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Chapter 3. Line Search Methods

Introduction
Each iteration of a line search method computes a search direction
pk and then decides how far to move along that direction. The
iteration is given by

xk+1 = xk + αkpk ,

where the positive scalar αk is called the step length. The success
of a line search method depends on effective choices of both the
direction pk and the step length αk.
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Chapter 3. Line Search Methods

Introduction
Most line search algorithms require pk to be a descent direction
satisfying

pT
k ∇fk ă 0

because this property guarantees that the function f can be reduced
along this direction, as discussed in the previous chapter. Moreover,
the search direction often has the form

pk = ´B´1
k ∇fk , (1)

where Bk is a symmetric and non-singular matrix.
1 In the steepest descent method, Bk is the identity matrix I.
2 In Newton’s method, Bk is the exact Hessian (∇2f )(xk).
3 In quasi-Newton methods, Bk is an approximation to the Hes-

sian that is updated at every iteration by means of a low-rank
formula.
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Chapter 3. Line Search Methods

Introduction
When pk is defined by (1) and Bk is positive definite, we have

pT
k ∇fk = ´∇f T

k B´1
k ∇fk ă 0

and therefore pk is a descent direction.

In this chapter, we discuss how to choose αk and pk to promote
convergence from remote starting points. We also study the rate of
convergence of steepest descent, quasi-Newton, and Newton meth-
ods. Since the pure Newton iteration is not guaranteed to produce
descent directions when the current iterate is not close to a solution,
we discuss modifications in Section 3.4 that allow it to start from
any initial point.
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Chapter 3. Line Search Methods

§3.1 Step Length
In computing the step length αk, we face a tradeoff. We would like
to choose αk to give a substantial reduction of f , but at the same
time we do not want to spend too much time making the choice.
The ideal choice would be the global minimizer of the univariate
function φ(¨) defined by

φ(α) = f (xk + αpk), α ą 0, (2)

but in general, it is too expensive to identify this value. To find
even a local minimizer of φ to moderate precision generally requires
too many evaluations of the objective function f and possibly the
gradient ∇f . More practical strategies perform an inexact line search
to identify a step length that achieves adequate reductions in f at
minimal cost.
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Chapter 3. Line Search Methods

§3.1 Step Length
Typical line search algorithms try out a sequence of candidate values
for α, stopping to accept one of these values when certain conditions
are satisfied. The line search is done in two stages:

1 A bracketing phase finds an interval containing desirable step
lengths, and

2 a bisection or interpolation phase computes a good step length
within this interval.

Sophisticated line search algorithms can be quite complicated, so we
defer a full description until Section 3.5.
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Chapter 3. Line Search Methods

§3.1 Step Length
We now discuss various termination conditions for line search algo-
rithms and show that effective step lengths need not lie near min-
imizers of the univariate function φ(α) defined in (2). A simple
condition we could impose on αk is to require a reduction in f ; that
is, f (xk + αkpk) ă f (xk). One example of that this requirement is
not enough to produce convergence to x˚ is illustrated in Figure 1.

Figure 1: Insufficient reduction in f
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Chapter 3. Line Search Methods

§3.1 Step Length
In the example given in the previous page, the minimum function
value is f˚ = ´1, but a sequence of iterates txku for which f (xk) =

5/k, k = 0, 1, ¨ ¨ ¨ yields a decrease at each iteration but has a
limiting function value of zero. The insufficient reduction in f at
each step causes it to fail to converge to the minimizer of this convex
function. To avoid this behavior we need to enforce a sufficient
decrease condition, a concept we discuss next.
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Chapter 3. Line Search Methods

§3.1 Step Length
‚ The Wolfe Conditions:
A popular inexact line search condition stipulates that αk should
first of all give sufficient decrease in the objective function f , as
measured by the following inequality:

f (xk + αpk) ď f (xk) + c1α∇f T
k pk (3)

for some constant c1 P (0, 1). In other words, the reduction in f
should be proportional to both the step length αk and the directional
derivative ∇f T

k pk. Inequality (3) is sometimes called the Armijo
condition.

Let ℓ(α) denote the right-hand-side of (3); that is,

ℓ(α) = f (xk) + c1α∇f T
k pk.

This function a linear function with negative slope c1∇f T
k pk.
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Chapter 3. Line Search Methods

§3.1 Step Length
The sufficient decrease condition is illustrated in Figure 2.

Figure 2: Sufficient decrease condition

Because c1 P (0, 1), it lies above the graph of φ for small positive
values of α. The sufficient decrease condition states that α is ac-
ceptable only if φ(α) ď ℓ(α). The intervals on which this condition
is satisfied are shown in Figure 2. In practice, c1 is chosen to be
quite small, say c1 = 10´4.
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Chapter 3. Line Search Methods

§3.1 Step Length
The sufficient decrease condition is not enough by itself to ensure
that the algorithm makes reasonable progress because, as we see
from Figure 2, it is satisfied for all sufficiently small values of α. To
rule out unacceptably short steps we introduce a second require-
ment, called the curvature condition, which requires αk to satisfy

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk (4)

for some constant c2 P (c1, 1), where c1 is the constant from (3).
Note that the left-hand side is simply the derivative φ 1(αk), so the
curvature condition ensures that the slope of φ at αk is greater than
c2 times the initial slope φ 1(0).

The curvature condition is illustrated in Figure 3 in the next page.
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Chapter 3. Line Search Methods

§3.1 Step Length
On the other hand, if φ 1(αk) is only slightly negative or even positive,
it is a sign that we cannot expect much more decrease in f in this
direction, so it makes sense to terminate the line search. Typical
values of c2 are 0.9 when the search direction pk is chosen by a
Newton or quasi-Newton method, and 0.1 when pk is obtained from
a nonlinear conjugate gradient method.

Figure 3: The curvature condition
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Chapter 3. Line Search Methods

§3.1 Step Length
The sufficient decrease and curvature conditions are known collec-
tively as the Wolfe conditions:

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (5a)

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk , (5b)

with 0 ă c1 ă c2 ă 1. We illustrate them in Figure 4.

Figure 4: Step lengths satisfying the Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (5a)

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk , (5b)
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Chapter 3. Line Search Methods

§3.1 Step Length
A step length may satisfy the Wolfe conditions without being par-
ticularly close to a minimizer of φ, as we show in Figure 4. We can,
however, modify the curvature condition to force αk to lie in at least
a broad neighborhood of a local minimizer or stationary point of φ.
The strong Wolfe conditions require αk to satisfy

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (6a)

ˇ

ˇ∇f (xk + αkpk)
Tpk

ˇ

ˇ ď c2
ˇ

ˇ∇f T
k pk

ˇ

ˇ , (6b)

with 0 ă c1 ă c2 ă 1. The only difference with the Wolfe conditions
is that we no longer allow the derivative φ 1(αk) to be too positive.
Hence, we exclude points that are far from stationary points of φ.

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (6a)

ˇ

ˇ∇f (xk + αkpk)
Tpk

ˇ

ˇ ď c2
ˇ

ˇ∇f T
k pk

ˇ

ˇ , (6b)
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Chapter 3. Line Search Methods

§3.1 Step Length
Lemma
Suppose that f : Rn Ñ R is continuously differentiable. Let pk be a
descent direction at xk, and assume that f is bounded from below
along the ray txk + αpk |α ą 0u. Then if 0 ă c1 ă c2 ă 1, there
exist intervals of step lengths satisfying the Wolfe conditions (5) and
the strong Wolfe conditions (6).

Proof.
Define φ(α) ” f (xk + αpk) and ℓ(α) ” f (xk) + αc1∇f T

k pk. By the
differentiability of f ,

f (xk + αpk) ´ f (xk) ´ α∇f T
k pk = o(}αpk}) = o(|α|) .

Since pk is a descent direction, ∇f T
k pk ă 0. By the fact that

c1 P (0, 1), there exists δ ą 0 such that
φ(α) ´ ℓ(α) = (1 ´ c1)α∇f T

k pk + o(|α|) ă 0 if 0 ă α ă δ . ˝
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Since pk is a descent direction, ∇f T
k pk ă 0. By the fact that

c1 P (0, 1), there exists δ ą 0 such that
φ(α) ´ ℓ(α) = (1 ´ c1)α∇f T

k pk + o(|α|) ă 0 if 0 ă α ă δ . ˝
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Proof (cont’d).
Therefore, φ(α) ă ℓ(α) whenever 0 ă α ă δ.

By assumption, there exists m P R such that φ(α) ě m for all
α ą 0, while the fact that ∇f T

k pk ă 0 implies that

lim
αÑ8

ℓ(α) = ´8 .

Therefore, the continuity of φ and ℓ implies that the set
␣

α ą

0
ˇ

ˇφ(α) = ℓ(α)
(

is non-empty. Let

sα = inf
␣

α ą 0
ˇ

ˇ f (xk + αpk) = f (xk) + αc1∇f T
k pk

(

.

Then sα ě δ, and the sufficient decrease condition (5a)/(6a) clearly
holds for all step lengths less than sα. ˝
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§3.1 Step Length
Proof (cont’d).
By the mean value theorem, there exists rα P (0, sα) such that

f (xk + sαpk) ´ f (xk) = sα(∇f )(xk + rαpk)
Tpk .

By the definition of sα and the continuity of φ and ℓ,
f (xk + sαpk) = φ(sα) = ℓ(sα) = f (xk) + sαc1∇f T

k pk ;

thus the fact that 0 ă c1 ă c2 ă 1 implies that
(∇f )(xk + rαpk)

Tpk = c1∇f T
k pk ą c2∇f T

k pk . (7)

Therefore, rα satisfies the Wolfe conditions (5), and the inequalities
hold strictly in both (5a) and (5b). Hence, by our smoothness
assumption on f , there is an interval around rα for which the Wolfe
conditions hold. The negativity of the left-hand side of (7) shows
that the strong Wolfe conditions (6) hold in the same interval. ˝
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Chapter 3. Line Search Methods

§3.1 Step Length
The Wolfe conditions are scale-invariant in a broad sense: Multiply-
ing the objective function by a constant or making an affine change
of variables does not alter them. They can be used in most line
search methods, and are particularly important in the implementa-
tion of quasi-Newton methods.

Remark: For the purpose of the analysis it sometimes requires that
the step length obtained by the exact line search is used. Suppose
that f (x) =

1

2
xTQx for some positive definite matrix Q. For a

descent direction pk, the exact line search step length αk is given by

αk = ´
xT

k Qpk
pT

k Qpk

since if φ(α) = f (xk + αpk), then φ 1(α) = xT
k Qpk + αpT

k Qpk.
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§3.1 Step Length
Therefore, for the Armijo condition (5a) to hold with this αk, we
must have c1 ď

1

2
since

1

2
(xk + αkpk)TQ(xk + αkpk) ď

1

2
xT

k Qxk ´ c1αkxT
k Qpk

ô αkxT
k Qpk +

1

2
α2

kpT
k Qpk ď ´c1αkxT

k Qpk

ô xT
k Qpk +

1

2
αkpT

k Qpk ď ´c1xT
k Qpk

ô ´αk +
1

2
αk ď ´c1αk

ô c1 ď
1

2
.

This implies that if c1 ą 1/2, then the line search would exclude
the minimizer of a quadratic, so later on we usually assume that
c1 ď 1/2 in the Armijo condition.
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§3.1 Step Length
Moreover, for this particular quadratic function f , at the k-th iterate
xk, the Newton direction pN

k is given by

pN
k = ´

[
(∇f )2(xk)

]´1∇fk = ´Q´1(Qxk) = ´xk ;

thus for the Armijo condition (5a) to hold with pk = pN
k and αk = 1,

we must have c1 ď
1

2
since

1

2
(xk ´ xk)TQ(xk ´ xk) ď

1

2
xT

k Qxk ´ c1xT
k Qxk

ô c1xT
k Qxk ď

1

2
xT

k Qxk

ô c1 ď
1

2
.

Therefore, if c1 ą 1/2, then the unit step lengths may not be ad-
missible. This is another way of seeing that one needs c1 ď 1/2 in
the Armijo condition.
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§3.1 Step Length
‚ The Goldstein Conditions:
Like the Wolfe conditions, the Goldstein conditions ensure that the
step length α achieves sufficient decrease but is not too short. The
Goldstein conditions can also be stated as a pair of inequalities:

f (xk)+ (1´ c)αk∇f T
k pk ď f (xk +αkpk) ď f (xk)+ cαk∇f T

k pk (8)

with 0 ă c ă 1/2. The second inequality is the sufficient decrease
(Armijo) condition (3), whereas the first inequality is introduced to
control the step length from below. See Figure 5 on the next page.
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Figure 5: The Goldstein conditions
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§3.1 Step Length
Compared with the Wolfe conditions, a disadvantage of the Gold-
stein conditions is that the first inequality in (8) may exclude all
minimizers of φ. However, the Goldstein and Wolfe conditions have
much in common, and their convergence theories are quite similar.
The Goldstein conditions are often used in Newton-type methods
but are not well suited for quasi-Newton methods that maintain a
positive definite Hessian approximation.
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§3.1 Step Length
‚ Sufficient Decrease and Backtracking:
The sufficient decrease (Armijo) condition (3) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the
given search direction. However, if the line search algorithm chooses
its candidate step lengths using a so-called backtracking approach,
we can dispense with the extra condition (5b) and use just the suf-
ficient decrease condition to terminate the line search procedure. In
its most basic form, backtracking proceeds as follows.
Algorithm 3.1 (Backtracking Line Search):
Choose sα ą 0, ρ P (0, 1), c P (0, 1); Set α Ð sα;
while f (xk + αpk) ą f (xk) + cα∇f T

k pk
α Ð ρα;

end
Terminate with αk = α.
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§3.1 Step Length
In this procedure, the initial step length sα is chosen to be 1 in New-
ton and quasi-Newton methods, but can have different values in
other algorithms such as steepest descent or conjugate gradient. An
acceptable step length will be found after a finite number of trials,
because αk will eventually become small enough that the sufficient
decrease condition holds. In practice, the contraction factor ρ is of-
ten allowed to vary at each iteration of the line search. For example,
it can be chosen by safeguarded interpolation, as we describe later.
We need ensure only that at each iteration we have ρ P [ρlo, ρhi], for
some fixed constants 0 ă ρlo ă ρhi ă 1.
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Chapter 3. Line Search Methods

§3.1 Step Length
The backtracking approach ensures either that the selected step
length αk is some fixed value (the initial choice sα), or else that it
is short enough to satisfy the sufficient decrease condition but not
too short. The latter claim holds because the accepted value αk

is within a factor ρ of the previous trial value, αk/ρ, which was
rejected for violating the sufficient decrease condition; that is, for
being too long. This simple and popular strategy for terminating a
line search is well suited for Newton methods but is less appropriate
for quasi-Newton and conjugate gradient methods.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
To obtain global convergence, we must not only have well chosen
step lengths but also well chosen search directions pk. We discuss
requirements on the search direction in this section, focusing on one
key property: the angle θk between pk and the steepest descent
direction ´∇fk, defined by

cos θk =
´∇f T

k pk
}∇fk}}pk}

.
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§3.2 Convergence of Line Search Methods
The following theorem, due to Zoutendijk, has far-reaching conse-
quences. It quantifies the effect of properly chosen step lengths αk ,
and shows, for example, that the steepest descent method is globally
convergent. For other algorithms, it describes how far pk can devi-
ate from the steepest descent direction and still produce a globally
convergent iteration. Various line search termination conditions can
be used to establish this result, but for concreteness we will consider
only the Wolfe conditions (5). Though Zoutendijk’s result appears
at first to be technical and obscure, its power will soon become ev-
ident.
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§3.2 Convergence of Line Search Methods
Theorem (Zoutendijk)
Let f : Rn Ñ R be continuously differentiable, and txku be a se-
quence of iterates taking the form xk+1 = xk + αkpk, where x0 is
the starting point of the iteration, pk is a descent direction, and
αk satisfies the Wolfe conditions (5). Suppose in addition that f is
bounded from below in the level set S =

␣

x
ˇ

ˇ f (x) ď f (x0))
(

, and the
gradient ∇f is Lipschitz continuous on an open set N containing S;
that is, there exists a constant L ą 0 such that

›

›(∇f )(x) ´ (∇f )(rx)
›

› ď L}x ´rx } @ x, rx P N .

Then it holds the inequality
8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Theorem (Zoutendijk)
Let f : Rn Ñ R be continuously differentiable, and txku be a se-
quence of iterates taking the form xk+1 = xk + αkpk, where x0 is
the starting point of the iteration, pk is a descent direction, and
αk satisfies the Wolfe conditions (5). Suppose in addition that f is
bounded from below in the level set S =

␣

x
ˇ

ˇ f (x) ď f (x0))
(

, and the
gradient ∇f is Lipschitz continuous on an open set N containing S;
that is, there exists a constant L ą 0 such that

›

›(∇f )(x) ´ (∇f )(rx)
›

› ď L}x ´rx } @ x, rx P N .

Then it holds the inequality
8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Theorem (Zoutendijk)
Let f : Rn Ñ R be continuously differentiable, and txku be a se-
quence of iterates taking the form xk+1 = xk + αkpk, where x0 is
the starting point of the iteration, pk is a descent direction, and
αk satisfies the Wolfe conditions (5). Suppose in addition that f is
bounded from below in the level set S =

␣

x
ˇ

ˇ f (x) ď f (x0))
(

, and the
gradient ∇f is Lipschitz continuous on an open set N containing S;
that is, there exists a constant L ą 0 such that

›

›(∇f )(x) ´ (∇f )(rx)
›

› ď L}x ´rx } @ x, rx P N .

Then it holds the inequality
8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

8
ÿ

k=0

cos2θk}∇fk}2 ă 8 . (9)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Proof.
From the second Wolfe condition (5b),

(∇fk+1 ´ ∇fk)Tpk ě (c2 ´ 1)∇f T
k pk ,

and the Lipschitz condition and the Cauchy-Schwartz inequality fur-
ther imply that

(∇fk+1 ´ ∇fk)Tpk ď Lαk}pk}2 .

The two inequalities above show that

(c2 ´ 1)∇f T
k pk ď Lαk}pk}2 or equivalently αk ě

c2 ´ 1

L
∇f T

k pk
}pk}2

.

By substituting this inequality into the first Wolfe condition (5a),
we obtain that

fk+1 ď fk + c1αk∇f T
k pk ď fk ´ c1

1 ´ c2
L cos2θk}∇fk}2 . ˝
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Proof (cont’d).
From previous page:

fk+1 ď fk + c1αk∇f T
k pk ď fk ´ c1

1 ´ c2
L cos2θk}∇fk}2 .

Summing over all indices k less that ℓ, we find that

fℓ+1 ď f0 ´ c1
1 ´ c2

L

ℓ
ÿ

k=0

cos2θk}∇fk}2 .

Since f is bounded from below in S, from the inequality above it
follows that for all ℓ P N,

c1
1 ´ c2

L

ℓ
ÿ

k=0

cos2θk}∇fk}2 ď f0 ´ inf
x PS

f (x) ă 8 .

This concludes the theorem. ˝
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
The Zoutendijk condition (9) implies that

lim
kÑ8

cos2θk}∇fk}2 = 0 .

This limit can be used to derive global convergence results for line
search algorithms. If our method for choosing the search direction
pk in the iteration scheme ensures that the angle θk defined by

cos θk =
´∇f T

k pk
}∇fk}}pk}

is bounded away from 90 degree so that cos θk ě δ ą 0 for some
positive constant δ, then it follows immediately that

lim
kÑ8

}∇fk} = 0 . (10)

In other words, we can be sure that the gradient norms }∇fk} con-
verge to zero, provided that the search directions are never too close
to orthogonality with the gradient.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
We use the term globally convergent to refer to algorithms for
which the property

lim
kÑ8

}∇fk} = 0 (10)

is satisfied, but note that this term is sometimes used in other con-
texts to mean different things. For line search methods of the general
form xk+1 = xk + αkpk, the limit (10) is the strongest global con-
vergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by
stationary points. Only by making additional requirements on the
search direction pk – by introducing negative curvature information
from the Hessian (∇2f )(xk), for example – can we strengthen these
results to include convergence to a local minimum.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Consider now the Newton-like method xk+1 = xk ´ αkB´1

k ∇fk and
assume that the matrices Bk are positive definite with a uniformly
bounded condition number; that is, there is a constant M such that

}Bk}}B´1
k } ď M @ k P N .

It is easy to show from the definition of θk that cos θk ě 1/M; thus
we find that lim

kÑ8
}∇fk} = 0. Therefore, we have shown that Newton

and quasi-Newton methods are globally convergent if the matrices
Bk have a bounded condition number and are positive definite (which
is needed to ensure that pk is a descent direction), and if the step
lengths satisfy the Wolfe conditions.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
For some algorithms, such as conjugate gradient methods, we will
be able to prove only the weaker result

lim inf
kÑ8

}∇fk} = 0 ; (11)

that is, only a subsequence of the gradient norms }∇fkj} converges
to zero. This result usually can be proved by contradiction using
Zoutendijk’s condition

8
ř

k=0

cos2θk}∇fk}2 ă 8. Suppose that (11)

does not hold. Then there exists γ ą 0 such that
}∇fk} ě γ @ k " 1 .

This shows that lim
kÑ8

cos θk = 0. To establish (11), it is then enough
to show that a subsequence tcos θkju

8
k=1 is bounded away from zero.

We will use this strategy in Chapter 5 to study the convergence of
nonlinear conjugate gradient methods.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
By applying this proof technique, we can prove global convergence
in the sense of

lim
kÑ8

}∇fk} = 0 (10)
or

lim inf
kÑ8

}∇fk} = 0 (11)

for a general class of algorithms. Consider any algorithm for which
1 every iteration produces a decrease in the objective function;
2 every m-th iteration is a steepest descent step, with step length

chosen to satisfy the Wolfe or Goldstein conditions.
Then, since cos θk = 1 for the steepest descent steps, the result
(11) holds. Of course, we would design the algorithm so that it
does something “better” than steepest descent at the other m ´ 1

iterates. The occasional steepest descent steps may not make much
progress, but they at least guarantee overall global convergence.
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Chapter 3. Line Search Methods

§3.2 Convergence of Line Search Methods
Note that throughout this section we have used only the fact that
Zoutendijk’s condition

8
ÿ

k=0

cos2θk}∇fk}2 ă 8 (9)

implies the limit
lim

kÑ8
cos2θk}∇fk}2 = 0 .

In later chapters we will make use of the bounded sum condition
(9), which forces the sequence

␣

cos2θk}∇fk}2
(8

k=1
to converge to

zero at a sufficiently rapid rate.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
It would seem that designing optimization algorithms with good
convergence properties is easy, since all we need to ensure is that
the search direction pk does not tend to become orthogonal to the
gradient ∇fk, or that steepest descent steps are taken regularly. We
could simply compute cos θk at every iteration and turn pk toward the
steepest descent direction if cos θk is smaller than some preselected
constant δ ą 0. Angle tests of this type ensure global convergence,
but they are undesirable for two reasons. First, they may impede a
fast rate of convergence, because for problems with an ill-conditioned
Hessian, it may be necessary to produce search directions that are
almost orthogonal to the gradient, and an inappropriate choice of
the parameter δ may cause such steps to be rejected. Second, angle
tests destroy the invariance properties of quasi-Newton methods.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Algorithmic strategies that achieve rapid convergence can sometimes
conflict with the requirements of global convergence, and vice versa.
For example, the steepest descent method is the quintessential glob-
ally convergent algorithm, but it is quite slow in practice, as we shall
see below. On the other hand, the pure Newton iteration converges
rapidly when started close enough to a solution, but its steps may
not even be descent directions away from the solution. The chal-
lenge is to design algorithms that incorporate both properties: good
global convergence guarantees and a rapid rate of convergence.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Definition
Let txku8

k=1 be a sequence in Rn and x˚ be the limit of the sequence.
1 txku8

k=1 is said to converge to x˚ superlinearly if

lim
kÑ8

}xk+1 ´ x˚}

}xk ´ x˚}
= 0 .

2 txku8
k=1 is said to converge to x˚ quadratically if there exists

a constant M ą 0 such that
}xk+1 ´ x˚}

}xk ´ x˚}2
ď M @ k " 1 .

Example
1 The sequence xk = 1 + k´k converges superlinearly to 1.
2 The sequence xk = 1 + k´2k converges quadratically to 1.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
‚ Convergence Rate of Steepest Descent:
We begin our study of convergence rates of line search methods by
considering the most basic approach of all: the steepest descent
method.

We can learn much about the steepest descent method by consider-
ing the ideal case, in which the objective function is quadratic and
the line searches are exact. Let us suppose that

f (x) = 1

2
xTQx ´ bTx ,

where Q is symmetric and positive definite. The gradient is given
by (∇f )(x) = Qx ´ b and the minimizer x˚ is the unique solution
of the linear system Qx = b.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
It is easy to compute the step length αk that minimizes f (xk´α∇fk).
By differentiating the function

f (xk ´ α∇fk) =
1

2
(xk ´ α∇fk)TQ(xk ´ α∇fk) ´ bT(xk ´ α∇fk)

with respect to α, and setting the derivative to zero, we obtain that

αk =
∇f T

k ∇fk
∇f T

k Q∇fk
.

If we use this exact minimizer αk , the steepest descent iteration for
f given above is given by

xk+1 = xk ´

( ∇f T
k ∇fk

∇f T
k Q∇fk

)
∇fk . (12)

Since ∇fk = Qxk ´ b, this equation yields a closed-form expression
for xk+1 in terms of xk.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
In Figure 6 we plot a typical sequence of iterates generated by the
steepest descent method on a two-dimensional quadratic objective
function. The contours of f are ellipsoids whose axes lie along the
orthogonal eigenvectors of Q. Note that the iterates zigzag toward
the solution.

Figure 6: Steepest descent steps
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
To quantify the rate of convergence we introduce the weighted norm
}x}2Q ” xTQx. Using the relation Qx˚ = b,

1

2
}x ´ x˚}2Q =

1

2
(x ´ x˚)

TQ(x ´ x˚)

=
1

2
xTQx ´

1

2
xT

˚Qx ´
1

2
xTQx˚ +

1

2
xT

˚Qx˚

=
1

2
xTQx ´

1

2
bTx ´

1

2
xTb ´

(
1

2
xT

˚Qx˚ ´ xT
˚Qx˚

)
= f (x) ´ f (x˚)

so this norm measures the difference between the current objective
value and the optimal value. Using the iteration scheme (12) and
noting that ∇fk = Q(xk ´ x˚), we now derive the equality

}xk+1 ´ x˚}2Q =
[
1 ´

(∇f T
k ∇fk)2

(∇f T
k Q∇fk)(∇f T

k Q´1∇fk)

]
}xk ´ x˚}2Q .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.3 Rate of Convergence
To quantify the rate of convergence we introduce the weighted norm
}x}2Q ” xTQx. Using the relation Qx˚ = b,

1

2
}x ´ x˚}2Q =

1

2
(x ´ x˚)

TQ(x ´ x˚)

=
1

2
xTQx ´

1

2
xT

˚Qx ´
1

2
xTQx˚ +

1

2
xT

˚Qx˚

=
1

2
xTQx ´

1

2
bTx ´

1

2
xTb ´

(
1

2
xT

˚Qx˚ ´ xT
˚Qx˚

)
= f (x) ´ f (x˚)

so this norm measures the difference between the current objective
value and the optimal value. Using the iteration scheme (12) and
noting that ∇fk = Q(xk ´ x˚), we now derive the equality

}xk+1 ´ x˚}2Q =
[
1 ´

(∇f T
k ∇fk)2

(∇f T
k Q∇fk)(∇f T

k Q´1∇fk)

]
}xk ´ x˚}2Q .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.3 Rate of Convergence
By the substitution of variable y = x ´ Q´1b, we find that

f (x) = 1

2
xTQx ´ bTx =

1

2
(x ´ Q´1b)TQ(x ´ Q´1b) ´

1

2
bTQ´1b

=
1

2
yTQy ´

1

2
bTQ´1b ” g(y) .

Setting yk = xk ´ Q´1b for all k P N and ∇gk = (∇g)(yk). Since

(∇f )(x) = Qx ´ b = Q(x ´ Q´1b) = Qy = (∇g)(y) ,

we have pk = ´∇gk and the step length αk for the steepest descent
method satisfies

αk =
∇f T

k ∇fk
∇f T

k Q∇fk
=

∇gT
k ∇gk

∇gT
k Q∇gk

.

Therefore, xk+1 = xk ´ αk∇fk if and only if yk+1 = yk ´ αk∇gk

which shows that the steepest descent method with the exact line
search for both f and g are identical.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Since x˚ = Q´1b, y = x ´ x˚. Moreover, since pk = ´Qyk, we also
have

pT
kQyk =´pT

k pk =´αkpT
kQpk and pT

kQ´1pk = yT
kQyk = }yk}2Q .

Therefore,
}xk+1 ´ x˚}2Q = yT

k+1Qyk+1 = (yk + αkpk)TQ(yk + αkpk)

= yT
kQyk + 2αkpT

kQyk + α2
k pT

kQpk

= }yk}2Q + αkpT
kQyk

= }yk}2Q + αk
pT

kQyk
pT

kQ´1pk
}yk}2Q

=
[
1 + αk

pT
kQyk

pT
kQ´1pk

]
}yk}2Q

=
[
1 ´

(pT
k pk)2

(pT
kQpk)(pT

kQ´1pk)

]
}xk ´ x˚}2Q .
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§3.3 Rate of Convergence
The expression

}xk+1 ´ x˚}2Q =
[
1 ´

(∇f T
k ∇fk)2

(∇f T
k Q∇fk)(∇f T

k Q´1∇fk)

]
}xk ´ x˚}2Q .

describes the exact decrease in f at each iteration, but since the
term inside the brackets is difficult to interpret, it is more useful to
bound it in terms of the condition number of the problem.
Theorem
When the steepest descent method with exact line searches is applied
to the strongly convex quadratic function f (x) = 1

2
xTQx ´ bTx, the

error norm }xk ´ x˚}2Q satisfies

}xk+1 ´ x˚}2Q ď

(
λn ´ λ1
λn + λ1

)2
}xk ´ x˚}2Q @ k P N , (13)

where 0 ă λ1 ď λ2 ď ¨ ¨ ¨ ď λn are the eigenvalues of Q.
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§3.3 Rate of Convergence
Sketch of the proof.
Since Q is symmetric, Q = PΛPT for some diagonal matrix Λ =

diag(λ1, ¨ ¨ ¨ , λn) and orthogonal matrix P. Let uk = PT∇fk. Write
uk = (z1, z2, ¨ ¨ ¨ , zn). By the fact that uT

k uk = ∇f T
k ∇fk,

(∇f T
k ∇fk)2

(∇f T
k Q∇fk)(∇f T

k Q´1∇fk)
=

(
řn

j=1 z 2
j )

2

(uT
k Λuk)(uT

k Λ
´1uk)

=
(
řn

j=1 z 2
j )

2

(
řn

j=1 λjz 2
j )(

řn
j=1 λ

´1
j z 2

j )
=

1/
řn

j=1 λj ξj
řn

j=1 λ
´1
j ξj

”
ϕ(ξ)

ψ(ξ)
,

where ξj = z 2
j /

řn
j=1 z 2

j (satisfies
řn

j=1 ξj = 1 and ξj ě 0 for all j).

A lower bound for the ratio is 4λ1λn
(λ1 + λn)2

(see Figure 7 on the next
page). ˝
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§3.3 Rate of Convergence

Figure 7: Kantorovich inequality: The dashed curve represents the function
1/λ, and the value of ϕ(ξ) is a point on this curve. On the other hand,
the value of ψ(ξ) is a convex combination of points on the curve and its
value corresponds to a point in the shaded region. For the same vector
ξ both functions are represented by points on the same vertical line. The
minimum value of this ratio is achieved for some λ = ξ1λ1 + ξnλn with
ξ1 + ξn = 1.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
The inequalities

}xk+1 ´ x˚}2Q ď

(
λn ´ λ1

λn + λ1

)2
}xk ´ x˚}2Q @ k P N (13)

and
1

2
}x ´ x˚}2Q = f (x) ´ f (x˚)

show that the function values fk converge to the minimum f˚ at a
linear rate. As a special case of this result, we see that convergence
is achieved in one iteration if all the eigenvalues are equal. In this
case, the contours in Figure 6 are circles and the steepest descent
direction always points at the solution. In general, as the condi-
tion number κ(Q) = λn/λ1 increases, the contours of the quadratic
become more elongated, the zigzagging in Figure 6 becomes more
pronounced, and (13) implies that the convergence degrades. Even
though (13) is a worst-case bound, it gives an accurate indication
of the behavior of the algorithm when n ą 2.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
The rate-of-convergence behavior of the steepest descent method
is essentially the same on general nonlinear objective functions. In
the following result we assume that the step length is the global
minimizer along the search direction.
Theorem
Suppose that f : Rn Ñ R is twice continuously differentiable, and
that the iterates generated by the steepest-descent method with
exact line searches converge to a point x˚ at which the Hessian
matrix (∇2f )(x˚) is positive definite. Let r be any scalar satisfying

r P

(
λn ´ λ1
λn + λ1

, 1
)

where λ1 ď λ2 ď ¨ ¨ ¨ ď λn are the eigenvalues of (∇2f )(x˚). Then

f (xk+1) ´ f (x˚) ď r 2
[
f (xk) ´ f (x˚)

]
@ k " 1 .
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
In general, we cannot expect the rate of convergence to improve
if an inexact line search is used. Therefore, the theorem in the
previous page shows that the steepest descent method can have an
unacceptably slow rate of convergence, even when the Hessian is
reasonably well conditioned. For example, if κ(Q) = 800, f (x1) = 1,
and f (x˚) = 0, the theorem in the previous page suggests that the
function value will still be about 0.08 after one thousand (?500?)
iterations of the steepest descent method with exact line search.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
‚ Convergence Rate of Newton’s Method:
We now consider Newton’s method, for which the search is given by

pN
k = ´(∇2fk)´1∇fk .

Since the Hessian matrix ∇2fk may not always be positive definite,
pN

k may not always be a descent direction, and many of the ideas
discussed so far in this chapter no longer apply. In Section 3.4 and
Chapter 4 we will describe two approaches for obtaining a glob-
ally convergent iteration based on the Newton step: a line search
approach, in which the Hessian ∇2fk is modified, if necessary, to
make it positive definite and thereby yield descent, and a trust re-
gion approach, in which ∇2fk is used to form a quadratic model
that is minimized in a ball around the current iterate xk.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
In the following we discuss just the local rate-of-convergence prop-
erties of Newton’s method.
Theorem
Suppose that f is twice differentiable and that the Hessian ∇2f is
Lipschitz continuous in a neighborhood of a solution x˚ at which
(∇f )(x˚) = 0 and (∇2f )(x˚) is positive definitive. Consider the
iteration xk+1 = xk + pN

k = xk ´ (∇2fk)´1∇fk. Then
1 if the starting point x0 is sufficiently close to x˚, the sequence

of iterates converges to x˚;
2 the rate of convergence of txku8

k=1 is quadratic; and
3 the sequence of gradient norms t}∇fk}u8

k=1 converges quadrat-
ically to zero.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Proof.
First, since (∇2f )(x˚) is non-singular and ∇2f is Lipschitz in a neigh-
borhood of x˚, there exist L, δ ą 0 such that

›

›(∇2f )´1(x)
›

› ď 2
›

›(∇2f )´1(x˚)
›

› @ x P B(x˚, δ)

and
›

›(∇2f )(x) ´ (∇2f )(y)
›

› ď L}x ´ y} @ x, y P B(x˚, δ) .

From the definition of the Newton step and the condition ∇f˚ = 0,
xk+1 ´ x˚ = xk + pN

k ´ x˚ = xk ´ x˚ ´ (∇2fk)´1∇fk
= (∇2fk)´1

[
(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)

]
,

(14)

where, by the chain rule, the last term can be written as

∇fk ´ ∇f˚ =
ż 1

0

d
dt(∇f )((1 ´ t)x˚ + txk) dt ˝

xk+1 ´ x˚ = xk + pN
k ´ x˚ = xk ´ x˚ ´ (∇2fk)´1∇fk

= (∇2fk)´1
[
(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)

]
,

(14)
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From the definition of the Newton step and the condition ∇f˚ = 0,
xk+1 ´ x˚ = xk + pN

k ´ x˚ = xk ´ x˚ ´ (∇2fk)´1∇fk
= (∇2fk)´1

[
(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)

]
,

(14)

where, by the chain rule, the last term can be written as

∇fk ´ ∇f˚ =
ż 1

0

d
dt(∇f )(x˚ + t(xk ´ x˚)) dt ˝
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§3.3 Rate of Convergence
Proof (cont’d).
Therefore, if xk P B(x˚, δ),

›

›(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)
›

›

=
›

›

›

ż 1

0

[
(∇2f )(xk) ´ (∇2f )(x˚ + t(xk ´ x˚))

]
(xk ´ x˚)dt

›

›

›

ď

ż 1

0

›

›

[
(∇2f )(xk) ´ (∇2f )(x˚ + t(xk ´ x˚))

]
(xk ´ x˚)

›

› dt

ď

ż 1

0

L
›

›xk ´ [x˚ + t(xk ´ x˚)]
›

›}xk ´ x˚} dt

ď

ż 1

0

L(1 ´ t)}xk ´ x˚}2 dt = L
2

}xk ´ x˚}2

and the identity (14) shows that

}xk+1 ´ x˚} ď
L
2

›

›(∇2f )´1(xk)
›

›}xk ´ x˚}2 ˝
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§3.3 Rate of Convergence
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Proof (cont’d).

Let rL = L
›

›(∇2f )´1(x˚)
›

›. Then

}xk+1 ´ x˚} ď rL}xk ´ x˚}2 if xk P B(x˚, δ).

Choose x0 satisfying }x0 ´ x˚} ă r ” min
!

δ,
1

2rL

)

. Then

xk P B(x˚, r) Ď B(x˚, δ) @ k P N ;

thus the sequence txku8
k=1 converges to x˚, and the rate of conver-

gence is quadratic.

To see that the sequence t}∇fk}u8
k=1 converges to 0 quadratically,

we note that
∇fk +∇2fk pN

k = 0 ;

thus by the chain rule again, ˝
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§3.3 Rate of Convergence
Proof (cont’d).
thus by the chain rule again,
›

›∇fk+1

›

› =
›

›(∇f )(xk+1) ´ (∇f )(xk) ´ (∇2f )(xk)pN
k
›

›

=
›

›

›

ż 1

0

d
dt(∇f )((1 ´ t)xk + txk+1) dt ´ (∇2f )(xk)pN

k

›

›

›

=
›

›

›

ż 1

0

(∇2f )(xk + tpN
k )pN

k dt ´

ż 1

0

(∇2f )(xk)pN
k dt

›

›

›

=
›

›

›

ż 1

0

[
(∇2f )(xk + tpN

k ) ´ (∇2f )(xk)
]
pN

k dt
›

›

›

ď

ż 1

0

Lt
›

›pN
k
›

›

2 dt = L
2

›

›pN
k
›

›

2
ď

L
2

›

›(∇2f )(xk)
´1
›

›

2
}∇fk}2

ď 2L
›

›(∇2f )(x˚)
´1
›

›

2
}∇fk}2 .

Therefore, t}∇fk}u8
k=1 converges quadratically to zero. ˝
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Remark: If f is assumed to be twice continuously differentiable only
but not necessarily Lipschitz in a neighborhood of x˚, the sequence
of iterates generated by Newton’s method may not achieve quadratic
convergence. Nevertheless, the convergence is still superlinear since
for xk P B(x˚, δ) in the proof,
›

›(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)
›

›

=
›

›

›

ż 1

0

[
(∇2f )(xk) ´ (∇2f )(x˚ + t(xk ´ x˚))

]
(xk ´ x˚)dt

›

›

›

ď

ż 1

0

›

›

[
(∇2f )(xk) ´ (∇2f )(x˚ + t(xk ´ x˚))

]
(xk ´ x˚)

›

› dt

ď

ż 1

0

›

›(∇2f )(xk) ´ (∇2f )(x˚ + t(xk ´ x˚))
›

›}xk ´ x˚} dt

= o(}xk ´ x˚}) ,

where the last equality follows from the continuity of ∇2f.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Therefore, using

xk+1 ´ x˚ = xk + pN
k ´ x˚ = xk ´ x˚ ´ (∇2fk)´1∇fk

= (∇2fk)´1
[
(∇2fk)(xk ´ x˚) ´ (∇fk ´ ∇f˚)

]
,

(14)

and
›

›(∇2f )´1(x)
›

› ď 2
›

›(∇2f )´1(x˚)
›

› @ x P B(x˚, δ)

we obtain
}xk+1 ´ x˚} = o(}xk ´ x˚}) .

Even though we always “assume” that the sequence of iterates gen-
erated by Newton’s method converges quadratically, in most of the
situations (when we only assume the continuity of ∇2f ) superlinear
convergence is the best rate of convergence result we can have.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
‚ Convergence Rate of Quasi-Newton Method:
Suppose now that the search direction has the form pk = ´B´1

k ∇fk,
where the symmetric and positive definite matrix Bk is updated at
every iteration by a quasi-Newton updating formula. In this part
of the section we aim for showing the superlinear convergence of
quasi-Newton method under the assumption that Bk satisfies

lim
kÑ8

}(Bk ´ ∇2f (x˚))pk}

}pk}
= 0 . (15)

We note that in the case of Newton’s method, Bk = (∇2f )(xk) so
(15) holds if f is twice continuously differentiable:

lim
kÑ8

›

›

(
(∇2f )(xk) ´ (∇2f )(x˚)

)
pk
›

›

}pk}
= 0 .
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
An amazing consequence of this result is that a superlinear conver-
gence rate can be attained even if the sequence of quasi-Newton
matrices Bk does not converge to ∇2f (x˚); it suffices that the Bk

become increasingly accurate approximations to ∇2f (x˚) along the
search directions pk.

In fact, under the assumption that f is twice continuously differ-
entiable, we can show that a quasi-Newton method has superlinear
convergence if and only if the quasi-Newton matrices Bk satisfies

lim
kÑ8

}(Bk ´ ∇2f (x˚))pk}

}pk}
= 0 . (15)

(15) is called the Dennis-Moré characterization of superlinear
convergence. We start with an equivalent condition of superlinear
minimization algorithm.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Lemma
Let f : Rn Ñ R be twice continuously differentiable, and txku be a
sequence of iterates generated by some minimization algorithm. As-
sume that txku8

k=1 converges to a point x˚ such that (∇f )(x˚) = 0

and (∇2f )(x˚) is positive definite. Then txku8
k=1 converges super-

linearly if and only if
}xk+1 ´ xk ´ pN

k } = o(}xk+1 ´ xk}) , (16)

where pN
k = ´(∇2fk)´1∇fk is the Newton direction.

Proof.
First we note that the remark after the quadratic converngence of
Newton’s method shows that under the current setting we have

}xk + pN
k ´ x˚} = o(}xk ´ x˚}) . (17)̋

}xk + pN
k ´ x˚} = o(}xk ´ x˚}) . (17)
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Proof (cont’d).
Assume that

}xk+1 ´ xk ´ pN
k } = o(}xk+1 ´ xk}) (16)

holds. By the superlinear convergence of Newton’s iterates (17),
}xk+1 ´ x˚} ď }xk+1 ´ xk ´ pN

k } + }xk + pN
k ´ x˚}

= o(}xk+1 ´ xk}) + o(}xk ´ x˚}) (18)

Moreover, using the inequality above,
}xk+1 ´ xk} ď }xk+1 ´ x˚} + }xk ´ x˚}

ď o(}xk+1 ´ xk}) +O(}xk ´ x˚}) ;

thus }xk+1 ´ xk} = O(}xk ´ x˚}). Using this result back in (18), we
conclude that

}xk+1 ´ x˚} = o(}xk ´ x˚}) ,

giving the superlinear convergence result. ˝
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§3.3 Rate of Convergence
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§3.3 Rate of Convergence
Proof (cont’d).
On the other hand, suppose that txku converges superlinearly to x˚.
Then the fact that

}xk ´ x˚} ď }xk+1 ´ xk} + }xk+1 ´ x˚}

= }xk+1 ´ xk} + o(}xk ´ x˚})

shows that
}xk ´ x˚} = O(}xk+1 ´ xk}) .

Therefore, using the superlinear convergence of Newton’s iterates
(17), we conclude that

}xk+1 ´ xk ´ pN
k } ď }xk+1 ´ x˚} + }xk + pN

k ´ x˚}

ď }xk+1 ´ x˚} + o(}xk ´ x˚})

= o(}xk ´ x˚}) = o(}xk+1 ´ xk}) ;

thus condition (16) holds. ˝
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
If, as in Newton’s method, the unit step length is taken in an algo-
rithm, then xk+1 = xk + pk and the equivalence of the superlinear
convergence (18) can be rewritten as

}pk ´ pN
k } = o(}pk}) . (19)

In other words, for an algorithm that eventually adopts unit step
length, that the search direction approximates the Newton direction
well enough is crucial for the superlinear convergence.
The result on the next page provides a sufficient condition for the
admissibility of unite step length: if the search direction approxi-
mates the Newton direction in the sense

lim
kÑ8

}∇fk +∇2fk pk}

}pk}
= 0 , (20)

then the unit step length will satisfy the Wolfe conditions as the
iterates converge to the solution.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Lemma
Suppose that f : Rn Ñ R is twice continuously differentiable. Con-
sider the iteration xk+1 = xk +αkpk, where pk is a descent direction
and αk satisfies the Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (5a)

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk , (5b)

with c1 ă 1/2. If the sequence txku8
k=1 converges to a point x˚ such

that ∇f (x˚) = 0 and ∇2f (x˚) is positive definite, and if the search
direction pk satisfies

lim
kÑ8

}∇fk +∇2fk pk}

}pk}
= 0 , (20)

then the step length αk = 1 is admissible for all k " 1.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
Proof.
Note that the positive definiteness of ∇2f˚ shows that

pT
k ∇2f˚pk ě λmin(∇2f˚)}pk}2 ě o(}pk}2) @ k " 1 ,

where λmin(∇2f˚) denotes the smallest eigenvalue of ∇2f˚. Under
the assumption (20), Taylor’s Theorem shows that

(∇f )(xk + pk)Tpk ě c2∇f T
k pk

ô
[
∇fk +∇2fk pk

]Tpk + o(}pk}2)

ě c2
[
∇fk +∇2fkpk

]Tpk ´ c2pT
k ∇2fk pk

ô o(}pk}2) ď c2pT
k ∇2f˚ pk

so the curvature condition (5b) holds for the unit step length for
k " 1. ˝
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§3.3 Rate of Convergence
Proof (cont’d).
Moreover, by the assumption (20) and Taylor’s Theorem again we
find that

f (xk + pk) ď f (xk) + c1∇f T
k pk

ô ∇f T
k pk +

1

2
pT

k ∇2fk pk + o(}pk}2) ď c1∇f T
k pk

ô
[
∇fk +∇2fk pk

]Tpk ´
1

2
pT

k ∇2fk pk + o(}pk}2)

ď c1
[
∇fk +∇2fk pk

]Tpk ´ c1pT
k ∇2fk pk

ô o(}pk}2) ď

(
1

2
´ c1

)
pT

k ∇2f˚pk ,

so if c1 ă
1

2
the Armijo condition (5a) holds for the unit step length

for k " 1. ˝
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§3.3 Rate of Convergence
Note that under the assumptions of previous two lemmas; that is, f
is twice continuously differentiable and the sequence of iterates txku

converges to x˚ at which ∇f˚ = 0 and ∇2f˚ is positive definite, the
necessary condition for the admissibility of unit step length in the
Wolfe conditions

lim
kÑ8

}∇fk +∇2fk pk}

}pk}
= 0 (20)

is equivalent to the condition for superlinear convergence

}pk ´ pN
k } = o(}pk}) ô lim

kÑ8

}pk ´ pN
k }

}pk}
= 0 (19)

since
∇fk +∇2fk pk = (∇2fk)(pk ´ pN

k )

ô pk ´ pN
k = (∇2fk)´1(∇fk +∇2fk pk)

and }∇2fk} « }∇2f˚} and
›

›(∇2fk)´1
›

› «
›

›(∇2f˚)
´1
›

› for k " 1.
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Chapter 3. Line Search Methods

§3.3 Rate of Convergence
The observation from the previous page together with the previous
two lemmas motivate the following
Theorem
Suppose that f : Rn Ñ R is twice continuously differentiable. Con-
sider the iteration xk+1 = xk + pk (that is, the step length αk is
uniformly 1) and that pk is given by pk = ´B´1

k ∇fk. Assume
that txku8

k=1 converges to a point x˚ such that (∇f )(x˚) = 0 and
(∇2f )(x˚) is positive definite. Then txku8

k=1 converges superlinearly
if and only if

lim
kÑ8

}(Bk ´ ∇2f (x˚))pk}

}pk}
= 0 . (15)

Proof.
It suffices to show that (15) is equivalent to (20). ˝
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§3.3 Rate of Convergence
Proof (cont’d).
Let ∇2f˚ = (∇2f )(x˚). Note that for pk = ´B´1

k ∇fk,

(Bk ´ ∇2f˚)pk = ´(∇fk +∇2fk pk) + (∇2fk ´ ∇2f˚)pk ,

and the continuity of ∇2f implies that

lim
kÑ8

}(∇2fk ´ ∇2f˚)pk}

}pk}
= 0 .

Therefore,
lim

kÑ8

}(Bk ´ ∇2f˚)pk}

}pk}
= 0 (15)

if and only if
lim

kÑ8

}∇fk +∇2fk pk}

}pk}
= 0 , (20)

giving the result. ˝
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§3.3 Rate of Convergence
Proof (cont’d).
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Away from the solution, the Hessian matrix (∇2f )(x) may not be
positive definite, so the Newton direction pN

k defined by

(∇2f )(xk)pN
k = ´(∇f )(xk) (21)

may not be a descent direction. We now describe an approach to
overcome this difficulty when a direct linear algebra technique, such
as Gaussian elimination, is used to solve the Newton equations (21).
This approach obtains the step pk from a linear system identical to
(21), except that the coefficient matrix is replaced with a positive
definite approximation, formed before or during the solution process.
The modified Hessian is obtained by adding either a positive diagonal
matrix or a full matrix to the true Hessian (∇2f )(xk). A general
description of this method follows.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Algorithm 3.2 (Line Search Newton with Modification):
Given initial point x0;
for k = 0, 1, 2, ¨ ¨ ¨

Factorize the matrix Bk = (∇2f )(xk) + Ek, where Ek = 0 if
(∇2f )(xk) is sufficiently positive definite; otherwise, Ek is
chosen to ensure that Bk is sufficiently positive definite;

Solve Bkpk = ´(∇f )(xk);
Set xk+1 Ð xk +αkpk, where αk satisfies the Wolfe, Goldstein,

or Armijo backtracking conditions;
end
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Algorithm 3.2 is a practical Newton method that can be applied
from any starting point. We can establish fairly satisfactory global
convergence results for it, provided that the strategy for choosing
Ek (and hence Bk) satisfies the bounded modified factorization
property. This property is that the matrices in the sequence tBku8

k=1

have bounded condition number whenever the sequence of Hessians
t(∇2f )(xk)u8

k=1 is bounded; that is, there exists C ą 0 such that

κ(Bk) ” }Bk}}B´1
k } ď C @ k P N . (22)

If this property holds, global convergence of the modified line search
Newton method follows from the results of Section 3.2 (page 73 of
this slide).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Theorem
Let f be twice continuously differentiable on an open set D, and
assume that the starting point x0 of Algorithm 3.2 is such that the
level set

␣

x P D
ˇ

ˇ f (x) ď f (x0))
(

is compact. Then if the bounded
modified factorization property holds, we have that

lim
kÑ8

(∇f )(xk) = 0 .

Note that since the level set
␣

x P D
ˇ

ˇ f (x) ď f (x0))
(

is indeed
f ´1

(
(´8, f (x0))]

)
which is closed by the continuity of f , by the

Heine-Borel Theorem this level set is compact if and only if it is
bounded.
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§3.4 Newton’s Method with Hessian Modification
We now consider the convergence rate of Algorithm 3.2. Suppose
that the sequence of iterates xk converges to a point x˚ where
(∇2f )(x˚) is sufficiently positive definite in the sense that the mod-
ification strategies described in the next section return the modifi-
cation Ek = 0 for all sufficiently large k. By one of the previous
theorem, we have that αk = 1 for all sufficiently large k, so that
Algorithm 3.2 reduces to a pure Newton method, and the rate of
convergence is quadratic.
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§3.4 Newton’s Method with Hessian Modification
For problems in which ∇2f˚ is close to singular, there is no guarantee
that the modification Ek will eventually vanish, and the convergence
rate may be only linear. Besides requiring the modified matrix Bk

to be well conditioned (so that the previous theorem holds), we
would like the modification to be as small as possible, so that the
second-order information in the Hessian is preserved as far as pos-
sible. Naturally, we would also like the modified factorization to be
computable at moderate cost.
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§3.4 Newton’s Method with Hessian Modification
To set the stage for the matrix factorization techniques that will be
used in Algorithm 3.2, we will begin by assuming that the eigen-
value decomposition of (∇2f )(xk) is available. This is not realistic
for large-scale problems because this decomposition is generally too
expensive to compute, but it will motivate several practical modifi-
cation strategies.

‚ Eigenvalue modification
Consider a problem in which, at the current iterate xk, (∇f )(xk) =

(1,´3, 2)T and (∇2f )(xk) = diag(10, 3,´1), which is clearly indef-
inite. By the spectral decomposition theorem we can define Q = I
and Λ = diag(λ1, λ2, λ3), and write

(∇2f )(xk) = QΛQT =
3
ÿ

i=1

λiqiqT
i . (23)
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§3.4 Newton’s Method with Hessian Modification
The pure Newton step – the solution of (21) – is pN

k = (´0.1, 1, 2)T,
which is not a descent direction, since ∇f (xk)

TpN
k ą 0. One might

suggest a modified strategy in which we replace (∇2f )(xk) by a pos-
itive definite approximation Bk, in which all negative eigenvalues in
(∇2f )(xk) are replaced by a small positive number δ that is some-
what larger than machine precision u ; say δ =

?
u. For a machine

precision of 10´16, the resulting matrix in our example is

Bk =
2
ÿ

i=1

λiqiqT
i + δq3qT

3 = diag(10, 3, 10´8) , (24)

which is numerically positive definite and whose curvature along the
eigenvectors q1 and q2 has been preserved. Note, however, that the
search direction based on this modified Hessian is

pk = ´B´1
k ∇fk = ´

2
ÿ

i=1

1

λi
qi(qT

i ∇fk) ´
1

δ
q3(qT

3 ∇fk) . (25)
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§3.4 Newton’s Method with Hessian Modification
For small δ, this step is nearly parallel to q3 and quite long. Although
f decreases along the direction pk, its extreme length violates the
spirit of Newton’s method, which relies on a quadratic approximation
of the objective function in a neighborhood of the current iterate xk.
It is therefore not clear that this search direction is effective.
Various other modification strategies are possible. We could

1 flip the signs of the negative eigenvalues in (23), which amounts
to setting δ = 1 in our example, or

2 set the last term in (25) to zero, so that the search direction
has no components along the negative curvature directions, or

3 adapt the choice of δ to ensure that the length of the step is not
excessive, a strategy with the flavor of trust-region methods.

There is a great deal of freedom in devising modification strategies,
and there is currently no agreement on which strategy is best.
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§3.4 Newton’s Method with Hessian Modification
Setting the issue of the choice of δ aside for the moment, let us
look more closely at the process of modifying a matrix so that it
becomes positive definite. The modification (24) to the example
matrix (23) can be shown to be optimal in the following sense: if
A is a symmetric matrix with spectral decomposition A = QΛQT,
then the correction matrix ∆A of minimum Frobenius norm that
ensures that λmin(A +∆A) ě δ is given by

∆A = Qdiag(τ1, ¨ ¨ ¨ , τn)QT , τi =

"

0 if λi ě δ ,

δ ´ λi if λi ă δ .
(26)

Here, λmin(A) denotes the smallest eigenvalue of A, and the Frobe-
nius norm of a matrix A is defined as }A}2F = tr(AAT). Note that
∆A is not diagonal in general, and that the modified matrix is

A +∆A = Q(Λ + diag(τ ))QT .
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§3.4 Newton’s Method with Hessian Modification
By using a different norm we can obtain a diagonal modification.
Suppose again that A is a symmetric matrix with spectral decom-
position A = QΛQT. A correction matrix ∆A with minimum Eu-
clidean norm that satisfies λmin(A +∆A) ě δ is given by

∆A = τ I with τ = max
␣

0, δ ´ λmin(A)
(

. (27)

All the eigenvalues of A + ∆A have thus been shifted, and all are
greater than δ. The modified matrix now has the form A+ τ I which
happens to have the same form as the matrix occurring in (unscaled)
trust–region methods (see Chapter 4).
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§3.4 Newton’s Method with Hessian Modification
These results suggest that both diagonal and non-diagonal modifi-
cations can be considered. Even though we have not answered the
question of what constitutes a good modification, various practical
diagonal and non-diagonal modifications have been proposed and
implemented in software. They do not make use of the spectral
decomposition of the Hessian, since it is generally too expensive
to compute. Instead, they use Gaussian elimination, choosing the
modifications indirectly and hoping that somehow they will produce
good steps. Numerical experience indicates that the strategies de-
scribed next often (but not always) produce good search directions.
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§3.4 Newton’s Method with Hessian Modification
‚ Adding a multiple of the identity
Perhaps the simplest idea is to find a scalar τ ą 0 such that
∇2f (xk) + τ I is sufficiently positive definite. From the previous
discussion we know that τ must satisfy (27), but a good estimate
of the smallest eigenvalue of the Hessian is normally not available.
The following algorithm describes a method that tries successively
larger values of τ .
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§3.4 Newton’s Method with Hessian Modification
Algorithm 3.3 (Cholesky with Added Multiple of the Identity):
Choose β ą 0;
if minj ajj ą 0

set τ0 Ð 0;
else

τ0 = ´ minj ajj + β;
end (if)
for k = 0, 1, 2, ¨ ¨ ¨

Try to apply the Cholesky algorithm to obtain LLT = A+ τkI;
if the factorization is completed successfully

stop and return L;
else

τk+1 = maxt2τk, βu;
end (if)

end (for)
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§3.4 Newton’s Method with Hessian Modification
The choice of β is heuristic; a typical value is β = 10´3. We
could choose the first nonzero shift τ0 to be proportional to be
the final value of τ used in the latest Hessian modification; see
also Algorithm B.1. The strategy implemented in Algorithm 3.3 is
quite simple and may be preferable to the modified factorization
techniques described next, but it suffers from one drawback: every
value of τk requires a new factorization of A+τkI, and the algorithm
can be quite expensive if several trial values are generated. Therefore
it may be advantageous to increase τ more rapidly, say by a factor
of 10 instead of 2 in the last else clause.
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§3.4 Newton’s Method with Hessian Modification
‚ Modified Cholesky factorization
Another approach for modifying a Hessian matrix that is not positive
definite is to perform a Cholesky factorization of (∇2f )(xk), but to
increase the diagonal elements encountered during the factorization
(where necessary) to ensure that they are sufficiently positive. This
modified Cholesky approach is designed to accomplish two goals: It
guarantees that the modified Cholesky factors exist and are bounded
relative to the norm of the actual Hessian, and it does not modify
the Hessian if it is sufficiently positive definite.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
We begin our description of this approach by briefly reviewing the
Cholesky factorization. Every symmetric positive definite matrix A
can be written as

A = LDLT, (28)

where L is a lower triangular matrix with unit diagonal elements
and D is a diagonal matrix with positive elements on the diagonal.
By equating the elements in (28), column by column, it is easy to
derive formulas for computing L and D.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Example
Consider the case n = 3. Suppose the symmetric matrix A = [aij] is
factorized into a11 a21 a31

a21 a22 a32
a31 a32 a33

=

 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

 d1 0 0
0 d2 0
0 0 d3

 1 ℓ21 ℓ31
0 1 ℓ32
0 0 1


=

 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

 d1 d1ℓ21 d1ℓ31
0 d2 d2ℓ32
0 0 d3


=

 d1 d1ℓ21 d1ℓ31
d1ℓ21 d1ℓ221 + d2 d1ℓ31ℓ21 + d2ℓ32
d1ℓ31 d1ℓ31ℓ21 + d2ℓ32 d1ℓ231 + d2ℓ232 + d3

.
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§3.4 Newton’s Method with Hessian Modification
Example (cont’d)
By equating the elements of the first column, we have

a11 = d1 ñ d1 = a11 ,
a21 = d1ℓ21 ñ ℓ21 =

a21
d1

,

a31 = d1ℓ31 ñ ℓ31 =
a31
d1

.

Proceeding with the next two columns, we obtain

a22 = d1ℓ221 + d2 ñ d2 = a22 ´ d1ℓ221 ,

a32 = d1ℓ31ℓ21 + d2ℓ32 ñ ℓ32 =
a32 ´ d1ℓ31ℓ21

d2
,

a33 = d1ℓ231 + d2ℓ232 + d3 ñ d3 = a33 ´ d1ℓ231 + d2ℓ232 .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
In general, for symmetric n ˆ n matrix A, we want to have the
following decomposition

A = LDLT, A = [aij], L = [ℓij],D = [dij] ,

where L is lower triangular matrix with unit diagonal elements, and
D is a diagonal matrix. Writing djj as dj, we have

aij =
n
ÿ

r,s=1

ℓir drs ℓjs =
n
ÿ

s=1

ds ℓis ℓjs .

Assuming i ě j, the identity above shows that

aij =
j
ÿ

s=1

ds ℓis ℓjs = dj ℓij +
j´1
ÿ

s=1

ds ℓis ℓjs

or
dj ℓij = cij ” aij ´

j´1
ÿ

s=1

ds ℓis ℓjs .
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§3.4 Newton’s Method with Hessian Modification
Algorithm 3.4 (Cholesky Factorization, LDLT Form).
for j = 1, 2, ¨ ¨ ¨ , n

for i = j, j + 1, ¨ ¨ ¨ , n

cij Ð aij ´
j´1
ř

s=1
ds ℓis ℓjs;

dj Ð cjj;
ℓij Ð cij/dj;

end
end
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
One can show that the diagonal elements dj are all positive whenever
A is positive definite. The scalars cij have been introduced only
to facilitate the description of the modified factorization discussed
below. We should note that Algorithm 3.4 differs a little from the
standard form of the Cholesky factorization, which produces a lower
triangular matrix M such that

A = MMT . (29)

In fact, we can make the identification M = LD1/2 to relate M to
the factors L and D computed in Algorithm 3.4. The technique for
computing M appears as Algorithm A.2 in Appendix A.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
If A is indefinite, the factorization A = LDLT may not exist. Even if
it does exist, Algorithm 3.4 is numerically unstable when applied
to such matrices, in the sense that the elements of L and D can
become arbitrarily large. It follows that a strategy of computing the
LDLT factorization and then modifying the diagonal after the fact
to force its elements to be positive may break down, or may result
in a matrix that is drastically different from A.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
Instead, we can modify the matrix A during the course of the factor-
ization in such a way that all elements in D are sufficiently positive,
and so that the elements of D and L are not too large. To control
the quality of the modification, we choose two positive parameters δ
and β, and require that during the computation of the j-th columns
of L and D in Algorithm 3.4 (that is, for each j in the outer loop of
the algorithm) the following bounds be satisfied:

dj ě δ, |mij | ď β for i = j + 1, j + 2, ¨ ¨ ¨ , n , (30)

where mij = ℓij
a

dj. To satisfy these bounds we only need to change
one step in Algorithm 3.4: The formula for computing the diagonal
element dj in Algorithm 3.4 is replaced by

dj = max
"

|cjj|,
(
θj
β

)2
, δ

*

with θj = max
jăiďn

|cij|. (31)

dj ě δ, |mij | ď β for i = j + 1, j + 2, ¨ ¨ ¨ , n , (30)

dj = max
"

|cjj|,
(
θj
β

)2
, δ

*

with θj = max
jăiďn

|cij|. (31)
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Instead, we can modify the matrix A during the course of the factor-
ization in such a way that all elements in D are sufficiently positive,
and so that the elements of D and L are not too large. To control
the quality of the modification, we choose two positive parameters δ
and β, and require that during the computation of the j-th columns
of L and D in Algorithm 3.4 (that is, for each j in the outer loop of
the algorithm) the following bounds be satisfied:
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where mij = ℓij
a

dj. To satisfy these bounds we only need to change
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β
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§3.4 Newton’s Method with Hessian Modification
Algorithm 3.4 (Cholesky Factorization, LDLT Form).
for j = 1, 2, ¨ ¨ ¨ , n

for i = j, j + 1, ¨ ¨ ¨ , n

cij Ð aij ´
j´1
ř

s=1
ds ℓis ℓjs;

θj Ð max
jăiďn

|cij|
(

or max
jďiďn

|cij|
)

;

dj Ð max
"

|cjj|,
(
θj
β

)2
, δ

*

;

ℓij Ð cij/dj;
end

end
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§3.4 Newton’s Method with Hessian Modification
To verify that (30) holds, we note from Algorithm 3.4 that cij = ℓijdj,
and therefore

|mij | = |ℓij
a

dj| =
|cij|
a

dj
ď

|cij|β

θj
ď β for all i ą (or ě) j.

We note that θj can be computed prior to dj because the elements
cij in the second for loop of Algorithm 3.4 do not involve dj. In fact,
this is the reason for introducing the quantities cij into the algorithm.
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Chapter 3. Line Search Methods

§3.4 Newton’s Method with Hessian Modification
These observations are the basis of the modified Cholesky algorithm
described in detail in Gill, Murray, and Wright [130], which intro-
duces symmetric interchanges of rows and columns to try to reduce
the size of the modification. If P denotes the permutation matrix
associated with the row and column interchanges, the algorithm pro-
duces the Cholesky factorization of the permuted, modified matrix
PAPT + E; that is,

PAPT + E = LDLT = MM T , (32)
where E is a non-negative diagonal matrix that is zero if A is suffi-
ciently positive definite. One can show that the matrices Bk obtained
by this modified Cholesky algorithm to the exact Hessians (∇2f )(xk)

have bounded condition numbers; that is, the bound (22) holds for
some value of C.
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§3.4 Newton’s Method with Hessian Modification
‚ Modified symmetric indefinite factorization
Another strategy for modifying an indefinite Hessian is to use a pro-
cedure based on a symmetric indefinite factorization. Any symmetric
matrix A, whether positive definite or not, can be written as

PAPT = LBLT (33)

where L is unit lower triangular, B is a block diagonal matrix with
blocks of dimension 1 or 2, and P is a permutation matrix (see
our discussion in Appendix A and also Golub and Van Loan [136,
Section 4.4]). By using the block diagonal matrix B, which allows
2ˆ2 blocks as well as 1ˆ1 blocks on the diagonal, we can guarantee
that the factorization (33) always exists and can be computed by a
numerically stable process.
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§3.4 Newton’s Method with Hessian Modification
Example

The matrix A =


0 1 2 3
1 2 2 2
2 2 3 3
3 2 3 4

 can be written in the form (33) with

P = [e1, e4, e3, e2],

L =


1 0 0 0
0 1 0 0
1

9

2

3
1 0

2

9

1

3
0 1

, B =


0 3 0 0
3 4 0 0

0 0
7

9

5

9

0 0
5

9

10

9

.

Note that both diagonal blocks in B are 2 ˆ 2. Several algorithms
for computing symmetric indefinite factorizations are discussed in
Section A.1 of Appendix A.
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§3.4 Newton’s Method with Hessian Modification
The symmetric indefinite factorization allows us to determine the
inertia of a matrix; that is, the number of positive, zero, and
negative eigenvalues. One can show that the inertia of B equals the
inertia of A. Moreover, the 2ˆ2 blocks in B are always constructed
to have one positive and one negative eigenvalue; thus the number
of positive eigenvalues in A equals the number of positive 1 ˆ 1

blocks plus the number of 2 ˆ 2 blocks.
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§3.4 Newton’s Method with Hessian Modification
As for the Cholesky factorization, an indefinite symmetric factoriza-
tion algorithm can be modified to ensure that the modified factors
are the factors of a positive definite matrix. The strategy is first
to compute the factorization (33), as well as the spectral decom-
position B = QΛQT, which is inexpensive to compute because B
is block diagonal. We then construct a modification matrix F such
that

L(B + F )LT

is sufficiently positive definite. Motivated by the modified spectral
decomposition (26), we choose a parameter δ ą 0 and define F to
be

F = Qdiag(τi)QT, τi =

#

0 if λi ě δ,

δ ´ λi if λi ă δ, i = 1, 2, ¨ ¨ ¨ , n,
(34)

where λi are the eigenvalues of B.
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§3.4 Newton’s Method with Hessian Modification
The matrix F is thus the modification of minimum Frobenius norm
that ensures that all eigenvalues of the modified matrix B+F are no
less than δ. This strategy therefore modifies the factorization (33)
as follows:

P(A + E)PT = L(B + F)LT , where E = PTLFLTP.

Note that in general E will not be diagonal; thus in contrast to the
modified Cholesky approach, this modification strategy changes the
entire matrix A, not just its diagonal. The aim of strategy (34) is
that the modified matrix satisfies λmin(A + E) « δ whenever the
original matrix A has λmin(A) ă δ. It is not clear; however, whether
it always comes close to attaining this goal.
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§3.5 Step-Length Selection Algorithms
We now consider techniques for finding a minimum of the one-
dimensional function

φ(α) = f (xk + αpk) , (35)

or for simply finding a step length αk satisfying one of the termi-
nation conditions such as the Wolfe conditions and the Goldstein
conditions in Section 3.1. We assume that pk is a descent direction;
that is, φ1(0) ă 0, so that our search can be confined to positive
values of α.
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§3.5 Step-Length Selection Algorithms
If f is a convex quadratic given by

f (x) = 1

2
xTQx ´ bTx ,

its one-dimensional minimizer along the ray xk + αpk can be com-
puted analytically and is given by

αk = ´
∇f T

k pk
pT

kQpk
. (36)

For general nonlinear functions, it is necessary to use an iterative
procedure. The line search procedure deserves particular attention
because it has a major impact on the robustness and efficiency of
all nonlinear optimization methods.
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§3.5 Step-Length Selection Algorithms
Line search procedures can be classified according to the type of
derivative information they use. Algorithms that use only function
values can be inefficient since, to be theoretically sound, they need
to continue iterating until the search for the minimizer is narrowed
down to a small interval. In contrast, knowledge of gradient infor-
mation allows us to determine whether a suitable step length has
been located, as stipulated, for example, by the Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (5a)

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk , (5b)

with 0 ă c1 ă c2 ă 1 or Goldstein conditions

f (xk)+ (1´ c)αk∇f T
k pk ď f (xk +αkpk) ď f (xk)+ cαk∇f T

k pk (8)

with 0 ă c ă 1/2.
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§3.5 Step-Length Selection Algorithms
All line search procedures require an initial estimate α0 and generate
a sequence tαiu that either terminates with a step length satisfying
the conditions specified by the user (for example, the Wolfe condi-
tions) or determines that such a step length does not exist. Typical
procedures consist of two phases: a bracketing phase that finds an
interval [ā, b̄] containing acceptable step lengths, and a selection
phase that zooms in to locate the final step length.

In the following discussion we let αk and αk´1 denote the step
lengths used at iterations k and k ´ 1 of the optimization algo-
rithm, respectively. On the other hand, we denote the trial step
lengths generated during the line search by αi and αi´1 and also αj.
We use α0 to denote the initial guess.
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§3.5 Step-Length Selection Algorithms
‚ Interpolation
We begin by describing a line search procedure based on interpola-
tion of known function and derivative values of the function φ. This
procedure can be viewed as an enhancement of Algorithm 3.1, the
Backtracking Line Search algorithm. The aim is to find a value of
α that satisfies the sufficient decrease condition (5a), without being
“too small”. Accordingly, the procedures here generate a decreas-
ing sequence of values αi such that each value αi is not too much
smaller than its predecessor αi´1.
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§3.5 Step-Length Selection Algorithms
Note that we can write the sufficient decrease condition, in the
notation of φ(α) = f (xk + αpk), as

φ(αk) ď φ(0) + c1αkφ
1(0) , (37)

and that since the constant c1 is usually chosen to be small in prac-
tice (c1 = 10´4, say), this condition asks for little more than descent
in f . We design the procedure to be “efficient” in the sense that it
computes the derivative ∇f (x) as few times as possible.
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§3.5 Step-Length Selection Algorithms
Suppose that the initial guess α0 is given. If we have

φ(α0) ď φ(0) + c1α0φ
1(0) ,

this step length satisfies the condition, and we terminate the search.
Otherwise, we know that the interval [0, α0] contains acceptable
step lengths. We form a quadratic approximation φq(α) to φ by
interpolating the three pieces of information available – φ(0), φ1(0),
and φ(α0) – to obtain

φq(α) =
(
φ(α0) ´ φ(0) ´ α0φ

1(0)

α2
0

)
α2 + φ1(0)α+ φ(0) . (38)

Note that this function is constructed so that it satisfies the inter-
polation conditions φq(0) = φ(0), φ1

q(0) = φ1(0), and φq(α0) =

φ(α0).
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§3.5 Step-Length Selection Algorithms
The new trial value α1 is defined as the minimizer of this quadratic;
that is, we obtain

α1 = ´
φ1(0)α2

0

2[φ(α0) ´ φ(0) ´ φ1(0)α0]
. (39)

We note that 0 ă c1 ă
1

2
if and only if α1 P (0, α0).

If the sufficient decrease condition (37) is satisfied at α1, we termi-
nate the search. Otherwise, we construct a cubic function φc that
interpolates the four pieces of information φ(0), φ1(0), φ(α0), and
φ(α1), obtaining φc(α) = aα3 + bα2 + αφ1(0) + φ(0), where[

a
b

]
=

1

α2
0α

2
1(α1 ´ α0)

[
α2
0 ´α2

1

´α3
0 α3

1

] [
φ(α0) ´ φ(0) ´ α0φ

1(0)
φ(α1) ´ φ(0) ´ α1φ

1(0)

]
.
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By differentiating φc(x), we see that the minimizer α2 of φc lies in
the interval [0, α1] and is given by

α2 =
´b +

a

b2 ´ 3aφ1(0)

3a .

If necessary, this process is repeated, using a cubic interpolant of
φ(0), φ1(0) and the two most recent values of φ, until an α that
satisfies (37) is located. If any αi is either too close to its predecessor
αi´1 or else too much smaller than αi´1, we reset αi = αi´1/2. This
safeguard procedure ensures that we make reasonable progress on
each iteration and that the final α is not too small.
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The strategy just described assumes that derivative values are signif-
icantly more expensive to compute than function values. It is often
possible, however, to compute the directional derivative simulta-
neously with the function, at little additional cost; see Chapter 8.
Accordingly, we can design an alternative strategy based on cubic
interpolation of the values of φ and φ1 at the two most recent val-
ues of α. Cubic interpolation provides a good model for functions
with significant changes of curvature. Suppose we have an inter-
val [ā, b̄] known to contain desirable step lengths, and two previous
step length estimates αi´1 and αi in this interval. We use a cubic
function to interpolate φ(αi´1), φ1(αi´1), φ(αi), and φ1(αi). (This
cubic function always exists and is unique; see, for example, Bulirsch
and Stoer [41, p. 52].)
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The minimizer of this cubic function in [ā, b̄] is either at one of the
endpoints or else in the interior, in which case it is given by

αi+1 = αi ´ (αi ´ αi´1)
[

φ1(αi) + d2 ´ d1

φ1(αi) ´ φ1(αi´1) + 2d2

]
, (40)

with
d1 = φ1(αi´1) + φ1(αi) ´ 3

φ(αi´1) ´ φ(αi)

αi´1 ´ αi
,

d2 = sign(αi ´ αi´1)
a

d 2
1 ´ φ1(αi´1)φ1(αi) .
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The interpolation process can be repeated by discarding the data
at one of the step lengths αi´1 or αi and replacing it by φ(αi+1)

and φ1(αi+1). The decision on which of αi´1 and αi should be
kept and which discarded depends on the specific conditions used to
terminate the line search; we discuss this issue further below in the
context of the Wolfe conditions. Cubic interpolation is a powerful
strategy, since it usually produces a quadratic rate of convergence
of the iteration (40) to the minimizing value of α.
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§3.5 Step-Length Selection Algorithms
‚ Initial Step Length
For Newton and quasi-Newton methods, the step α0 = 1 should
always be used as the initial trial step length. This choice ensures
that unit step lengths are taken whenever they satisfy the termina-
tion conditions and allows the rapid rate-of-convergence properties
of these methods to take effect. For methods that do not pro-
duce well scaled search directions, such as the steepest descent and
conjugate gradient methods, it is important to use current informa-
tion about the problem and the algorithm to make the initial guess.
A popular strategy is to assume that the first-order change in the
function at iterate xk will be the same as that obtained at the pre-
vious step. In other words, we choose the initial guess α0 so that

α0∇f T
k pk = αk´1∇f T

k´1pk´1; that is, α0 = αk´1
∇f T

k´1pk´1

∇f T
k pk

.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.5 Step-Length Selection Algorithms
‚ Initial Step Length
For Newton and quasi-Newton methods, the step α0 = 1 should
always be used as the initial trial step length. This choice ensures
that unit step lengths are taken whenever they satisfy the termina-
tion conditions and allows the rapid rate-of-convergence properties
of these methods to take effect. For methods that do not pro-
duce well scaled search directions, such as the steepest descent and
conjugate gradient methods, it is important to use current informa-
tion about the problem and the algorithm to make the initial guess.
A popular strategy is to assume that the first-order change in the
function at iterate xk will be the same as that obtained at the pre-
vious step. In other words, we choose the initial guess α0 so that

α0∇f T
k pk = αk´1∇f T

k´1pk´1; that is, α0 = αk´1
∇f T

k´1pk´1

∇f T
k pk

.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.5 Step-Length Selection Algorithms
‚ Initial Step Length
For Newton and quasi-Newton methods, the step α0 = 1 should
always be used as the initial trial step length. This choice ensures
that unit step lengths are taken whenever they satisfy the termina-
tion conditions and allows the rapid rate-of-convergence properties
of these methods to take effect. For methods that do not pro-
duce well scaled search directions, such as the steepest descent and
conjugate gradient methods, it is important to use current informa-
tion about the problem and the algorithm to make the initial guess.
A popular strategy is to assume that the first-order change in the
function at iterate xk will be the same as that obtained at the pre-
vious step. In other words, we choose the initial guess α0 so that

α0∇f T
k pk = αk´1∇f T

k´1pk´1; that is, α0 = αk´1
∇f T

k´1pk´1

∇f T
k pk

.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 3. Line Search Methods

§3.5 Step-Length Selection Algorithms
Don’t know what this slide is about!!!

Another useful strategy is to interpolate a quadratic to the data
f (xk´1), f (xk), and ∇f T

k´1pk´1 and to define α0 to be its minimizer.
This strategy yields

α0 =
2(fk ´ fk´1)

φ 1(0)
. (41)

It can be shown that if xk Ñ x˚ superlinearly, then the ratio in this
expression converges to 1. If we adjust the choice (41) by setting
α0 Ð min(1, 1.01α0), we find that the unit step length α0 = 1

will eventually always be tried and accepted, and the superlinear
convergence properties of Newton and quasi-Newton methods will
be observed.
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‚ A Line Search Algorithm for the Wolfe Conditions
The Wolfe (or strong Wolfe) conditions are among the most widely
applicable and useful termination conditions. We now describe in
some detail a one-dimensional search procedure that is guaranteed
to find a step length satisfying the strong Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (6a)

ˇ

ˇ∇f (xk + αkpk)
Tpk

ˇ

ˇ ě c2
ˇ

ˇ∇f T
k pk

ˇ

ˇ , (6b)

for any parameters c1 and c2 satisfying 0 ă c1 ă c2 ă 1. As before,
we assume that p is a descent direction and that f is bounded from
below along the direction p.
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§3.5 Step-Length Selection Algorithms
The algorithm has two stages. This first stage begins with a trial
estimate α1, and keeps increasing it until it finds either an acceptable
step length or an interval that brackets the desired step lengths. In
the latter case, the second stage is invoked by calling a function
called zoom (Algorithm 3.6, below), which successively decreases
the size of the interval until an acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer
to (6a) as the sufficient decrease condition and to (6b) as the cur-
vature condition. The parameter αmax is a user-supplied bound on
the maximum step length allowed. The line search algorithm ter-
minates with α∗ set to a step length that satisfies the strong Wolfe
conditions.
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Algorithm 3.5 (Line Search Algorithm).
Set α0 Ð 0, choose αmax ą 0 and α1 P (0, αmax);
i Ð 1;
repeat

Evaluate φ(αi);
if [φ(αi) ą φ(0) + c1αiφ 1(0)] or [φ(αi) ě φ(αi´1) and i ą 1]

α˚ Ð zoom(αi´1, αi) and stop;
Evaluate φ 1(αi);
if |φ 1(αi)| ď ´c2φ 1(0)

set α˚ Ð αi and stop;
if φ 1(αi) ě 0

set α˚ Ð zoom(αi, αi´1) and stop;
Choose αi+1 P (αi, αmax);
i Ð i + 1;

end (repeat)
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Note that the sequence of trial step lengths tαiu is monotonically
increasing, but that the order of the arguments supplied to the zoom
function may vary. The procedure uses the knowledge that the
interval (αi´1, αi) contains step lengths satisfying the strong Wolfe
conditions if “one of the following three conditions is satisfied”:

1 αi violates the sufficient decrease condition;
2 φ(αi) ě φ(αi´1);
3 αi violates the curvature condition and φ 1(αi) ě 0.

The last step of the algorithm performs extrapolation to find the
next trial value αi+1. To implement this step we can use approaches
like the interpolation procedures above, or we can simply set αi+1

to some constant multiple of αi. Whichever strategy we use, it is
important that the successive steps increase quickly enough to reach
the upper limit αmax in a finite number of iterations.
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We now specify the function zoom, which requires a little explana-
tion. The order of its input arguments is such that each call has the
form zoom(αlo, αhi), where

a⃝ the interval bounded by αlo and αhi contains step lengths that
satisfy the strong Wolfe conditions;

b⃝ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
function value; and

c⃝ αhi is chosen so that φ 1(αlo)(αhi ´ αlo) ă 0.
Each iteration of zoom generates an iterate αj between αlo and αhi,
and then replaces one of these endpoints by αj in such a way that
the properties a⃝, b⃝, and c⃝ continue to hold.
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Algorithm 3.6 (zoom).
repeat
Interpolate (using quadratic, cubic, or bisection) to find a trial step

length αj between αlo and αhi;
Evaluate φ(αj);
if [φ(αj) ą φ(0) + c1αjφ 1(0)] or [φ(αj) ě φ(αlo)]

αhi Ð αj;
else

Evaluate φ 1(αj);
if |φ 1(αj)| ď ´c2φ 1(0)

Set α˚ Ð αj and stop;
if φ 1(αj)(αhi ´ αlo) ě 0

αhi Ð αlo
αlo Ð αj;

end (repeat)
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If the new estimate αj happens to satisfy the strong Wolfe condi-
tions, then zoom has served its purpose of identifying such a point,
so it terminates with α˚ = αj. Otherwise, if αj satisfies the sufficient
decrease condition and has a lower function value than αlo, then we
set αlo Ð αj to maintain condition b⃝. If this setting results in a
violation of condition c⃝, we remedy the situation by setting αhi to
the old value of αlo. Readers should sketch some graphs to see for
themselves how zoom works!
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One may ask how much more expensive it is to require the strong
Wolfe conditions instead of the regular Wolfe conditions. Our expe-
rience suggests that for a “loose” line search (with parameters such
as c1 = 10´4 and c2 = 0.9), both strategies require a similar amount
of work. The strong Wolfe conditions have the advantage that by
decreasing c2 we can directly control the quality of the search, by
forcing the accepted value of α to lie closer to a local minimum.
This feature is important in steepest descent or nonlinear conjugate
gradient methods, and therefore a step selection routine that en-
forces the strong Wolfe conditions has wide applicability.
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