y .

so it suffices to shows that
f (y) ‰ f (x) +∇f (x)T(y ´ x) @ x, y P C , x ‰ y .

Suppose the contrary that there exist x, y P C, x ‰ y such that
f (y) = f (x) +∇f (x)T(y ´ x) .

Let t P (0, 1), and z = (1´ t)x + ty. Then z ´ x = t(y ´ x),
and the strict convexity of f shows that

f (z) ă (1´ t)f (x) + tf (y) = f (x) + t
[
f (y) ´ f (x)

]
= f (x) + t∇f (x)T(y ´ x)
= f (x) +∇f (x)T(z ´ x) ď f (z) ,

a contradiction. ˝
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f (y) = f (x) +∇f (x)T(y ´ x) .

Let t P (0, 1), and z = (1´ t)x + ty. Then z ´ x = t(y ´ x),
and the strict convexity of f shows that

f (z) ă (1´ t)f (x) + tf (y) = f (x) + t
[
f (y) ´ f (x)

]
= f (x) + t∇f (x)T(y ´ x)
= f (x) +∇f (x)T(z ´ x) ď f (z) ,

a contradiction. ˝
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
The dual problem to

min
xPRn

f (x) subject to c(x) ě 0 (59)

is the constrained maximization problem
max
λPRn

q(λ) subject to λ ě 0 . (61)

Example
Consider the problem

min
(x1,x2)

0.5(x 2
1 + x 2

2 ) subject to x1 ´ 1 ě 0 . (62)

The Lagrangian is
L(x1, x2, λ) = 0.5(x 2

1 + x 2
2 ) ´ λ(x1 ´ 1) .

If we hold λ fixed, L a convex function of (x1, x2)T; thus the infimum
of L is achieved when the partial derivatives with respect to x1 and
x2 are zero; that is, x1 ´ λ = 0, x2 = 0.
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§12.9 Duality
Example (cont’d)
By substituting these infimal values into L(x1, x2, λ), we obtain the
dual objective (60):

q(λ) = 0.5(λ 2 + 0) ´ λ(λ ´ 1) = ´0.5λ 2 + λ .

Hence, the dual problem of (61) is
max
λě0

´0.5λ 2 + λ (63)

which clearly has the solution λ = 1.

In the remainder of this section, we show how the dual problem is
related to

min
xPRn

f (x) subject to c(x) ě 0 . (59)

Our first result concerns concavity of q and convexity of its domain D.
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Theorem
The function q defined by (60) is concave and its domain D is
convex.
Proof.
For any λ0 and λ1 in Rm, any x P Rn, and any α P [0, 1], we have

L(x, (1 ´ α)λ0 + αλ1) = (1 ´ α)L(x, λ0) + αL(x, λ1) .

By the fact that the infimum of a sum is greater than or equal to the
sum of infimums, taking the infimum of both sides in the expression
above we obtain

q
(
(1 ´ α)λ0 + αλ1

)
ě (1 ´ α)q(λ0) + αq(λ1) ,

confirming concavity of q. If both λ0 and λ1 belong to D, this
inequality implies that q

(
(1´α)λ0+αλ1

)
ą ´8 also, and therefore

(1 ´ α)λ0 + αλ1 P D, verifying convexity of D. ˝
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
In the following we prove that the optimal value of the dual problem

max
λPRn

q(λ) subject to λ ě 0 (61)

gives a lower bound on the optimal objective value for the primal
problem

min
xPRn

f (x) subject to c(x) ě 0 . (59)

This result is a consequence of the following result.
Theorem (Weak Duality)
For any sx feasible for (59) and any sλ ě 0, we have q(sλ) ď f (sx).

Proof.
By the definition of q,

q(sλ) = inf
x

f (x) ´ sλTc(x) ď f (sx) ´ sλTc(sx) ď f (sx),

where the final inequality follows from sλ ě 0 and c(sx) ě 0. ˝
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§12.9 Duality
For the remaining results, we note that the KKT conditions (32)
specialized to

min
xPRn

f (x) subject to c(x) ě 0 (59)
are as follows:

∇f (sx) ´ ∇c(sx)sλ = 0, (64a)
c(sx) ě 0, (64b)

sλ ě 0, (64c)
sλi ci (sx) = 0, i = 1, 2, ¨ ¨ ¨ ,m, (64d)

where ∇c(x) is the n ˆ m matrix defined by

∇c(x) = [∇c1(x),∇c2(x), ¨ ¨ ¨ ,∇cm(x)] .

The next result shows that optimal Lagrange multipliers for (59) are
solutions of the dual problem (61) under certain conditions.

∇f (sx) ´ ∇c(sx)sλ = 0, (64a)

c(sx) ě 0, (64b)
sλ ě 0, (64c)

sλici (sx) = 0, i = 1, 2, ¨ ¨ ¨ ,m, (64d)
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Theorem
Suppose that f and ´ci, i = 1, 2, ¨ ¨ ¨ , m are convex functions on
Rn that are differentiable at a KKT point sx to

min
xPRn

f (x) subject to c(x) ě 0 , (59)

where c(x) ”
(
c1(x), c2(x), ¨ ¨ ¨ , cm(x)

)T. Then sx is a solution to
(59). Moreover, any sλ for which (sx, sλ) satisfies the KKT conditions

∇f (sx) ´ ∇c(sx)sλ = 0 , (64a)
c(sx) ě 0 , (64b)

sλ ě 0 , (64c)
sλi ci (sx) = 0 , i = 1, 2, ¨ ¨ ¨ ,m , (64d)

is a local solution of the dual problem
max
λPRn

q(λ) subject to λ ě 0 . (61)
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Proof.
Suppose that (sx, sλ) satisfies the KKT condition (64). We have from
sλ ě 0 that L(¨, sλ) is a convex and differentiable function. Hence,
for any x, we have

L(x, sλ) ě L(sx, sλ) +∇xL(sx, sλ)T(x ´ sx) = L(sx, sλ) ,
where the last equality follows from (64a). Therefore, we have

q(sλ) = inf
x
L(x, sλ) = L(sx, sλ) = f (sx) ´ sλTc(sx) = f (sx) ,

where the last equality follows from (64d).
On the other hand, the weak duality implies that

q(λ) ď f (sx) @ λ ě 0 ;

thus it follows from q(sλ) = f (sx) that sx is a solution to (59) and sλ

is a solution of (61). ˝
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Note that if the functions are continuously differentiable and a con-
straint qualification such as LICQ holds at a local solution sx of (59),
then an optimal Lagrange multiplier satisfying the KKT conditions
is guaranteed to exist. This shows that following
Corollary
Suppose that f and ´ci, i = 1, 2, ¨ ¨ ¨ , m be convex functions on
Rn that are differentiable at a solution sx to

min
xPRn

f (x) subject to c(x) ě 0 , (59)

If LICQ holds at sx; that is,
␣

∇ci (sx)
ˇ

ˇ i P A(sx)
(

is linearly indepen-
dent or equivalently, the matrix

[
∇ci (sx)

]
iPA(sx) has full rank, then

there is a solution of the dual problem
max
λPRn

q(λ) subject to λ ě 0 . (61)
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Example
In previous example of solving

min
(x1,x2)

0.5(x 2
1 + x 2

2 ) subject to x1 ´ 1 ě 0 , (62)

we see that λ = 1 is both an optimal Lagrange multiplier for problem
(62) and a solution of its dual problem

max
λě0

´0.5λ 2 + λ . (63)

Note too that the optimal objective for both problems is 0.5.

Next we prove a partial converse of the previous theorem, which
shows that solutions to the dual problem (61) can sometimes be
used to derive solutions to the original problem (59).
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The essential condition is strict convexity of the function L(¨, pλ) for
a certain value pλ. We note that this condition holds if either f is
strictly convex or if ´ci is strictly convex for some i = 1, 2, ¨ ¨ ¨ , m
with pλi ą 0.
Theorem
Suppose that f and ´ci, i = 1, 2, ¨ ¨ ¨ , m are convex and continuously
differentiable on Rn. Suppose that

1
sx is a solution of (59) at which LICQ holds,

2 pλ solves the dual problem (61), and the infimum inf
x
L(x, pλ) is

attained at px.
Assume further that L(¨, pλ) is a strictly convex function. Then sx = px
(that is, px is the unique solution of (59)), and pλ is a Lagrange
multiplier for sx (that is, (sx, pλ) satisfies the KKT condition).
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Theorem (Full statement of the theorem in the previous slide)
Suppose that f and ´ci, i = 1, 2, ¨ ¨ ¨ , m are convex and continuously
differentiable on Rn. Suppose that

1
sx is a solution of

min
xPRn

f (x) subject to c(x) ě 0 , (59)

and LICQ holds at sx (or TΩ(sx) = F(sx));
2 pλ solves the dual problem

max
λPRn

q(λ) subject to λ ě 0 , (61)

and the infimum inf
x
L(x, pλ) is attained at px.

Assume further that L(¨, pλ) is a strictly convex function. Then sx = px
(that is, px is the unique solution of (59)), and pλ is a Lagrange
multiplier for sx (that is, (sx, pλ) satisfies the KKT condition).
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Proof.
Suppose the contrary that sx ‰ px . Since px = arg min

x
L(x, pλ), we

have ∇xL(px , pλ) = 0; thus the strict convexity of L(¨, pλ) implies that

L(sx, pλ) ´ L(px , pλ) ą ∇xL(px , pλ)T(sx ´ px) = 0 .

Since LICQ holds at sx, there is sλ satisfying the KKT conditions (64).
By the previous theorem sλ solves the dual problem (61) so that

L(sx, sλ) = q(sλ) = q(pλ) = L(px , pλ) .
Therefore,

L(sx, pλ) ą L(px , pλ) = L(sx, sλ) .
In particular,

´pλTc(sx) ą ´sλTc(sx) = 0 ,

where the final equality follows from the KKT condition (64d). Since
pλ ě 0 and c(sx) ě 0, we have ´pλTc(sx) ď 0, a contradiction. ˝
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Proof (cont’d).
Therefore, sx = px . Moreover, the identities (from the previous slide)

L(sx, sλ) = L(px , pλ) and f (sx) = L(sx, sλ)
imply that f (sx) = L(sx, pλ). This identity shows that pλTc(sx) = 0.
Since pλ ě 0 and c(sx) ě 0, we must have pλi ci(sx) = 0 for all
1 ď i ď m; thus the KKT condition holds at (sx, pλ). ˝

Example
In previous example of solving

min
(x1,x2)

0.5(x 2
1 + x 2

2 ) subject to x1 ´ 1 ě 0 , (62)

at the dual solution λ = 1, the infimum of L(x1, x2, λ) is achieved
at (x1, x2) = (1, 0)T, which is the solution of the original problem
(62).
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An slightly different form of duality that is convenient for computa-
tions, known as the Wolfe dual, can be stated as follows:

max
x,λ

L(x, λ) subject to ∇xL(x, λ) = 0, λ ě 0. (65)

The following result explains the relation of the Wolfe dual to (59).
Theorem
Suppose that f and ´ci, i = 1, 2, ¨ ¨ ¨ , m are convex and continu-
ously differentiable on Rn. Suppose that (sx, sλ) is a solution pair of
(59) at which LICQ holds; that is, sx is a solution of (59) and sλ is a
corresponding Lagrange multiplier vector (whose existence is guar-
anteed by one of previous theorem). Then (sx, sλ) solves the problem
(65).
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Proof.
Since (sx, sλ) is a solution pair of (59), it holds the KKT conditions
(64) so that (sx, sλ) satisfies the constraint

∇xL(x, λ) = 0, λ ě 0 (66)

and that L(sx, sλ) = f (sx). Therefore, for any pair (x, λ) that satisfies
(66) we have that

L(sx, sλ) = f (sx) ě f (sx) ´ λTc(sx) = L(sx, λ)
ě L(x, λ) +∇xL(x, λ)T(sx ´ x) = L(x, λ) ,

where the second inequality follows from the convexity of L(¨, λ).
We have therefore shown that (sx, sλ) maximizes L over the con-
straints (66), and hence solves

max
x,λ

L(x, λ) subject to ∇xL(x, λ) = 0, λ ě 0. (65)
˝
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Proof.
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and that L(sx, sλ) = f (sx). Therefore, for any pair (x, λ) that satisfies
(66) we have that

L(sx, sλ) = f (sx) ě f (sx) ´ λTc(sx) = L(sx, λ)
ě L(x, λ) +∇xL(x, λ)T(sx ´ x) = L(x, λ) ,

where the second inequality follows from the convexity of L(¨, λ).
We have therefore shown that (sx, sλ) maximizes L over the con-
straints (66), and hence solves

max
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L(x, λ) subject to ∇xL(x, λ) = 0, λ ě 0. (65)
˝
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§12.9 Duality
Example (Linear Programming)
An important special case of (59) is the linear programming problem

min cTx subject to Ax ´ b ě 0 , (67)
for which the dual objective is

q(λ) = inf
x

cTx ´ λT(Ax ´ b) = inf
x
(c ´ ATλ)Tx + bTλ .

If c ´ ATλ ‰ 0, the infimum is clearly ´8 (we can set x to be a
large negative multiple of ´(c ´ ATλ) to make q arbitrarily large
and negative). When c ´ ATλ = 0, on the other hand, the dual
objective is simply bTλ. In maximizing q, we can exclude λ for
which c ´ ATλ ‰ 0 from consideration. Hence, we can write the
dual problem (61) as follows:

max
λ

bTλ subject to ATλ = c , λ ě 0 . (68)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.9 Duality
Example (Linear Programming (cont’d))
The Wolfe dual of (67) can be written as

max
λ

cTx ´ λT(Ax ´ b) subject to ATλ = c, λ ě 0 ,

and by substituting the constraint ATλ´c = 0 into the objective we
obtain (68) again. For some matrices A, the dual problem (68) may
be computationally easier to solve than the original problem (67).

Example (Convex Quadratic Programming)
Consider

min 1

2
xTGx + cTx subject to Ax ´ b ě 0 ,

where G is a symmetric positive definite matrix. The dual objective
for this problem is

q(λ) = inf
x
L(x, λ) = inf

x
1

2
xTGx + cTx ´ λT(Ax ´ b) .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用二 MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.9 Duality
Example (Linear Programming (cont’d))
The Wolfe dual of (67) can be written as

max
λ

cTx ´ λT(Ax ´ b) subject to ATλ = c, λ ě 0 ,

and by substituting the constraint ATλ´c = 0 into the objective we
obtain (68) again. For some matrices A, the dual problem (68) may
be computationally easier to solve than the original problem (67).

Example (Convex Quadratic Programming)
Consider

min 1

2
xTGx + cTx subject to Ax ´ b ě 0 ,

where G is a symmetric positive definite matrix. The dual objective
for this problem is

q(λ) = inf
x
L(x, λ) = inf

x
1

2
xTGx + cTx ´ λT(Ax ´ b) .
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§12.9 Duality
Example (Convex Quadratic Programming (cont’d))
Since G is positive definite, L(¨, λ) is a strictly convex quadratic
function; thus the infimum is achieved when ∇xL(x, λ) = 0; that is,

Gx + c ´ ATλ = 0 . (69)

Hence, we can substitute for x in the infimum expression and write
the dual objective explicitly as follows:

q(λ) = ´
1

2
(ATλ ´ c)TG´1(ATλ ´ c)T + bTλ .

Alternatively, we can write the Wolfe dual form (65) by retaining x
as a variable and including the constraint (69) explicitly in the dual
problem, to obtain

max
(λ,x)

1

2
xTGx+cTx´λT(Ax´b) subject to Gx+c´ATλ = 0, λ ě 0.
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§12.9 Duality
Example (Convex Quadratic Programming (cont’d))
To make it clearer that the objective is concave, we can use the
constraint to substitute (c ´ ATλ)Tx = ´xTGx in the objective, and
rewrite the dual formulation as follows:

max
(λ,x)

´
1

2
xTGx + λTb subject to Gx + c ´ ATλ = 0, λ ě 0.

Note that the Wolfe dual form requires only positive semi-definiteness
of G.
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