最佳化方法與應用 MA5037－＊

Chapter 3．Line Search Methods
§3．1 Step Length
§3．2 Convergence of Line Search Methods
§3．3 Rate of Convergence
§3．4 Newton＇s Method with Hessian Modification
§3．5 Step－Length Selection Algorithms

Introduction

Each iteration of a line search method computes a search direction p_{k} and then decides how far to move along that direction．The iteration is given by

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k},
$$

where the positive scalar α_{k} is called the step length．The success of a line search method depends on effective choices of both the direction p_{k} and the step length α_{k} ．

Introduction

Most line search algorithms require p_{k} to be a descent direction satisfying

$$
p_{k}^{\mathrm{T}} \nabla f_{k}<0
$$

because this property guarantees that the function f can be reduced along this direction，as discussed in the previous chapter．Moreover，
where B_{k} is a symmetric and non－singular matrix
（1）In the steepest descent method，B_{k} is the identity matrix I．
（2）In Newton＇s method，B_{k} is the exact Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．
（3）In quasi－Newton methods，B_{k} is an approximation to the Hes－ sian that is updated at every iteration by means of a low－rank formula．

Introduction

Most line search algorithms require p_{k} to be a descent direction satisfying

$$
p_{k}^{\mathrm{T}} \nabla f_{k}<0
$$

because this property guarantees that the function f can be reduced along this direction，as discussed in the previous chapter．Moreover， the search direction often has the form

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} \nabla f_{k}, \tag{1}
\end{equation*}
$$

where B_{k} is a symmetric and non－singular matrix．
（1）In the steepest descent method，B_{k} is the identity matrix I．
（2）In Newton＇s method，B_{k} is the exact Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．
（3）In quasi－Newton methods，B_{k} is an approximation to the Hes－ sian that is updated at every iteration by means of a low－rank formula．

Introduction

Most line search algorithms require p_{k} to be a descent direction satisfying

$$
p_{k}^{\mathrm{T}} \nabla f_{k}<0
$$

because this property guarantees that the function f can be reduced along this direction，as discussed in the previous chapter．Moreover， the search direction often has the form

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} \nabla f_{k}, \tag{1}
\end{equation*}
$$

where B_{k} is a symmetric and non－singular matrix．
（1）In the steepest descent method，B_{k} is the identity matrix I．
（2）In Newton＇s method，B_{k} is the exact Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．
（3）In quasi－Newton methods，B_{k} is an approximation to the Hes－ sian that is updated at every iteration by means of a low－rank formula．

Introduction

When p_{k} is defined by（1）and B_{k} is positive definite，we have

$$
p_{k}^{\mathrm{T}} \nabla f_{k}=-\nabla f_{k}^{\mathrm{T}} B_{k}^{-1} \nabla f_{k}<0
$$

and therefore p_{k} is a descent direction．
In this chapter，we discuss how to choose α_{k} and p_{k} to promote convergence from remote starting points．We also study the rate of convergence of steepest descent，quasi－Newton，and Newton meth－ ods．Since the pure Newton iteration is not guaranteed to produce descent directions when the current iterate is not close to a solution， we discuss modifications in Section 3.4 that allow it to start from any initial point．

Introduction

When p_{k} is defined by（1）and B_{k} is positive definite，we have

$$
p_{k}^{\mathrm{T}} \nabla f_{k}=-\nabla f_{k}^{\mathrm{T}} B_{k}^{-1} \nabla f_{k}<0
$$

and therefore p_{k} is a descent direction．
In this chapter，we discuss how to choose α_{k} and p_{k} to promote convergence from remote starting points．We also study the rate of convergence of steepest descent，quasi－Newton，and Newton meth－ ods．
descent directions when the current iterate is not close to a solution，
we discuss modifications in Section 3.4 that allow it to start from
any initial point．

Introduction

When p_{k} is defined by（1）and B_{k} is positive definite，we have

$$
p_{k}^{\mathrm{T}} \nabla f_{k}=-\nabla f_{k}^{\mathrm{T}} B_{k}^{-1} \nabla f_{k}<0
$$

and therefore p_{k} is a descent direction．
In this chapter，we discuss how to choose α_{k} and p_{k} to promote convergence from remote starting points．We also study the rate of convergence of steepest descent，quasi－Newton，and Newton meth－ ods．Since the pure Newton iteration is not guaranteed to produce descent directions when the current iterate is not close to a solution， we discuss modifications in Section 3.4 that allow it to start from any initial point．

§3．1 Step Length

In computing the step length α_{k} ，we face a tradeoff．We would like to choose α_{k} to give a substantial reduction of f ，but at the same time we do not want to spend too much time making the choice．
The ideal choice would be the global minimizer of the univariate function $\varphi(\cdot)$ defined by

$$
\varphi(a)=f\left(x_{k}+\alpha p_{k}\right), \quad a>0
$$

but in general，it is too expensive to identify this value．To find even a local minimizer of φ to moderate precision generally requires too many evaluations of the objective function f and possibly the gradient ∇f ．More practical strategies perform an inexact line search to identify a step length that achieves adequate reductions in f at minimal cost．

§3．1 Step Length

In computing the step length α_{k} ，we face a tradeoff．We would like to choose α_{k} to give a substantial reduction of f ，but at the same time we do not want to spend too much time making the choice． The ideal choice would be the global minimizer of the univariate function $\varphi(\cdot)$ defined by

$$
\begin{equation*}
\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \quad \alpha>0 \tag{2}
\end{equation*}
$$

but in general，it is too expensive to identify this value．
even a local minimizer of φ to moderate precision generally requires
too many evaluations of the objective function f and possibly the
gradient ∇ f．More practical strategies perform an inexact line search
to identify a step length that achieves adequate reductions in f at
minimal cost．

§3．1 Step Length

In computing the step length α_{k} ，we face a tradeoff．We would like to choose α_{k} to give a substantial reduction of f ，but at the same time we do not want to spend too much time making the choice． The ideal choice would be the global minimizer of the univariate function $\varphi(\cdot)$ defined by

$$
\begin{equation*}
\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \quad \alpha>0 \tag{2}
\end{equation*}
$$

but in general，it is too expensive to identify this value．To find even a local minimizer of φ to moderate precision generally requires too many evaluations of the objective function f and possibly the gradient ∇f ．More practical strategies perform an inexact line search to identify a step length that achieves adequate reductions in f at minimal cost．

§3．1 Step Length

In computing the step length α_{k} ，we face a tradeoff．We would like to choose α_{k} to give a substantial reduction of f ，but at the same time we do not want to spend too much time making the choice． The ideal choice would be the global minimizer of the univariate function $\varphi(\cdot)$ defined by

$$
\begin{equation*}
\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \quad \alpha>0 \tag{2}
\end{equation*}
$$

but in general，it is too expensive to identify this value．To find even a local minimizer of φ to moderate precision generally requires too many evaluations of the objective function f and possibly the gradient ∇f ．More practical strategies perform an inexact line search to identify a step length that achieves adequate reductions in f at minimal cost．

§3．1 Step Length

Typical line search algorithms try out a sequence of candidate values for α ，stopping to accept one of these values when certain conditions are satisfied．The line search is done in two stages：
（1）A bracketing phase finds an interval containing desirable step lengths，and

2．a hisection or interpolation phase computes a good step length within this interval

Sophisticated line search algorithms can be quite complicated，so we defer a full description until Section 3.5

§3．1 Step Length

Typical line search algorithms try out a sequence of candidate values for α ，stopping to accept one of these values when certain conditions are satisfied．The line search is done in two stages：
（1）A bracketing phase finds an interval containing desirable step lengths，and
（2）a bisection or interpolation phase computes a good step length within this interval．

Sophisticated line search algorithms can be quite complicated，so we defer a full description until Section 3．5．

§3．1 Step Length

Typical line search algorithms try out a sequence of candidate values for α ，stopping to accept one of these values when certain conditions are satisfied．The line search is done in two stages：
（1）A bracketing phase finds an interval containing desirable step lengths，and
（2）a bisection or interpolation phase computes a good step length within this interval．

Sophisticated line search algorithms can be quite complicated，so we defer a full description until Section 3．5．

§3．1 Step Length

We now discuss various termination conditions for line search algo－ rithms and show that effective step lengths need not lie near min－ imizers of the univariate function $\varphi(\alpha)$ defined in（2）．
condition we could impose on α_{k} is to require a reduction in f ；that is，$f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ ．One example of that this requirement is not enough to nroduce convergence to x ．is illustrated in Figure 1

Figure 1：Insufficient reduction in f

§3．1 Step Length

We now discuss various termination conditions for line search algo－ rithms and show that effective step lengths need not lie near min－ imizers of the univariate function $\varphi(\alpha)$ defined in（2）．A simple condition we could impose on α_{k} is to require a reduction in f ；that is，$f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ ．One example of that this requirement is not enough to produce convergence to x_{*} is illustrated in Figure 1.

Figure 1：Insufficient reduction in f

§3．1 Step Length

In the example given in the previous page，the minimum function value is $f_{*}=-1$ ，but a sequence of iterates $\left\{x_{k}\right\}$ for which $f\left(x_{k}\right)=$ $5 / k, k=0,1, \cdots$ yields a decrease at each iteration but has a limiting function value of zero．
each step causes it to fail to converge to the minimizer of this convex
function．To avoid this behavior we need to enforce a sufficient decrease condition，a concept we discuss next．

§3．1 Step Length

In the example given in the previous page，the minimum function value is $f_{*}=-1$ ，but a sequence of iterates $\left\{x_{k}\right\}$ for which $f\left(x_{k}\right)=$ $5 / k, k=0,1, \cdots$ yields a decrease at each iteration but has a limiting function value of zero．The insufficient reduction in f at each step causes it to fail to converge to the minimizer of this convex function．To avoid this behavior we need to enforce a sufficient decrease condition，a concept we discuss next．

§3．1 Step Length

－The Wolfe Conditions：

A popular inexact line search condition stipulates that α_{k} should first of all give sufficient decrease in the objective function f ，as measured by the following inequality：

$$
\begin{equation*}
f\left(x_{k}+\alpha p_{k}\right) \leqslant f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{\mathrm{T}} p_{k} \tag{3}
\end{equation*}
$$

for some constant $c_{1} \in(0,1)$ ．In other words，

Inequality（3）is sometimes called the Armijo
condition
Let $\ell(\alpha)$ denote the right－hand－side of（3）；that is，

This function a linear function with negative slope $c_{1} \nabla f_{k}^{T} p_{k}$ ．

§3．1 Step Length

－The Wolfe Conditions：

A popular inexact line search condition stipulates that α_{k} should first of all give sufficient decrease in the objective function f ，as measured by the following inequality：

$$
\begin{equation*}
f\left(x_{k}+\alpha p_{k}\right) \leqslant f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{\mathrm{T}} p_{k} \tag{3}
\end{equation*}
$$

for some constant $c_{1} \in(0,1)$ ．In other words，the reduction in f should be proportional to both the step length α_{k} and the directional derivative $\nabla f_{k}^{\mathrm{T}} p_{k}$ ．Inequality（3）is sometimes called the Armijo
condition．
Let $\ell(\alpha)$ denote the right－hand－side of（3）；that is，

This function a linear function with negative slope $c_{1} \nabla f_{k}^{T} p_{k}$ ．

§3．1 Step Length

－The Wolfe Conditions：

A popular inexact line search condition stipulates that α_{k} should first of all give sufficient decrease in the objective function f ，as measured by the following inequality：

$$
\begin{equation*}
f\left(x_{k}+\alpha p_{k}\right) \leqslant f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{\mathrm{T}} p_{k} \tag{3}
\end{equation*}
$$

for some constant $c_{1} \in(0,1)$ ．In other words，the reduction in f should be proportional to both the step length α_{k} and the directional derivative $\nabla f_{k}^{\mathrm{T}} p_{k}$ ．Inequality（3）is sometimes called the Armijo condition．

Let $\ell(\alpha)$ denote the right－hand－side of（3）；that is，

This function a linear function with negative slope $c_{1} \nabla f_{k}^{T} p_{k}$

§3．1 Step Length

－The Wolfe Conditions：

A popular inexact line search condition stipulates that α_{k} should first of all give sufficient decrease in the objective function f ，as measured by the following inequality：

$$
\begin{equation*}
f\left(x_{k}+\alpha p_{k}\right) \leqslant f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{\mathrm{T}} p_{k} \tag{3}
\end{equation*}
$$

for some constant $c_{1} \in(0,1)$ ．In other words，the reduction in f should be proportional to both the step length α_{k} and the directional derivative $\nabla f_{k}^{\mathrm{T}} p_{k}$ ．Inequality（3）is sometimes called the Armijo condition．

Let $\ell(\alpha)$ denote the right－hand－side of（3）；that is，

$$
\ell(\alpha)=f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{\mathrm{T}} p_{k} .
$$

This function a linear function with negative slope $c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}$ ．

§3．1 Step Length

The sufficient decrease condition is illustrated in Figure 2.

Figure 2：Sufficient decrease condition
Because $c_{1} \in(0,1)$ ，it lies above the graph of φ for small positive values of α ．The sufficient decrease condition states that α is ac－ ceptable only if $\varphi(\alpha) \leqslant \ell(\alpha)$ ．The intervals on which this condition is satisfied are shown in Figure 2．In practice，c_{1} is chosen to be quite small，say $c_{1}=10^{-4}$

§3．1 Step Length

The sufficient decrease condition is illustrated in Figure 2.

Figure 2：Sufficient decrease condition
Because $c_{1} \in(0,1)$ ，it lies above the graph of φ for small positive values of α ．
ceptable only if $\varphi(\alpha) \leqslant \ell(\alpha)$ ．The intervals on which this condition
is satisfied are shown in Figure 2．In practice，c_{1} is chosen to be
quite small，say $c_{1}=10^{-4}$

§3．1 Step Length

The sufficient decrease condition is illustrated in Figure 2.

Figure 2：Sufficient decrease condition
Because $c_{1} \in(0,1)$ ，it lies above the graph of φ for small positive values of α ．The sufficient decrease condition states that α is ac－ ceptable only if $\varphi(\alpha) \leqslant \ell(\alpha)$ ．The intervals on which this condition is satisfied are shown in Figure 2．In practice，c_{1} is chosen to be quite small，say $c_{1}=10^{-4}$ ．

§3．1 Step Length

The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable progress because，as we see from Figure 2，it is satisfied for all sufficiently small values of α ．
rule out unacceptably short steps we introduce a second require－ ment，called the curvature condition，which requires α_{k} to satisfy

for some constant $c_{2} \in\left(c_{1}, 1\right)$ ，where c_{1} is the constant from（3） Note that the left－hand side is simply the derivative $\varphi^{\prime}\left(\alpha_{L}\right)$ ，so the curvature condition ensures that the slope of φ at α_{k} is greater than

[^0]The curvature condition is illustrated in Figure 3 in the next page．

§3．1 Step Length

The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable progress because，as we see from Figure 2，it is satisfied for all sufficiently small values of α ．To rule out unacceptably short steps we introduce a second require－ ment，called the curvature condition，which requires α_{k} to satisfy

$$
\begin{equation*}
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{4}
\end{equation*}
$$

for some constant $c_{2} \in\left(c_{1}, 1\right)$ ，where c_{1} is the constant from（3）． Note that the left－hand side is simply the derivative curvature condition ensures that the slope of φ at α_{k} is greater than

The curvature condition is illustrated in Figure 3 in the next page．

§3．1 Step Length

The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable progress because，as we see from Figure 2，it is satisfied for all sufficiently small values of α ．To rule out unacceptably short steps we introduce a second require－ ment，called the curvature condition，which requires α_{k} to satisfy

$$
\begin{equation*}
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{4}
\end{equation*}
$$

for some constant $c_{2} \in\left(c_{1}, 1\right)$ ，where c_{1} is the constant from（3）． Note that the left－hand side is simply the derivative $\varphi^{\prime}\left(\alpha_{k}\right)$ ，so the curvature condition ensures that the slope of φ at α_{k} is greater than c_{2} times the initial slope $\varphi^{\prime}(0)$ ．

The curvature condition is illustrated in Figure 3 in the next page．

§3．1 Step Length

The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable progress because，as we see from Figure 2，it is satisfied for all sufficiently small values of α ．To rule out unacceptably short steps we introduce a second require－ ment，called the curvature condition，which requires α_{k} to satisfy

$$
\begin{equation*}
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{4}
\end{equation*}
$$

for some constant $c_{2} \in\left(c_{1}, 1\right)$ ，where c_{1} is the constant from（3）． Note that the left－hand side is simply the derivative $\varphi^{\prime}\left(\alpha_{k}\right)$ ，so the curvature condition ensures that the slope of φ at α_{k} is greater than c_{2} times the initial slope $\varphi^{\prime}(0)$ ．

The curvature condition is illustrated in Figure 3 in the next page．

§3．1 Step Length

On the other hand，if $\varphi^{\prime}\left(\alpha_{k}\right)$ is only slightly negative or even positive， it is a sign that we cannot expect much more decrease in f in this direction，so it makes sense to terminate the line search．Typical values of c_{2} are 0.9 when the search direction p_{k} is chosen by a Newton or quasi－Newton method，and 0.1 when p_{k} is obtained from a nonlinear conjugate gradient method．

Figure 3：The curvature condition

§3．1 Step Length

The sufficient decrease and curvature conditions are known collec－ tively as the Wolfe conditions：

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5a}\\
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} & \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5b}
\end{align*}
$$

with $0<c_{1}<c_{2}<1$ ．We illustrate them in Figure 4.

Figure 4：Step lengths satisfying the Wolfe conditions

§3．1 Step Length

A step length may satisfy the Wolfe conditions without being par－ ticularly close to a minimizer of φ ，as we show in Figure 4．We can， however，modify the curvature condition to force α_{k} to lie in at least a broad neighborhood of a local minimizer or stationary point of φ ． The strong Wolfe conditions require α_{k} to satisfy

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{6a}\\
\left|\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k}\right| & \leqslant c_{2}\left|\nabla f_{k}^{\mathrm{T}} p_{k}\right|, \tag{6b}
\end{align*}
$$

with $0<c_{1}<c_{2}<1$ ．The only difference with the Wolfe conditions
is that we no longer allow the derivative $\varphi^{\prime}\left(\alpha_{k}\right)$ to be too positive．
Hence，we exclude points that are far from stationary points of φ

§3．1 Step Length

A step length may satisfy the Wolfe conditions without being par－ ticularly close to a minimizer of φ ，as we show in Figure 4．We can， however，modify the curvature condition to force α_{k} to lie in at least a broad neighborhood of a local minimizer or stationary point of φ ． The strong Wolfe conditions require α_{k} to satisfy

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{6a}\\
\left|\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k}\right| & \leqslant c_{2}\left|\nabla f_{k}^{\mathrm{T}} p_{k}\right|, \tag{6b}
\end{align*}
$$

with $0<c_{1}<c_{2}<1$ ．The only difference with the Wolfe conditions is that we no longer allow the derivative $\varphi^{\prime}\left(\alpha_{k}\right)$ to be too positive． Hence，we exclude points that are far from stationary points of φ ．

§3．1 Step Length

Lemma

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable．Let p_{k} be a descent direction at x_{k} ，and assume that f is bounded from below along the ray $\left\{x_{k}+\alpha p_{k} \mid \alpha>0\right\}$ ．Then if $0<c_{1}<c_{2}<1$ ，there exist intervals of step lengths satisfying the Wolfe conditions（5）and the strong Wolfe conditions（6）．

Proof．

Define $\varphi(\alpha) \equiv f\left(x_{k}+\alpha p_{k}\right)$ and $\ell(\alpha) \equiv f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{T} p_{k}$ ．By the differentiability of f ，

Since p_{k} is a descent direction，$\nabla f_{k}^{\mathrm{T}} p_{k}<0$ ．By the fact that $c_{1} \in(0,1)$ ，there exists $\delta>0$ such that

§3．1 Step Length

Lemma

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable．Let p_{k} be a descent direction at x_{k} ，and assume that f is bounded from below along the ray $\left\{x_{k}+\alpha p_{k} \mid \alpha>0\right\}$ ．Then if $0<c_{1}<c_{2}<1$ ，there exist intervals of step lengths satisfying the Wolfe conditions（5）and the strong Wolfe conditions（6）．

Proof．

Define $\varphi(\alpha) \equiv f\left(x_{k}+\alpha p_{k}\right)$ and $\ell(\alpha) \equiv f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}$ ．By the differentiability of f ，

$$
f\left(x_{k}+\alpha p_{k}\right)-f\left(x_{k}\right)-\alpha \nabla f_{k}^{\mathrm{T}} p_{k}=o\left(\left\|\alpha p_{k}\right\|\right)=o(|\alpha|) .
$$

Since p_{k} is a descent direction，$\nabla f_{k}^{\mathrm{T}} p_{k}<0$ ．By the fact that
$c_{1} \in(0,1)$ ，there exists $\delta>0$ such that

§3．1 Step Length

Lemma

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable．Let p_{k} be a descent direction at x_{k} ，and assume that f is bounded from below along the ray $\left\{x_{k}+\alpha p_{k} \mid \alpha>0\right\}$ ．Then if $0<c_{1}<c_{2}<1$ ，there exist intervals of step lengths satisfying the Wolfe conditions（5）and the strong Wolfe conditions（6）．

Proof．

Define $\varphi(\alpha) \equiv f\left(x_{k}+\alpha p_{k}\right)$ and $\ell(\alpha) \equiv f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}$ ．By the differentiability of f ，

$$
f\left(x_{k}+\alpha p_{k}\right)-f\left(x_{k}\right)-\alpha \nabla f_{k}^{\mathrm{T}} p_{k}=o\left(\left\|\alpha p_{k}\right\|\right)=o(|\alpha|) .
$$

Since p_{k} is a descent direction，$\nabla f_{k}^{\mathrm{T}} p_{k}<0$ ．By the fact that $c_{1} \in(0,1)$ ，there exists $\delta>0$ such that

$$
\varphi(\alpha)-\ell(\alpha)=\left(1-c_{1}\right) \alpha \nabla f_{k}^{\mathrm{T}} p_{k}+o(|\alpha|)<0 \quad \text { if } 0<\alpha<\delta
$$

§3．1 Step Length

Proof（cont＇d）．

Therefore，$\varphi(\alpha)<\ell(\alpha)$ whenever $0<\alpha<\delta$ ．
By assumption，there exists $m \in \mathbb{R}$ such that $\varphi(\alpha) \geqslant m$ for all $\alpha>0$ ，while the fact that $\nabla f_{k}^{\mathrm{T}} p_{k}<0$ implies that

Therefore，the continuity of φ and ℓ implies that the set $\{\alpha$

 $n \mid \omega(n)=\ell(n)\}$ is non－emnty 1 et $\bar{\alpha}=\inf \left\{\alpha>0 \mid f\left(x_{k}+\alpha p_{k}\right)=f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{T} p_{k}\right\}$Then $\bar{\alpha} \geqslant \delta$ ，and the sufficient decrease condition（5a）／（6a）clearly holds for all step lengths less than $\bar{\alpha}$ ．

§3．1 Step Length

Proof（cont＇d）．

Therefore，$\varphi(\alpha)<\ell(\alpha)$ whenever $0<\alpha<\delta$ ．
By assumption，there exists $m \in \mathbb{R}$ such that $\varphi(\alpha) \geqslant m$ for all $\alpha>0$ ，while the fact that $\nabla f_{k}^{\mathrm{T}} p_{k}<0$ implies that

$$
\lim _{\alpha \rightarrow \infty} \ell(\alpha)=-\infty
$$

Therefore，the continuity of φ and ℓ implies that the set $\{\alpha>$ $0 \mid \varphi(\alpha)=\ell(\alpha)\}$ is non－empty．Let

$$
\bar{\alpha}=\inf \left\{\alpha>0 \mid f\left(x_{k}+\alpha p_{k}\right)=f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}\right\} .
$$

Then $\bar{\alpha} \geqslant \delta$ ，and the sufficient decre
holds for all step lengths less than $\bar{\alpha}$ ．

§3．1 Step Length

Proof（cont＇d）．

Therefore，$\varphi(\alpha)<\ell(\alpha)$ whenever $0<\alpha<\delta$ ．
By assumption，there exists $m \in \mathbb{R}$ such that $\varphi(\alpha) \geqslant m$ for all $\alpha>0$ ，while the fact that $\nabla f_{k}^{\mathrm{T}} p_{k}<0$ implies that

$$
\lim _{\alpha \rightarrow \infty} \ell(\alpha)=-\infty
$$

Therefore，the continuity of φ and ℓ implies that the set $\{\alpha>$ $0 \mid \varphi(\alpha)=\ell(\alpha)\}$ is non－empty．Let

$$
\bar{\alpha}=\inf \left\{\alpha>0 \mid f\left(x_{k}+\alpha p_{k}\right)=f\left(x_{k}\right)+\alpha c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}\right\} .
$$

Then $\bar{\alpha} \geqslant \delta$ ，and the sufficient decrease condition（5a）／（6a）clearly holds for all step lengths less than $\bar{\alpha}$ ．

§3．1 Step Length

Proof（cont＇d）．

By the mean value theorem，there exists $\tilde{\alpha} \in(0, \bar{\alpha})$ such that

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)-f\left(x_{k}\right)=\bar{\alpha}(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k} .
$$

By the definition of $\bar{\alpha}$ and the continuity of φ and ℓ ，

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)=\varphi(\bar{\alpha})=\ell(\bar{\alpha})=f\left(x_{k}\right)+\bar{\alpha} c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}
$$

thus the fact that $0<c_{1}<c_{2}<1$ implies that

$$
\begin{equation*}
(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k}=c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}>c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{7}
\end{equation*}
$$

Therefore，$\tilde{\alpha}$ satisfies the Wolfe conditions（5），and the inequalities hold strictly in both（5a）and（5b）．Hence，by our smoothness assumption on f ，there is an interval around $\widetilde{\alpha}$ for which the Wolfe conditions hold．The negativity of the left－hand side of（7）shows that the strong Wolfe conditions（6）hold in the same interval．

§3．1 Step Length

Proof（cont＇d）．

By the mean value theorem，there exists $\tilde{\alpha} \in(0, \bar{\alpha})$ such that

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)-f\left(x_{k}\right)=\bar{\alpha}(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k} .
$$

By the definition of $\bar{\alpha}$ and the continuity of φ and ℓ ，

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)=\varphi(\bar{\alpha})=\ell(\bar{\alpha})=f\left(x_{k}\right)+\bar{\alpha} c_{1} \nabla f_{k}^{\mathrm{T}} p_{k} ;
$$

thus the fact that $0<c_{1}<c_{2}<1$ implies that

$$
\begin{equation*}
(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k}=c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}>c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{7}
\end{equation*}
$$

Therefore，$\widetilde{\alpha}$ satisfies the Wolfe conditions（5），and the inequalities hold strictly in both（5a）and（5b）．Hence，by our smoothness assumption on f ，there is an interval around $\widetilde{\alpha}$ for which the Wolfe conditions hold．

that the strong Wolfe conditions（6）hold in the same interval．

§3．1 Step Length

Proof（cont＇d）．

By the mean value theorem，there exists $\tilde{\alpha} \in(0, \bar{\alpha})$ such that

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)-f\left(x_{k}\right)=\bar{\alpha}(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k} .
$$

By the definition of $\bar{\alpha}$ and the continuity of φ and ℓ ，

$$
f\left(x_{k}+\bar{\alpha} p_{k}\right)=\varphi(\bar{\alpha})=\ell(\bar{\alpha})=f\left(x_{k}\right)+\bar{\alpha} c_{1} \nabla f_{k}^{\mathrm{T}} p_{k} ;
$$

thus the fact that $0<c_{1}<c_{2}<1$ implies that

$$
\begin{equation*}
(\nabla f)\left(x_{k}+\widetilde{\alpha} p_{k}\right)^{\mathrm{T}} p_{k}=c_{1} \nabla f_{k}^{\mathrm{T}} p_{k}>c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} . \tag{7}
\end{equation*}
$$

Therefore，$\widetilde{\alpha}$ satisfies the Wolfe conditions（5），and the inequalities hold strictly in both（5a）and（5b）．Hence，by our smoothness assumption on f ，there is an interval around $\widetilde{\alpha}$ for which the Wolfe conditions hold．The negativity of the left－hand side of（7）shows that the strong Wolfe conditions（6）hold in the same interval．

§3．1 Step Length

The Wolfe conditions are scale－invariant in a broad sense：Multiply－ ing the objective function by a constant or making an affine change of variables does not alter them．They can be used in most line search methods，and are particularly important in the implementa－ tion of quasi－Newton methods．

Remark：For the purpose of the analysis it sometimes requires that the step length obtained by the exact line search is used．Suppose that $f(x)=\frac{1}{2} x^{\mathrm{T}} Q x$ for some positive definite matrix Q ．For a descent direction p_{k} ，the exact line search step length α_{k} is given by

§3．1 Step Length

The Wolfe conditions are scale－invariant in a broad sense：Multiply－ ing the objective function by a constant or making an affine change of variables does not alter them．They can be used in most line search methods，and are particularly important in the implementa－ tion of quasi－Newton methods．

Remark：For the purpose of the analysis it sometimes requires that the step length obtained by the exact line search is used．Suppose that $f(x)=\frac{1}{2} x^{\mathrm{T}} Q x$ for some positive definite matrix Q ．For a descent direction p_{k} ，the exact line search step length α_{k} is given by

$$
\alpha_{k}=-\frac{x_{k}^{\mathrm{T}} Q p_{k}}{p_{k}^{\mathrm{T}} Q p_{k}}
$$

since if $\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$ ，then $\varphi^{\prime}(\alpha)=x_{k}^{\mathrm{T}} Q p_{k}+\alpha p_{k}^{\mathrm{T}} Q p_{k}$ ．

§3．1 Step Length

Therefore，for the Armijo condition（5a）to hold with this α_{k} ，we must have $c_{1} \leqslant \frac{1}{2}$ since

$$
\begin{aligned}
& \frac{1}{2}\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} Q\left(x_{k}+\alpha_{k} p_{k}\right) \leqslant \frac{1}{2} x_{k}^{\mathrm{T}} Q x_{k}-c_{1} \alpha_{k} x_{k}^{\mathrm{T}} Q p_{k} \\
& \quad \Leftrightarrow \alpha_{k} x_{k}^{\mathrm{T}} Q p_{k}+\frac{1}{2} \alpha_{k}^{2} p_{k}^{\mathrm{T}} Q p_{k} \leqslant-c_{1} \alpha_{k} x_{k}^{\mathrm{T}} Q p_{k} \\
& \quad \Leftrightarrow x_{k}^{\mathrm{T}} Q p_{k}+\frac{1}{2} \alpha_{k} p_{k}^{\mathrm{T}} Q p_{k} \leqslant-c_{1} x_{k}^{\mathrm{T}} Q p_{k} \\
& \quad \Leftrightarrow-\alpha_{k}+\frac{1}{2} \alpha_{k} \leqslant-c_{1} \alpha_{k} \\
& \quad \Leftrightarrow c_{1} \leqslant \frac{1}{2} .
\end{aligned}
$$

This implies that if $c_{1}>1 / 2$ ，then the line search would exclude the minimizer of a quadratic，so later on we usually assume that $c_{1} \leqslant 1 / 2$ in the Armijo condition．

§3．1 Step Length

Moreover，for this particular quadratic function f ，at the k－th iterate x_{k} ，the Newton direction p_{k}^{N} is given by

$$
p_{k}^{N}=-\left[(\nabla f)^{2}\left(x_{k}\right)\right]^{-1} \nabla f_{k}=-Q^{-1}\left(Q x_{k}\right)=-x_{k} ;
$$

thus for the Armijo condition（5a）to hold with $p_{k}=p_{k}^{N}$ and $\alpha_{k}=1$ ， we must have $c_{1} \leqslant \frac{1}{2}$ since

$$
\begin{aligned}
& \frac{1}{2}\left(x_{k}-x_{k}\right)^{\mathrm{T}} Q\left(x_{k}-x_{k}\right) \leqslant \frac{1}{2} x_{k}^{\mathrm{T}} Q x_{k}-c_{1} x_{k}^{\mathrm{T}} Q x_{k} \\
& \quad \Leftrightarrow c_{1} x_{k}^{\mathrm{T}} Q x_{k} \leqslant \frac{1}{2} x_{k}^{\mathrm{T}} Q x_{k} \\
& \quad \Leftrightarrow c_{1} \leqslant \frac{1}{2} .
\end{aligned}
$$

Therefore，if $c_{1}>1 / 2$ ，then the unit step lengths may not be ad－
missible．This is another way of seeing that one needs $c_{1} \leqslant 1 / 2$ in the Armiio condition

§3．1 Step Length

Moreover，for this particular quadratic function f ，at the k－th iterate x_{k} ，the Newton direction p_{k}^{N} is given by

$$
p_{k}^{N}=-\left[(\nabla f)^{2}\left(x_{k}\right)\right]^{-1} \nabla f_{k}=-Q^{-1}\left(Q x_{k}\right)=-x_{k} ;
$$

thus for the Armijo condition（5a）to hold with $p_{k}=p_{k}^{N}$ and $\alpha_{k}=1$ ， we must have $c_{1} \leqslant \frac{1}{2}$ since

$$
\begin{aligned}
& \frac{1}{2}\left(x_{k}-x_{k}\right)^{\mathrm{T}} Q\left(x_{k}-x_{k}\right) \leqslant \frac{1}{2} x_{k}^{\mathrm{T}} Q x_{k}-c_{1} x_{k}^{\mathrm{T}} Q x_{k} \\
& \quad \Leftrightarrow c_{1} x_{k}^{\mathrm{T}} Q x_{k} \leqslant \frac{1}{2} x_{k}^{\mathrm{T}} Q x_{k} \\
& \quad \Leftrightarrow c_{1} \leqslant \frac{1}{2} .
\end{aligned}
$$

Therefore，if $c_{1}>1 / 2$ ，then the unit step lengths may not be ad－ missible．This is another way of seeing that one needs $c_{1} \leqslant 1 / 2$ in the Armijo condition．

§3．1 Step Length

－The Goldstein Conditions：

Like the Wolfe conditions，the Goldstein conditions ensure that the step length α achieves sufficient decrease but is not too short．The Goldstein conditions can also be stated as a pair of inequalities：

$$
\begin{equation*}
f\left(x_{k}\right)+(1-c) \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant f\left(x_{k}+\alpha_{k} p_{k}\right) \leqslant f\left(x_{k}\right)+c \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{8}
\end{equation*}
$$

with $0<c<1 / 2$ ．The second inequality is the sufficient decrease （Armijo）condition（3），whereas the first inequality is introduced to control the step length from below．See Figure 5 on the next page．

§3．1 Step Length

Figure 5：The Goldstein conditions

§3．1 Step Length

Compared with the Wolfe conditions，a disadvantage of the Gold－ stein conditions is that the first inequality in（8）may exclude all minimizers of φ ．However，the Goldstein and Wolfe conditions have much in common，and their convergence theories are quite similar． The Goldstein conditions are often used in Newton－type methods but are not well suited for quasi－Newton methods that maintain a positive definite Hessian approximation．

§3．1 Step Length

－Sufficient Decrease and Backtracking：
The sufficient decrease（Armijo）condition（3）alone is not sufficient to ensure that the algorithm makes reasonable progress along the given search direction．However，if the line search algorithm chooses its candidate step lengths using a so－called backtracking approach， we can dispense with the extra condition（5b）and use just the suf－
\qquad
its most basic form，backtracking proceeds as follows．
Algorithm 3.1 （Backtracking Line Search）
Choose $\bar{\alpha}>0, \rho \in(0,1), c \in(0,1)$ ：Set $\alpha \leftarrow \bar{o}$ while $f\left(x_{k}+\alpha p_{k}\right)>f\left(x_{k}\right)+c \alpha \nabla f_{k}^{T} p_{k}$

§3．1 Step Length

－Sufficient Decrease and Backtracking：

The sufficient decrease（Armijo）condition（3）alone is not sufficient to ensure that the algorithm makes reasonable progress along the given search direction．However，if the line search algorithm chooses its candidate step lengths using a so－called backtracking approach， we can dispense with the extra condition（5b）and use just the suf－ ficient decrease condition to terminate the line search procedure．
its most basic form，backtracking proceeds as follows．
Algorithm 3.1 （Backtracking Line Search）
Choose $\bar{\alpha}>0, \rho \in(0,1), c \in(0,1)$ ；Set $\alpha \leftarrow \bar{\alpha}$ ； while $f\left(x_{k}+\alpha p_{k}\right)>f\left(x_{k}\right)+c \alpha \nabla f_{k}^{T} p_{k}$
end
Terminate with $\alpha_{k}=\alpha$ ．

§3．1 Step Length

－Sufficient Decrease and Backtracking：

The sufficient decrease（Armijo）condition（3）alone is not sufficient to ensure that the algorithm makes reasonable progress along the given search direction．However，if the line search algorithm chooses its candidate step lengths using a so－called backtracking approach， we can dispense with the extra condition（5b）and use just the suf－ ficient decrease condition to terminate the line search procedure．In its most basic form，backtracking proceeds as follows．

Algorithm 3.1 （Backtracking Line Search）：
Choose $\bar{\alpha}>0, \rho \in(0,1), c \in(0,1)$ ；Set $\alpha \leftarrow \bar{\alpha}$ ； while $f\left(x_{k}+\alpha p_{k}\right)>f\left(x_{k}\right)+c \alpha \nabla f_{k}^{T} p_{k}$

$$
\alpha \leftarrow \rho \alpha ;
$$

end
Terminate with $\alpha_{k}=\alpha$ ．

§3．1 Step Length

In this procedure，the initial step length $\bar{\alpha}$ is chosen to be 1 in New－ ton and quasi－Newton methods，but can have different values in other algorithms such as steepest descent or conjugate gradient．
acceptable step length will be found after a finite number of trials， because α_{k} will eventually become small enough that the sufficient decrease condition holds．In practice，the contraction factor ρ is of－ ten allowed to vary at each iteration of the line search．For example， it can be chosen by safeguarded interpolation，as we describe later We need ensure only that at each iteration we have $\rho \in\left[\rho_{\mathrm{l}} . \rho_{\text {hi }}\right]$ ，for some fixed constants $0<\rho_{\mathrm{lo}}<\rho_{\mathrm{hi}}<1$

§3．1 Step Length

In this procedure，the initial step length $\bar{\alpha}$ is chosen to be 1 in New－ ton and quasi－Newton methods，but can have different values in other algorithms such as steepest descent or conjugate gradient．An acceptable step length will be found after a finite number of trials， because α_{k} will eventually become small enough that the sufficient decrease condition holds．In practice，the contraction factor ρ is of－
ten allowed to vary at each iteration of the line search．For example， it can be chosen by safeguarded interpolation，as we describe later We need ensure only that at each iteration we have $\rho \in\left[\rho_{\mathrm{l}}^{\mathrm{l}}, \rho_{\mathrm{hi}}\right]$ ，for some fixed constants $0<\rho_{\mathrm{lo}}<\rho_{\mathrm{hi}}<1$

§3．1 Step Length

In this procedure，the initial step length $\bar{\alpha}$ is chosen to be 1 in New－ ton and quasi－Newton methods，but can have different values in other algorithms such as steepest descent or conjugate gradient．An acceptable step length will be found after a finite number of trials， because α_{k} will eventually become small enough that the sufficient decrease condition holds．In practice，the contraction factor ρ is of－ ten allowed to vary at each iteration of the line search．For example， it can be chosen by safeguarded interpolation，as we describe later． We need ensure only that at each iteration we have $\rho \in\left[\rho_{\mathrm{lo}}, \rho_{\mathrm{hi}}\right]$ ，for some fixed constants $0<\rho_{\text {lo }}<\rho_{\text {hi }}<1$ ．

§3．1 Step Length

The backtracking approach ensures either that the selected step length α_{k} is some fixed value（the initial choice $\bar{\alpha}$ ），or else that it is short enough to satisfy the sufficient decrease condition but not too short．The latter claim holds because the accepted value α_{k} is within a factor ρ of the previous trial value，α_{k} / ρ ，which was rejected for violating the sufficient decrease condition；that is，for being too long．This simple and popular strategy for terminating a line search is well suited for Newton methods but is less appropriate for quasi－Newton and conjugate gradient methods．

§3．1 Step Length

The backtracking approach ensures either that the selected step length α_{k} is some fixed value（the initial choice $\bar{\alpha}$ ），or else that it is short enough to satisfy the sufficient decrease condition but not too short．The latter claim holds because the accepted value α_{k} is within a factor ρ of the previous trial value，α_{k} / ρ ，which was rejected for violating the sufficient decrease condition；that is，for being too long．This simple and popular strategy for terminating a line search is well suited for Newton methods but is less appropriate for quasi－Newton and conjugate gradient methods．

§3．1 Step Length

The backtracking approach ensures either that the selected step length α_{k} is some fixed value（the initial choice $\bar{\alpha}$ ），or else that it is short enough to satisfy the sufficient decrease condition but not too short．The latter claim holds because the accepted value α_{k} is within a factor ρ of the previous trial value，α_{k} / ρ ，which was rejected for violating the sufficient decrease condition；that is，for being too long．This simple and popular strategy for terminating a line search is well suited for Newton methods but is less appropriate for quasi－Newton and conjugate gradient methods．

§3．2 Convergence of Line Search Methods

To obtain global convergence，we must not only have well chosen step lengths but also well chosen search directions p_{k} ．We discuss requirements on the search direction in this section，focusing on one key property：the angle θ_{k} between p_{k} and the steepest descent direction $-\nabla f_{k}$ ，defined by

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{\mathrm{T}} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

§3．2 Convergence of Line Search Methods

The following theorem，due to Zoutendijk，has far－reaching conse－ quences．It quantifies the effect of properly chosen step lengths α_{k} ， and shows，for example，that the steepest descent method is globally convergent．For other algorithms，it describes how far p_{k} can devi－ ate from the steepest descent direction and still produce a globally convergent iteration．Various line search termination conditions can be used to establish this result，but for concreteness we will consider only the Wolfe conditions（5）．Though Zoutendijk＇s result appears at first to be technical and obscure，its power will soon become ev－ ident．

§3．2 Convergence of Line Search Methods

Theorem（Zoutendijk）

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable，and $\left\{x_{k}\right\}$ be a se－ quence of iterates taking the form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，where x_{0} is the starting point of the iteration，p_{k} is a descent direction，and α_{k} satisfies the Wolfe conditions（5）．
bounded from below in the level set $S=$

Then it holds the inequality

§3．2 Convergence of Line Search Methods

Theorem（Zoutendijk）

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable，and $\left\{x_{k}\right\}$ be a se－ quence of iterates taking the form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，where x_{0} is the starting point of the iteration，p_{k} is a descent direction，and α_{k} satisfies the Wolfe conditions（5）．Suppose in addition that f is bounded from below in the level set $\left.S=\left\{x \mid f(x) \leqslant f\left(x_{0}\right)\right)\right\}$ ，and the gradient ∇f is Lipschitz continuous on an open set \mathcal{N} containing S ； that is，there exists a constant $L>0$ such that

$$
\|(\nabla f)(x)-(\nabla f)(\tilde{x})\| \leqslant L\|x-\tilde{x}\| \quad \forall x, \tilde{x} \in \mathcal{N} .
$$

Then it holds the inequality

§3．2 Convergence of Line Search Methods

Theorem（Zoutendijk）

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable，and $\left\{x_{k}\right\}$ be a se－ quence of iterates taking the form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，where x_{0} is the starting point of the iteration，p_{k} is a descent direction，and α_{k} satisfies the Wolfe conditions（5）．Suppose in addition that f is bounded from below in the level set $\left.S=\left\{x \mid f(x) \leqslant f\left(x_{0}\right)\right)\right\}$ ，and the gradient ∇f is Lipschitz continuous on an open set \mathcal{N} containing S ； that is，there exists a constant $L>0$ such that

$$
\|(\nabla f)(x)-(\nabla f)(\tilde{x})\| \leqslant L\|x-\tilde{x}\| \quad \forall x, \tilde{x} \in \mathcal{N}
$$

Then it holds the inequality

$$
\begin{equation*}
\sum_{k=0}^{\infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty \tag{9}
\end{equation*}
$$

§3．2 Convergence of Line Search Methods

Proof．

From the second Wolfe condition（5b），

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \geqslant\left(c_{2}-1\right) \nabla f_{k}^{\mathrm{T}} p_{k},
$$

and the Lipschitz condition and the Cauchy－Schwartz inequality fur－ ther imply that

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \leqslant L \alpha_{k}\left\|p_{k}\right\|^{2}
$$

The two inequalities above show that

By substituting this inequality into the first Wolfe condition（5a） we obtain that

§3．2 Convergence of Line Search Methods

Proof．

From the second Wolfe condition（5b），

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \geqslant\left(c_{2}-1\right) \nabla f_{k}^{\mathrm{T}} p_{k},
$$

and the Lipschitz condition and the Cauchy－Schwartz inequality fur－ ther imply that

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \leqslant L \alpha_{k}\left\|p_{k}\right\|^{2}
$$

The two inequalities above show that

$$
\left(c_{2}-1\right) \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant L \alpha_{k}\left\|p_{k}\right\|^{2} \text { or equivalently } \alpha_{k} \geqslant \frac{c_{2}-1}{L} \frac{\nabla f_{k}^{\mathrm{T}} p_{k}}{\left\|p_{k}\right\|^{2}} .
$$

By substituting this inequality into the first Wolfe condition（5a） we obtain that

§3．2 Convergence of Line Search Methods

Proof．

From the second Wolfe condition（5b），

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \geqslant\left(c_{2}-1\right) \nabla f_{k}^{\mathrm{T}} p_{k},
$$

and the Lipschitz condition and the Cauchy－Schwartz inequality fur－ ther imply that

$$
\left(\nabla f_{k+1}-\nabla f_{k}\right)^{\mathrm{T}} p_{k} \leqslant L \alpha_{k}\left\|p_{k}\right\|^{2}
$$

The two inequalities above show that

$$
\left(c_{2}-1\right) \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant L \alpha_{k}\left\|p_{k}\right\|^{2} \text { or equivalently } \alpha_{k} \geqslant \frac{c_{2}-1}{L} \frac{\nabla f_{k}^{\mathrm{T}} p_{k}}{\left\|p_{k}\right\|^{2}}
$$

By substituting this inequality into the first Wolfe condition（5a）， we obtain that

$$
f_{k+1} \leqslant f_{k}+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant f_{k}-c_{1} \frac{1-c_{2}}{L} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2} .
$$

§3．2 Convergence of Line Search Methods

Proof（cont＇d）．

From previous page：

$$
f_{k+1} \leqslant f_{k}+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant f_{k}-c_{1} \frac{1-c_{2}}{L} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2} .
$$

Summing over all indices k less that ℓ ，we find that

$$
f_{\ell+1} \leqslant f_{0}-c_{1} \frac{1-c_{2}}{L} \sum_{k=0}^{\ell} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}
$$

Since f is bounded from below in S，from the inequality above it follows that for all $\ell \in \mathbb{N}$ ，

§3．2 Convergence of Line Search Methods

Proof（cont＇d）．

From previous page：

$$
f_{k+1} \leqslant f_{k}+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant f_{k}-c_{1} \frac{1-c_{2}}{L} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2} .
$$

Summing over all indices k less that ℓ ，we find that

$$
f_{\ell+1} \leqslant f_{0}-c_{1} \frac{1-c_{2}}{L} \sum_{k=0}^{\ell} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}
$$

Since f is bounded from below in S ，from the inequality above it follows that for all $\ell \in \mathbb{N}$ ，

$$
c_{1} \frac{1-c_{2}}{L} \sum_{k=0}^{\ell} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2} \leqslant f_{0}-\inf _{x \in S} f(x)<\infty
$$

This concludes the theorem．

§3．2 Convergence of Line Search Methods

The Zoutendijk condition（9）implies that

$$
\lim _{k \rightarrow \infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=0
$$

This limit can be used to derive global convergence results for line search algorithms．
p_{k} in the iteration scheme ensures that the angle θ_{k} defined by is bounded away from 90 degree so that $\cos \theta_{k} \geqslant \delta>0$ for some positive constant δ ，then it follows immediatelv that

In other words，we can be sure that the gradient norms｜∇ f．ll con
verge to zero，provided that the search directions are never too close
to orthogonality with the gradient

§3．2 Convergence of Line Search Methods

The Zoutendijk condition（9）implies that

$$
\lim _{k \rightarrow \infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=0
$$

This limit can be used to derive global convergence results for line search algorithms．If our method for choosing the search direction p_{k} in the iteration scheme ensures that the angle θ_{k} defined by

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{\mathrm{T}} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

is bounded away from 90 degree so that $\cos \theta_{k} \geqslant \delta>0$ for some positive constant δ ，then it follows immediately that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

In other words，we can be sure that the gradient norms $\left\|\nabla f_{k}\right\|$ con－
verge to zero，provided that the search directions are never too close
to orthogonality with the gradient

§3．2 Convergence of Line Search Methods

The Zoutendijk condition（9）implies that

$$
\lim _{k \rightarrow \infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=0
$$

This limit can be used to derive global convergence results for line search algorithms．If our method for choosing the search direction p_{k} in the iteration scheme ensures that the angle θ_{k} defined by

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{\mathrm{T}} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

is bounded away from 90 degree so that $\cos \theta_{k} \geqslant \delta>0$ for some positive constant δ ，then it follows immediately that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

In other words，we can be sure that the gradient norms $\left\|\nabla f_{k}\right\|$ con－ verge to zero，provided that the search directions are never too close to orthogonality with the gradient．

§3．2 Convergence of Line Search Methods

We use the term globally convergent to refer to algorithms for which the property

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

is satisfied，but note that this term is sometimes used in other con－ texts to mean different things．
form
vergence result that can be obtained：We cannot guarantee that the method converges to a minimizer，but only that it is attracted by stationary points．Only by making additional requirements on the search direction p_{k}－by introducing negative curvature information from the Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ，for example－can we strengthen these results to include convergence to a local minimum

§3．2 Convergence of Line Search Methods

We use the term globally convergent to refer to algorithms for which the property

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

is satisfied，but note that this term is sometimes used in other con－ texts to mean different things．For line search methods of the general form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，the limit（10）is the strongest global con－ vergence result that can be obtained：We cannot guarantee that the method converges to a minimizer，but only that it is attracted by stationary points．Only by making additional requirements on the search direction $p_{k}-$ by introducing negative curvature information from the Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ，for example－can we strengthen these results to include convergence to a local minimum．

§3．2 Convergence of Line Search Methods

We use the term globally convergent to refer to algorithms for which the property

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

is satisfied，but note that this term is sometimes used in other con－ texts to mean different things．For line search methods of the general form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，the limit（10）is the strongest global con－ vergence result that can be obtained：We cannot guarantee that the method converges to a minimizer，but only that it is attracted by stationary points．Only by making additional requirements on the search direction p_{k}－by introducing negative curvature information from the Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ，for example－can we strengthen these results to include convergence to a local minimum．

§3．2 Convergence of Line Search Methods

Consider now the Newton－like method $x_{k+1}=x_{k}-\alpha_{k} B_{k}^{-1} \nabla f_{k}$ and assume that the matrices B_{k} are positive definite with a uniformly bounded condition number；that is，there is a constant M such that

$$
\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leqslant M \quad \forall k \in \mathbb{N} .
$$

It is easy to show from the definition of θ_{k} that $\cos \theta_{k} \geqslant 1 / M$ ；thus we find that $\lim \left\|\nabla f_{k}\right\|=0$ ．Therefore，we have shown that Newton and auasi－Newton methods are globally convergent if the matrices B_{k} have a bounded condition number and are positive definite（which is needed to ensure that p_{k} is a descent direction），and if the step lengths satisfy the Wolfe conditions．

§3．2 Convergence of Line Search Methods

Consider now the Newton－like method $x_{k+1}=x_{k}-\alpha_{k} B_{k}^{-1} \nabla f_{k}$ and assume that the matrices B_{k} are positive definite with a uniformly bounded condition number；that is，there is a constant M such that

$$
\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leqslant M \quad \forall k \in \mathbb{N} .
$$

It is easy to show from the definition of θ_{k} that $\cos \theta_{k} \geqslant 1 / M$ ；thus we find that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$ ．Therefore，we have shown that Newton and quasi－Newton methods are globally convergent if the matrices
B_{k} have a bounded condition number and are positive definite（which
is needed to ensure that p_{k} is a descent direction），and if the step
lengths satisfy the Wolfe conditions．

§3．2 Convergence of Line Search Methods

Consider now the Newton－like method $x_{k+1}=x_{k}-\alpha_{k} B_{k}^{-1} \nabla f_{k}$ and assume that the matrices B_{k} are positive definite with a uniformly bounded condition number；that is，there is a constant M such that

$$
\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leqslant M \quad \forall k \in \mathbb{N}
$$

It is easy to show from the definition of θ_{k} that $\cos \theta_{k} \geqslant 1 / M$ ；thus we find that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$ ．Therefore，we have shown that Newton and quasi－Newton methods are globally convergent if the matrices B_{k} have a bounded condition number and are positive definite（which is needed to ensure that p_{k} is a descent direction），and if the step lengths satisfy the Wolfe conditions．

§3．2 Convergence of Line Search Methods

For some algorithms，such as conjugate gradient methods，we will be able to prove only the weaker result

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

that is，only a subsequence of the gradient norms $\left\|\nabla f_{k_{j}}\right\|$ converges to zero． This result usually can be proved by contradiction using Zoutendijk＇s condition \square $\cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}$ Suppose that（11） does not hold．Then there exists $\gamma>0$ such that

This shows that $\lim \cos \theta_{k}=0$ ．To establish（11），it is then enough to show that a subsequence $\left.\left\{\cos \theta_{1}\right\}\right\}_{k=1}$ is bounded away from zero We will use this strategy in Chapter 5 to study the convergence of nonlinear conjugate gradient methods．

§3．2 Convergence of Line Search Methods

For some algorithms，such as conjugate gradient methods，we will be able to prove only the weaker result

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

that is，only a subsequence of the gradient norms $\left\|\nabla f_{k_{j}}\right\|$ converges to zero．This result usually can be proved by contradiction using Zoutendijk＇s condition $\sum_{k=0}^{\infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty$ ．Suppose that（11） does not hold．Then there exists $\gamma>0$ such that

$$
\left\|\nabla f_{k}\right\| \geqslant \gamma \quad \forall k \gg 1
$$

This shows that $\lim _{k \rightarrow \infty} \cos \theta_{k}=0$ ．To establish（11），it is then enough to show that a subsequence $\left\{\cos \theta_{k_{j}}\right\}_{k=1}^{\infty}$ is bounded away from zero． We will use this strategy in Chapter 5 to study the convergence of nonlinear conjugate gradient methods．

§3．2 Convergence of Line Search Methods

For some algorithms，such as conjugate gradient methods，we will be able to prove only the weaker result

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

that is，only a subsequence of the gradient norms $\left\|\nabla f_{k_{j}}\right\|$ converges to zero．This result usually can be proved by contradiction using Zoutendijk＇s condition $\sum_{k=0}^{\infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty$ ．Suppose that（11） does not hold．Then there exists $\gamma>0$ such that

$$
\left\|\nabla f_{k}\right\| \geqslant \gamma \quad \forall k \gg 1
$$

This shows that $\lim _{k \rightarrow \infty} \cos \theta_{k}=0$ ．To establish（11），it is then enough to show that a subsequence $\left\{\cos \theta_{k_{j}}\right\}_{k=1}^{\infty}$ is bounded away from zero． We will use this strategy in Chapter 5 to study the convergence of nonlinear conjugate gradient methods．

§3．2 Convergence of Line Search Methods

By applying this proof technique，we can prove global convergence in the sense of

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

for a general class of algorithms．Consider any algorithm for which
（1）every iteration produces a decrease in the objective function
chosen to satisfy the Wolfe or Goldstein conditions．
Then，since $\cos \eta_{k}=1$ for the steepest descent steps，the result （11）holds．Of course，we would design the algorithm so that it does something＂better＂than steepest descent at the other $m-1$ iterates．The occasional steepest descent steps may not make much progress，but they at least guarantee overall global convergence

§3．2 Convergence of Line Search Methods

By applying this proof technique，we can prove global convergence in the sense of

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

for a general class of algorithms．Consider any algorithm for which
（1）every iteration produces a decrease in the objective function；
（2）every m－th iteration is a steepest descent step，with step length chosen to satisfy the Wolfe or Goldstein conditions．
Then，since $\cos \theta_{k}=1$ for the steepest descent steps，the result （11）holds．Of course，we would design the algorithm so that it does something＂better＂than steepest descent at the other $m-1$ iterates．The occasional steepest descent steps may not make much

§3．2 Convergence of Line Search Methods

By applying this proof technique，we can prove global convergence in the sense of

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

for a general class of algorithms．Consider any algorithm for which
（1）every iteration produces a decrease in the objective function；
（2）every m－th iteration is a steepest descent step，with step length chosen to satisfy the Wolfe or Goldstein conditions．
Then，since $\cos \theta_{k}=1$ for the steepest descent steps，the result （11）holds．Of course，we would design the algorithm so that it does something＂better＂than steepest descent at the other $m-1$ iterates．The occasional steepest descent steps may not make much

§3．2 Convergence of Line Search Methods

By applying this proof technique，we can prove global convergence in the sense of

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0 \tag{11}
\end{equation*}
$$

for a general class of algorithms．Consider any algorithm for which
（1）every iteration produces a decrease in the objective function；
（2）every m－th iteration is a steepest descent step，with step length chosen to satisfy the Wolfe or Goldstein conditions．
Then，since $\cos \theta_{k}=1$ for the steepest descent steps，the result （11）holds．Of course，we would design the algorithm so that it does something＂better＂than steepest descent at the other $m-1$ iterates．The occasional steepest descent steps may not make much progress，but they at least guarantee overall global convergence．

§3．2 Convergence of Line Search Methods

Note that throughout this section we have used only the fact that Zoutendijk＇s condition

$$
\begin{equation*}
\sum_{k=0}^{\infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty \tag{9}
\end{equation*}
$$

implies the limit

$$
\lim _{k \rightarrow \infty} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=0
$$

In later chapters we will make use of the bounded sum condition （9），which forces the sequence $\left\{\cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}\right\}_{k=1}^{\infty}$ to converge to zero at a sufficiently rapid rate．

§3．3 Rate of Convergence

It would seem that designing optimization algorithms with good convergence properties is easy，since all we need to ensure is that the search direction p_{k} does not tend to become orthogonal to the gradient ∇f_{k} ，or that steepest descent steps are taken regularly．We could simply compute $\cos \theta_{k}$ at every iteration and turn p_{k} toward the steepest descent direction if $\cos \theta_{k}$ is smaller than some preselected constant $\delta>0$ ．Angle tests of this type ensure global convergence，
but they are undesirable for two reasons．First，they may impede a fast rate of convergence，because for problems with an ill－conditioned Hessian，it mav be necessary to produce search directions that are almost orthogonal to the gradient，and an inappropriate choice of the parameter δ may cause such steps to be rejected．Second，angle tests destroy the invariance properties of quasi－Newton methods．

§3．3 Rate of Convergence

It would seem that designing optimization algorithms with good convergence properties is easy，since all we need to ensure is that the search direction p_{k} does not tend to become orthogonal to the gradient ∇f_{k} ，or that steepest descent steps are taken regularly．We could simply compute $\cos \theta_{k}$ at every iteration and turn p_{k} toward the steepest descent direction if $\cos \theta_{k}$ is smaller than some preselected constant $\delta>0$ ．Angle tests of this type ensure global convergence， but they are undesirable for two reasons．First，they may impede a fast rate of convergence，because for problems with an ill－conditioned Hessian，it may be necessary to produce search directions that are almost orthogonal to the gradient，and an inappropriate choice of the parameter δ may cause such steps to be rejected．Second，angle tests destroy the invariance properties of quasi－Newton methods．

§3．3 Rate of Convergence

Algorithmic strategies that achieve rapid convergence can sometimes conflict with the requirements of global convergence，and vice versa． For example，the steepest descent method is the quintessential glob－ ally convergent algorithm，but it is quite slow in practice，as we shall see below．On the other hand，the pure Newton iteration converges rapidly when started close enough to a solution，but its steps may not even be descent directions away from the solution．The chal－ lenge is to design algorithms that incorporate both properties：good global convergence guarantees and a rapid rate of convergence．

§3．3 Rate of Convergence

Definition

Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in \mathbb{R}^{n} and x_{*} be the limit of the sequence．
（1）$\left\{x_{k}\right\}_{k=1}^{\infty}$ is said to converge to x_{*} superlinearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{*}\right\|}{\left\|x_{k}-x_{*}\right\|}=0
$$

（2）$\left\{x_{k}\right\}_{k=1}^{\infty}$ is said to converge to x_{*} quadratically if there exists a constant $M>0$ such that

$$
\frac{\left\|x_{k+1}-x_{*}\right\|}{\left\|x_{k}-x_{*}\right\|^{2}} \leqslant M \quad \forall k \gg 1
$$

Example
（1）The sequence $x_{k}=1+k^{-k}$ converges superlinearly to 1 （2）The sequence $x_{k}=1+k^{-2^{k}}$ converges quadratically to 1

§3．3 Rate of Convergence

Definition

Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in \mathbb{R}^{n} and x_{*} be the limit of the sequence．
（1）$\left\{x_{k}\right\}_{k=1}^{\infty}$ is said to converge to x_{*} superlinearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{*}\right\|}{\left\|x_{k}-x_{*}\right\|}=0
$$

（2）$\left\{x_{k}\right\}_{k=1}^{\infty}$ is said to converge to x_{*} quadratically if there exists a constant $M>0$ such that

$$
\frac{\left\|x_{k+1}-x_{*}\right\|}{\left\|x_{k}-x_{*}\right\|^{2}} \leqslant M \quad \forall k \gg 1 .
$$

Example

（1）The sequence $x_{k}=1+k^{-k}$ converges superlinearly to 1 ．
（2）The sequence $x_{k}=1+k^{-2^{k}}$ converges quadratically to 1 ．

§3．3 Rate of Convergence

－Convergence Rate of Steepest Descent：

We begin our study of convergence rates of line search methods by considering the most basic approach of all：the steepest descent method．

We can learn much about the steepest descent method by consider－ ing the ideal case，in which the objective function is quadratic and the line searches are exact．Let us suppose that

$$
f(x)=\frac{1}{2} x^{\mathrm{T}} Q x-b^{\mathrm{T}} x
$$

where Q is symmetric and positive definite．The gradient is given by $(\nabla f)(x)=Q x-b$ and the minimizer x_{*} is the unique solution of the linear system $Q x=b$ ．

§3．3 Rate of Convergence

It is easy to compute the step length α_{k} that minimizes $f\left(x_{k}-\alpha \nabla f_{k}\right)$ ． By differentiating the function

$$
f\left(x_{k}-\alpha \nabla f_{k}\right)=\frac{1}{2}\left(x_{k}-\alpha \nabla f_{k}\right)^{\mathrm{T}} Q\left(x_{k}-\alpha \nabla f_{k}\right)-b^{\mathrm{T}}\left(x_{k}-\alpha \nabla f_{k}\right)
$$

with respect to α ，and setting the derivative to zero，we obtain that

$$
\alpha_{k}=\frac{\nabla f_{k}^{\mathrm{T}} \nabla f_{k}}{\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}}
$$

If we use this exact minimizer α_{k} ，the steepest descent iteration for
f given above is given by

Since $\nabla f_{k}=Q x_{k}-b$ ，this equation yields a closed－form expression
for x_{k+1} in terms of x_{k} ．

§3．3 Rate of Convergence

It is easy to compute the step length α_{k} that minimizes $f\left(x_{k}-\alpha \nabla f_{k}\right)$ ． By differentiating the function

$$
f\left(x_{k}-\alpha \nabla f_{k}\right)=\frac{1}{2}\left(x_{k}-\alpha \nabla f_{k}\right)^{\mathrm{T}} Q\left(x_{k}-\alpha \nabla f_{k}\right)-b^{\mathrm{T}}\left(x_{k}-\alpha \nabla f_{k}\right)
$$

with respect to α ，and setting the derivative to zero，we obtain that

$$
\alpha_{k}=\frac{\nabla f_{k}^{\mathrm{T}} \nabla f_{k}}{\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}} .
$$

If we use this exact minimizer α_{k} ，the steepest descent iteration for f given above is given by

$$
\begin{equation*}
x_{k+1}=x_{k}-\left(\frac{\nabla f_{k}^{\mathrm{T}} \nabla f_{k}}{\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}}\right) \nabla f_{k} . \tag{12}
\end{equation*}
$$

Since $\nabla f_{k}=Q x_{k}-b$ ，this equation yields a closed－form expression for x_{k+1} in terms of x_{k} ．

§3．3 Rate of Convergence

In Figure 6 we plot a typical sequence of iterates generated by the steepest descent method on a two－dimensional quadratic objective function．The contours of f are ellipsoids whose axes lie along the orthogonal eigenvectors of Q ．Note that the iterates zigzag toward the solution．

Figure 6：Steepest descent steps

§3．3 Rate of Convergence

To quantify the rate of convergence we introduce the weighted norm $\|x\|_{Q}^{2} \equiv x^{\mathrm{T}} Q x$ ．Using the relation $Q x_{*}=b$ ，

$$
\begin{aligned}
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2} & =\frac{1}{2}\left(x-x_{*}\right)^{\mathrm{T}} Q\left(x-x_{*}\right) \\
& =\frac{1}{2} x^{\mathrm{T}} Q x-\frac{1}{2} x_{*}^{\mathrm{T}} Q x-\frac{1}{2} x^{\mathrm{T}} Q x_{*}+\frac{1}{2} x_{*}^{\mathrm{T}} Q x_{*} \\
& =\frac{1}{2} x^{\mathrm{T}} Q x-\frac{1}{2} b^{\mathrm{T}} x-\frac{1}{2} x^{\mathrm{T}} b-\left(\frac{1}{2} x_{*}^{\mathrm{T}} Q x_{*}-x_{*}^{\mathrm{T}} Q x_{*}\right) \\
& =f(x)-f\left(x_{*}\right)
\end{aligned}
$$

so this norm measures the difference between the current objective value and the optimal value．

noting that $\nabla f_{k}=Q\left(x_{k}-x_{*}\right)$ ，we now derive the equality

§3．3 Rate of Convergence

To quantify the rate of convergence we introduce the weighted norm $\|x\|_{Q}^{2} \equiv x^{\mathrm{T}} Q x$ ．Using the relation $Q x_{*}=b$ ，

$$
\begin{aligned}
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2} & =\frac{1}{2}\left(x-x_{*}\right)^{\mathrm{T}} Q\left(x-x_{*}\right) \\
& =\frac{1}{2} x^{\mathrm{T}} Q x-\frac{1}{2} x_{*}^{\mathrm{T}} Q x-\frac{1}{2} x^{\mathrm{T}} Q x_{*}+\frac{1}{2} x_{*}^{\mathrm{T}} Q x_{*} \\
& =\frac{1}{2} x^{\mathrm{T}} Q x-\frac{1}{2} b^{\mathrm{T}} x-\frac{1}{2} x^{\mathrm{T}} b-\left(\frac{1}{2} x_{*}^{\mathrm{T}} Q x_{*}-x_{*}^{\mathrm{T}} Q x_{*}\right) \\
& =f(x)-f\left(x_{*}\right)
\end{aligned}
$$

so this norm measures the difference between the current objective value and the optimal value．Using the iteration scheme（12）and noting that $\nabla f_{k}=Q\left(x_{k}-x_{*}\right)$ ，we now derive the equality

$$
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2}=\left[1-\frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}\right]\left\|x_{k}-x_{*}\right\|_{Q}^{2} .
$$

§3．3 Rate of Convergence

By the substitution of variable $y=x-Q^{-1} b$ ，we find that

$$
\begin{aligned}
f(x) & =\frac{1}{2} x^{\mathrm{T}} Q x-b^{\mathrm{T}} x=\frac{1}{2}\left(x-Q^{-1} b\right)^{\mathrm{T}} Q\left(x-Q^{-1} b\right)-\frac{1}{2} b^{\mathrm{T}} Q^{-1} b \\
& =\frac{1}{2} y^{\mathrm{T}} Q y-\frac{1}{2} b^{\mathrm{T}} Q^{-1} b \equiv g(y) .
\end{aligned}
$$

Setting $y_{k}=x_{k}-Q^{-1} b$ for all $k \in \mathbb{N}$ and $\nabla g_{k}=(\nabla g)\left(y_{k}\right)$ ．Since

$$
(\nabla f)(x)=Q x-b=Q\left(x-Q^{-1} b\right)=Q y=(\nabla g)(y)
$$

we have $p_{k}=-\nabla g_{k}$ and the step length α_{k} for the steepest descent method satisfies

$$
\alpha_{k}=\frac{\nabla f_{k}^{\mathrm{T}} \nabla f_{k}}{\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}}=\frac{\nabla g_{k}^{\mathrm{T}} \nabla g_{k}}{\nabla g_{k}^{\mathrm{T}} Q \nabla g_{k}} .
$$

Therefore，$x_{k+1}=x_{k}-\alpha_{k} \nabla f_{k}$ if and only if $y_{k+1}=y_{k}-\alpha_{k} \nabla g_{k}$ which shows that the steepest descent method with the exact line search for both f and g are identical．

§3．3 Rate of Convergence

Since $x_{*}=Q^{-1} b, y=x-x_{*}$ ．Moreover，since $p_{k}=-Q y_{k}$ ，we also have

$$
p_{k}^{\mathrm{T}} Q y_{k}=-p_{k}^{\mathrm{T}} p_{k}=-\alpha_{k} p_{k}^{\mathrm{T}} Q p_{k} \quad \text { and } \quad p_{k}^{\mathrm{T}} Q^{-1} p_{k}=y_{k}^{\mathrm{T}} Q y_{k}=\left\|y_{k}\right\|_{Q}^{2} \text {. }
$$

Therefore，

$$
\begin{aligned}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} & =y_{k+1}^{\mathrm{T}} Q y_{k+1}=\left(y_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} Q\left(y_{k}+\alpha_{k} p_{k}\right) \\
& =y_{k}^{\mathrm{T}} Q y_{k}+2 \alpha_{k} p_{k}^{\mathrm{T}} Q y_{k}+\alpha_{k}^{2} p_{k}^{\mathrm{T}} Q p_{k} \\
& =\left\|y_{k}\right\|_{Q}^{2}+\alpha_{k} p_{k}^{\mathrm{T}} Q y_{k} \\
& =\left\|y_{k}\right\|_{Q}^{2}+\alpha_{k} \frac{p_{k}^{\mathrm{T}} Q y_{k}}{p_{k}^{\mathrm{T}} Q^{-1} p_{k}}\left\|y_{k}\right\|_{Q}^{2} \\
& =\left[1+\alpha_{k} \frac{p_{k}^{\mathrm{T}} Q y_{k}}{p_{k}^{\mathrm{T}} Q^{-1} p_{k}}\right]\left\|y_{k}\right\|_{Q}^{2} \\
& =\left[1-\frac{\left(p_{k}^{\mathrm{T}} p_{k}\right)^{2}}{\left(p_{k}^{\mathrm{T}} Q p_{k}\right)\left(p_{k}^{\mathrm{T}} Q^{-1} p_{k}\right)}\right]\left\|x_{k}-x_{*}\right\|_{Q}^{2} .
\end{aligned}
$$

§3．3 Rate of Convergence

The expression

$$
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2}=\left[1-\frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}\right]\left\|x_{k}-x_{*}\right\|_{Q}^{2} .
$$

describes the exact decrease in f at each iteration，but since the term inside the brackets is difficult to interpret，it is more useful to bound it in terms of the condition number of the problem．

Theorem
When the steepest descent method with exact line searches is applied to the strongly convex quadratic function $f(x)=\frac{1}{2} x^{T} Q x-b^{T} x$ ，the error norm $\left\|x_{k}-x_{*}\right\|_{Q}^{2}$ satisfies

where

§3．3 Rate of Convergence

The expression

$$
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2}=\left[1-\frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}\right]\left\|x_{k}-x_{*}\right\|_{Q}^{2}
$$

describes the exact decrease in f at each iteration，but since the term inside the brackets is difficult to interpret，it is more useful to bound it in terms of the condition number of the problem．

Theorem

When the steepest descent method with exact line searches is applied to the strongly convex quadratic function $f(x)=\frac{1}{2} x^{\mathrm{T}} Q x-b^{\mathrm{T}} x$ ，the error norm $\left\|x_{k}-x_{*}\right\|_{Q}^{2}$ satisfies

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} \leqslant\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left\|x_{k}-x_{*}\right\|_{Q}^{2} \quad \forall k \in \mathbb{N}, \tag{13}
\end{equation*}
$$

where $0<\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ are the eigenvalues of Q ．

§3．3 Rate of Convergence

Sketch of the proof．

Since Q is symmetric，$Q=P \Lambda P^{\mathrm{T}}$ for some diagonal matrix $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and orthogonal matrix P ．Let $u_{k}=P^{\mathrm{T}} \nabla f_{k}$ ．Write $u_{k}=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ ．By the fact that $u_{k}^{T} u_{k}=\nabla f_{k}^{T} \nabla f_{k}$ ，

$$
\begin{aligned}
& \frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(u_{k}^{\mathrm{T}} \Lambda u_{k}\right)\left(u_{k}^{\mathrm{T}} \Lambda^{-1} u_{k}\right)} \\
& \quad=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(\sum_{j=1}^{n} \lambda_{j} z_{j}^{2}\right)\left(\sum_{j=1}^{n} \lambda_{j}^{-1} z_{j}^{2}\right)}=\frac{1 / \sum_{j=1}^{n} \lambda_{j} \xi_{j}}{\sum_{j=1}^{n} \lambda_{j}^{-1} \xi_{j}} \equiv \frac{\phi(\xi)}{\psi(\xi)},
\end{aligned}
$$

where $\xi_{j}=z_{j}^{2} / \sum_{j=1}^{n} z_{j}^{2}$（satisfies $\sum_{j=1}^{n} \xi_{j}=1$ and $\xi_{j} \geqslant 0$ for all j ）．
A lower bound for the ratio is $\frac{4 \lambda_{1} \lambda_{n}}{(\lambda+1)^{2}}$（see Figure 7 on the next
page）

§3．3 Rate of Convergence

Figure 7：Kantorovich inequality：The dashed curve represents the function $1 / \lambda$ ，and the value of $\phi(\xi)$ is a point on this curve．On the other hand， the value of $\psi(\xi)$ is a convex combination of points on the curve and its value corresponds to a point in the shaded region．For the same vector ξ both functions are represented by points on the same vertical line．The minimum value of this ratio is achieved for some $\lambda=\xi_{1} \lambda_{1}+\xi_{n} \lambda_{n}$ with $\xi_{1}+\xi_{n}=1$ ．

§3．3 Rate of Convergence

Sketch of the proof．

Since Q is symmetric，$Q=P \Lambda P^{\mathrm{T}}$ for some diagonal matrix $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and orthogonal matrix P ．Let $u_{k}=P^{\mathrm{T}} \nabla f_{k}$ ．Write $u_{k}=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ ．By the fact that $u_{k}^{T} u_{k}=\nabla f_{k}^{T} \nabla f_{k}$ ，

$$
\begin{aligned}
& \frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(u_{k}^{\mathrm{T}} \Lambda u_{k}\right)\left(u_{k}^{\mathrm{T}} \Lambda^{-1} u_{k}\right)} \\
& \quad=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(\sum_{j=1}^{n} \lambda_{j} z_{j}^{2}\right)\left(\sum_{j=1}^{n} \lambda_{j}^{-1} z_{j}^{2}\right)}=\frac{1 / \sum_{j=1}^{n} \lambda_{j} \xi_{j}}{\sum_{j=1}^{n} \lambda_{j}^{-1} \xi_{j}} \equiv \frac{\phi(\xi)}{\psi(\xi)},
\end{aligned}
$$

where $\xi_{j}=z_{j}^{2} / \sum_{j=1}^{n} z_{j}^{2}$（satisfies $\sum_{j=1}^{n} \xi_{j}=1$ and $\xi_{j} \geqslant 0$ for all j ）．
A lower bound for the ratio is $\frac{4 \lambda_{1} \lambda_{n}}{(\lambda+1)^{2}}$（see Figure 7 on the next
page）

§3．3 Rate of Convergence

Sketch of the proof．

Since Q is symmetric，$Q=P \Lambda P^{\mathrm{T}}$ for some diagonal matrix $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and orthogonal matrix P ．Let $u_{k}=P^{\mathrm{T}} \nabla f_{k}$ ．Write $u_{k}=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ ．By the fact that $u_{k}^{T} u_{k}=\nabla f_{k}^{T} \nabla f_{k}$ ，

$$
\begin{aligned}
& \frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(u_{k}^{\mathrm{T}} \Lambda u_{k}\right)\left(u_{k}^{\mathrm{T}} \Lambda^{-1} u_{k}\right)} \\
& =\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(\sum_{j=1}^{n} \lambda_{j} z_{j}^{2}\right)\left(\sum_{j=1}^{n} \lambda_{j}^{-1} z_{j}^{2}\right)}=\frac{1 / \lambda}{\left(\lambda_{1}+\lambda_{n}-\lambda\right) /\left(\lambda_{1} \lambda_{n}\right)} \equiv \frac{\phi(\xi)}{\psi(\xi)},
\end{aligned}
$$

where $\xi_{j}=z_{j}^{2} / \sum_{j=1}^{n} z_{j}^{2}$（satisfies $\sum_{j=1}^{n} \xi_{j}=1$ and $\xi_{j} \geqslant 0$ for all j ）．
A lower bound for the ratio is $\frac{4 \lambda_{1} \lambda_{n}}{(\lambda+1)^{2}}$（see Figure 7 on the next
page）

§3．3 Rate of Convergence

Sketch of the proof．

Since Q is symmetric，$Q=P \Lambda P^{T}$ for some diagonal matrix $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and orthogonal matrix P ．Let $u_{k}=P^{\mathrm{T}} \nabla f_{k}$ ．Write $u_{k}=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ ．By the fact that $u_{k}^{\mathrm{T}} u_{k}=\nabla f_{k}^{\mathrm{T}} \nabla f_{k}$ ，

$$
\begin{aligned}
& \frac{\left(\nabla f_{k}^{\mathrm{T}} \nabla f_{k}\right)^{2}}{\left(\nabla f_{k}^{\mathrm{T}} Q \nabla f_{k}\right)\left(\nabla f_{k}^{\mathrm{T}} Q^{-1} \nabla f_{k}\right)}=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(u_{k}^{\mathrm{T}} \Lambda u_{k}\right)\left(u_{k}^{\mathrm{T}} \Lambda^{-1} u_{k}\right)} \\
& \quad=\frac{\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{2}}{\left(\sum_{j=1}^{n} \lambda_{j} z_{j}^{2}\right)\left(\sum_{j=1}^{n} \lambda_{j}^{-1} z_{j}^{2}\right)}=\frac{1 / \lambda}{\left(\lambda_{1}+\lambda_{n}-\lambda\right) /\left(\lambda_{1} \lambda_{n}\right)} \equiv \frac{\phi(\xi)}{\psi(\xi)},
\end{aligned}
$$

where $\xi_{j}=z_{j}^{2} / \sum_{j=1}^{n} z_{j}^{2}$（satisfies $\sum_{j=1}^{n} \xi_{j}=1$ and $\xi_{j} \geqslant 0$ for all j ）． A lower bound for the ratio is $\frac{4 \lambda_{1} \lambda_{n}}{\left(\lambda_{1}+\lambda_{n}\right)^{2}}$（see Figure 7 on the next page）．

§3．3 Rate of Convergence

The inequalities

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} \leqslant\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left\|x_{k}-x_{*}\right\|_{Q}^{2} \quad \forall k \in \mathbb{N} \tag{13}
\end{equation*}
$$

and

$$
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2}=f(x)-f\left(x_{*}\right)
$$

show that the function values f_{k} converge to the minimum f_{*} at a linear rate．
is achieved in one iteration if all the eigenvalues are equal．In this case，the contours in Figure 6 are circles and the steepest descent direction always points at the solution．In general
\qquad
\qquad
\square
pronounced，and（13）implies that the convergence degrades．Even
though（13）is a worst－case bound，it gives an accurate indication of the behavior of the algorithm when $n>2$ ．

§3．3 Rate of Convergence

The inequalities

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} \leqslant\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left\|x_{k}-x_{*}\right\|_{Q}^{2} \quad \forall k \in \mathbb{N} \tag{13}
\end{equation*}
$$

and

$$
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2}=f(x)-f\left(x_{*}\right)
$$

show that the function values f_{k} converge to the minimum f_{*} at a linear rate．As a special case of this result，we see that convergence is achieved in one iteration if all the eigenvalues are equal．In this case，the contours in Figure 6 are circles and the steepest descent direction always points at the solution． In general，
> pronounced，and（13）implies that the convergence degrades．Even though（13）is a worst－case bound，it gives an accurate indication of the behavior of the algorithm when $n>2$ ．

§3．3 Rate of Convergence

The inequalities

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} \leqslant\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left\|x_{k}-x_{*}\right\|_{Q}^{2} \quad \forall k \in \mathbb{N} \tag{13}
\end{equation*}
$$

and

$$
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2}=f(x)-f\left(x_{*}\right)
$$

show that the function values f_{k} converge to the minimum f_{*} at a linear rate．As a special case of this result，we see that convergence is achieved in one iteration if all the eigenvalues are equal．In this case，the contours in Figure 6 are circles and the steepest descent direction always points at the solution．In general，as the condi－ tion number $\kappa(Q)=\lambda_{n} / \lambda_{1}$ increases，the contours of the quadratic become more elongated，the zigzagging in Figure 6 becomes more pronounced，and（13）implies that the convergence degrades．Even
though（13）is a worst－case bound，it gives an accurate indication of the behavior of the algorithm when $n>2$ ．

§3．3 Rate of Convergence

The inequalities

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{Q}^{2} \leqslant\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left\|x_{k}-x_{*}\right\|_{Q}^{2} \quad \forall k \in \mathbb{N} \tag{13}
\end{equation*}
$$

and

$$
\frac{1}{2}\left\|x-x_{*}\right\|_{Q}^{2}=f(x)-f\left(x_{*}\right)
$$

show that the function values f_{k} converge to the minimum f_{*} at a linear rate．As a special case of this result，we see that convergence is achieved in one iteration if all the eigenvalues are equal．In this case，the contours in Figure 6 are circles and the steepest descent direction always points at the solution．In general，as the condi－ tion number $\kappa(Q)=\lambda_{n} / \lambda_{1}$ increases，the contours of the quadratic become more elongated，the zigzagging in Figure 6 becomes more pronounced，and（13）implies that the convergence degrades．Even though（13）is a worst－case bound，it gives an accurate indication of the behavior of the algorithm when $n>2$ ．

§3．3 Rate of Convergence

The rate－of－convergence behavior of the steepest descent method is essentially the same on general nonlinear objective functions．
the following result we assume that the step length is the global minimizer along the search direction．

Theorem

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable，and that the iterates generated by the steepest－descent method with exact line searches converge to a point x_{*} at which the Hessian matrix $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Let r be any scalar satisfying

where $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ are the eigenvalues of $\left(\nabla^{2} f\right)\left(x_{*}\right)$ ．Then

§3．3 Rate of Convergence

The rate－of－convergence behavior of the steepest descent method is essentially the same on general nonlinear objective functions．In the following result we assume that the step length is the global minimizer along the search direction．

Theorem

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable，and that the iterates generated by the steepest－descent method with exact line searches converge to a point x_{*} at which the Hessian matrix $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Let r be any scalar satisfying

$$
r \in\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}, 1\right)
$$

where $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ are the eigenvalues of $\left(\nabla^{2} f\right)\left(x_{*}\right)$ ．Then

$$
f\left(x_{k+1}\right)-f\left(x_{*}\right) \leqslant r^{2}\left[f\left(x_{k}\right)-f\left(x_{*}\right)\right] \quad \forall k \gg 1 .
$$

§3．3 Rate of Convergence

In general，we cannot expect the rate of convergence to improve if an inexact line search is used．Therefore，the theorem in the previous page shows that the steepest descent method can have an unacceptably slow rate of convergence，even when the Hessian is reasonably well conditioned．For example，if $\kappa(Q)=800, f\left(x_{1}\right)=1$ and $f\left(x_{*}\right)=0$ ，the theorem in the previous page suggests that the function value will still be about 0.08 after one thousand（？500？） iterations of the steenest descent method with exact line search

§3．3 Rate of Convergence

In general，we cannot expect the rate of convergence to improve if an inexact line search is used．Therefore，the theorem in the previous page shows that the steepest descent method can have an unacceptably slow rate of convergence，even when the Hessian is reasonably well conditioned．For example，if $\kappa(Q)=800, f\left(x_{1}\right)=1$ ， and $f\left(x_{*}\right)=0$ ，the theorem in the previous page suggests that the function value will still be about 0.08 after one thousand（？500？） iterations of the steepest descent method with exact line search．

§3．3 Rate of Convergence

－Convergence Rate of Newton＇s Method：

We now consider Newton＇s method，for which the search is given by

$$
p_{k}^{N}=-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} .
$$

Since the Hessian matrix $\nabla^{2} f_{k}$ may not always be positive definite， p_{k}^{N} may not always be a descent direction，and many of the ideas discussed so far in this chapter no longer apply．In Section 3.4 and

Chapter 4 we will describe two approaches for obtaining a glob－ ally convergent iteration based on the Newton step：a line search approach，in which the Hessian $\nabla^{2} f_{k}$ is modified，if necessary，to make it positive definite and thereby yield descent，and a trust re－ gion approach，in which $\nabla^{2} f_{k}$ is used to form a quadratic model that is minimized in a ball around the current iterate x_{k} ．

§3．3 Rate of Convergence

－Convergence Rate of Newton＇s Method：

We now consider Newton＇s method，for which the search is given by

$$
p_{k}^{N}=-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} .
$$

Since the Hessian matrix $\nabla^{2} f_{k}$ may not always be positive definite， p_{k}^{N} may not always be a descent direction，and many of the ideas discussed so far in this chapter no longer apply．In Section 3.4 and Chapter 4 we will describe two approaches for obtaining a glob－ ally convergent iteration based on the Newton step：a line search approach，in which the Hessian $\nabla^{2} f_{k}$ is modified，if necessary，to make it positive definite and thereby yield descent，and a trust re－
gion approach，in which $\nabla^{2} f_{k}$ is used to form a quadratic model
that is minimized in a ball around the current iterate x_{k} ．

§3．3 Rate of Convergence

－Convergence Rate of Newton＇s Method：

We now consider Newton＇s method，for which the search is given by

$$
p_{k}^{N}=-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} .
$$

Since the Hessian matrix $\nabla^{2} f_{k}$ may not always be positive definite， p_{k}^{N} may not always be a descent direction，and many of the ideas discussed so far in this chapter no longer apply．In Section 3.4 and Chapter 4 we will describe two approaches for obtaining a glob－ ally convergent iteration based on the Newton step：a line search approach，in which the Hessian $\nabla^{2} f_{k}$ is modified，if necessary，to make it positive definite and thereby yield descent，and a trust re－ gion approach，in which $\nabla^{2} f_{k}$ is used to form a quadratic model that is minimized in a ball around the current iterate x_{k} ．

§3．3 Rate of Convergence

In the following we discuss just the local rate－of－convergence prop－ erties of Newton＇s method．

Theorem

Suppose that f is twice differentiable and that the Hessian $\nabla^{2} f$ is Lipschitz continuous in a neighborhood of a solution x_{*} at which $(\nabla f)\left(x_{*}\right)=0$ and $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definitive．Consider the iteration $x_{k+1}=x_{k}+p_{k}^{N}=x_{k}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k}$ ．Then
（1）if the starting point x_{0} is sufficiently close to x_{*} ，the sequence of iterates converges to x_{*} ；
（2）the rate of convergence of $\left\{x_{k}\right\}_{k=1}^{\infty}$ is quadratic；and
（3）the sequence of gradient norms $\left\{\left\|\nabla f_{k}\right\|\right\}_{k=1}^{\infty}$ converges quadrat－ ically to zero．

§3．3 Rate of Convergence

Proof．

First，since $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is non－singular and $\nabla^{2} f$ is Lipschitz in a neigh－ borhood of x_{*} ，there exist $L, \delta>0$ such that

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

and

$$
\left\|\left(\nabla^{2} f\right)(x)-\left(\nabla^{2} f\right)(y)\right\| \leqslant L\|x-y\| \quad \forall x, y \in B\left(x_{*}, \delta\right)
$$

From the definition of the Newton step and the condition $\nabla f_{*}=0$ ，

where，by the chain rule，the last term can be written as
$\nabla f_{k}-\nabla f_{*}=\int_{0}^{1} \frac{d}{d t}\left(\nabla f^{\prime}\right)\left((1-t) x_{*}+t x_{k}\right) d t$

§3．3 Rate of Convergence

Proof．

First，since $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is non－singular and $\nabla^{2} f$ is Lipschitz in a neigh－ borhood of x_{*} ，there exist $L, \delta>0$ such that

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

and

$$
\left\|\left(\nabla^{2} f\right)(x)-\left(\nabla^{2} f\right)(y)\right\| \leqslant L\|x-y\| \quad \forall x, y \in B\left(x_{*}, \delta\right) .
$$

From the definition of the Newton step and the condition $\nabla f_{*}=0$ ，

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right], \tag{14}
\end{align*}
$$

where，by the chain rule，the last term can be written as
$\nabla f_{k}-\nabla f_{*}=\int_{0}^{1} \frac{d}{d t}(\nabla f)\left((1-t) x_{*}+t x_{k}\right) d t$

§3．3 Rate of Convergence

Proof．

First，since $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is non－singular and $\nabla^{2} f$ is Lipschitz in a neigh－ borhood of x_{*} ，there exist $L, \delta>0$ such that

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

and

$$
\left\|\left(\nabla^{2} f\right)(x)-\left(\nabla^{2} f\right)(y)\right\| \leqslant L\|x-y\| \quad \forall x, y \in B\left(x_{*}, \delta\right) .
$$

From the definition of the Newton step and the condition $\nabla f_{*}=0$ ，

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right], \tag{14}
\end{align*}
$$

where，by the chain rule，the last term can be written as

$$
\nabla f_{k}-\nabla f_{*}=\int_{0}^{1} \frac{d}{d t}(\nabla f)\left((1-t) x_{*}+t x_{k}\right) d t
$$

§3．3 Rate of Convergence

Proof．

First，since $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is non－singular and $\nabla^{2} f$ is Lipschitz in a neigh－ borhood of x_{*} ，there exist $L, \delta>0$ such that

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

and

$$
\left\|\left(\nabla^{2} f\right)(x)-\left(\nabla^{2} f\right)(y)\right\| \leqslant L\|x-y\| \quad \forall x, y \in B\left(x_{*}, \delta\right) .
$$

From the definition of the Newton step and the condition $\nabla f_{*}=0$ ，

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right], \tag{14}
\end{align*}
$$

where，by the chain rule，the last term can be written as

$$
\nabla f_{k}-\nabla f_{*}=\int_{0}^{1} \frac{d}{d t}(\nabla f)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right) d t
$$

§3．3 Rate of Convergence

Proof．

First，since $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is non－singular and $\nabla^{2} f$ is Lipschitz in a neigh－ borhood of x_{*} ，there exist $L, \delta>0$ such that

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

and

$$
\left\|\left(\nabla^{2} f\right)(x)-\left(\nabla^{2} f\right)(y)\right\| \leqslant L\|x-y\| \quad \forall x, y \in B\left(x_{*}, \delta\right) .
$$

From the definition of the Newton step and the condition $\nabla f_{*}=0$ ，

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right], \tag{14}
\end{align*}
$$

where，by the chain rule，the last term can be written as

$$
\nabla f_{k}-\nabla f_{*}=\int_{0}^{1}\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\left(x_{k}-x_{*}\right) d t .
$$

§3．3 Rate of Convergence

Proof（cont＇d）．

Therefore，if $x_{k} \in B\left(x_{*}, \delta\right)$ ，

$$
\begin{aligned}
& \left\|\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right\| \\
& \quad=\left\|\int_{0}^{1}\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right) d t\right\| \\
& \quad \leqslant \int_{0}^{1}\left\|\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right)\right\| d t \\
& \quad \leqslant \int_{0}^{1} L\left\|x_{k}-\left[x_{*}+t\left(x_{k}-x_{*}\right)\right]\right\|\left\|x_{k}-x_{*}\right\| d t \\
& \quad \leqslant \int_{0}^{1} L(1-t)\left\|x_{k}-x_{*}\right\|^{2} d t=\frac{L}{2}\left\|x_{k}-x_{*}\right\|^{2}
\end{aligned}
$$

and the identity（14）shows that

§3．3 Rate of Convergence

Proof（cont＇d）．

Therefore，if $x_{k} \in B\left(x_{*}, \delta\right)$ ，

$$
\begin{aligned}
\| & \left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right) \| \\
\quad & =\left\|\int_{0}^{1}\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right) d t\right\| \\
& \leqslant \int_{0}^{1}\left\|\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right)\right\| d t \\
& \leqslant \int_{0}^{1} L\left\|x_{k}-\left[x_{*}+t\left(x_{k}-x_{*}\right)\right]\right\|\left\|x_{k}-x_{*}\right\| d t \\
& \leqslant \int_{0}^{1} L(1-t)\left\|x_{k}-x_{*}\right\|^{2} d t=\frac{L}{2}\left\|x_{k}-x_{*}\right\|^{2}
\end{aligned}
$$

and the identity（14）shows that

$$
\left\|x_{k+1}-x_{*}\right\| \leqslant \frac{L}{2}\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{k}\right)\right\|\left\|x_{k}-x_{*}\right\|^{2}
$$

§3．3 Rate of Convergence

Proof（cont＇d）．

Therefore，if $x_{k} \in B\left(x_{*}, \delta\right)$ ，

$$
\begin{aligned}
\| & \left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right) \| \\
\quad & =\left\|\int_{0}^{1}\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right) d t\right\| \\
& \leqslant \int_{0}^{1}\left\|\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right)\right\| d t \\
& \leqslant \int_{0}^{1} L\left\|x_{k}-\left[x_{*}+t\left(x_{k}-x_{*}\right)\right]\right\|\left\|x_{k}-x_{*}\right\| d t \\
& \leqslant \int_{0}^{1} L(1-t)\left\|x_{k}-x_{*}\right\|^{2} d t=\frac{L}{2}\left\|x_{k}-x_{*}\right\|^{2}
\end{aligned}
$$

and the identity（14）shows that

$$
\left\|x_{k+1}-x_{*}\right\| \leqslant L\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\|\left\|x_{k}-x_{*}\right\|^{2} .
$$

§3．3 Rate of Convergence

Proof（cont＇d）．

Let $\tilde{L}=L\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\|$ ．Then

$$
\left\|x_{k+1}-x_{*}\right\| \leqslant \tilde{L}\left\|x_{k}-x_{*}\right\|^{2} \quad \text { if } x_{k} \in B\left(x_{*}, \delta\right) .
$$

Choose x_{0} satisfying $\left\|x_{0}-x_{*}\right\|<r \equiv \min \left\{\delta, \frac{1}{2 \tilde{L}}\right\}$ ．Then

$$
x_{k} \in B\left(x_{*}, r\right) \subseteq B\left(x_{*}, \delta\right) \quad \forall k \in \mathbb{N} ;
$$

thus the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to x_{*} ，and the rate of conver－ gence is quadratic．

To see that the sequence $\left\{\left\|\nabla f_{k}\right\|\right\}_{k=1}^{\infty}$ converges to 0 quadratically， we note that

§3．3 Rate of Convergence

Proof（cont＇d）．

Let $\tilde{L}=L\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\|$ ．Then

$$
\left\|x_{k+1}-x_{*}\right\| \leqslant \tilde{L}\left\|x_{k}-x_{*}\right\|^{2} \quad \text { if } x_{k} \in B\left(x_{*}, \delta\right)
$$

Choose x_{0} satisfying $\left\|x_{0}-x_{*}\right\|<r \equiv \min \left\{\delta, \frac{1}{2 \tilde{L}}\right\}$ ．Then

$$
x_{k} \in B\left(x_{*}, r\right) \subseteq B\left(x_{*}, \delta\right) \quad \forall k \in \mathbb{N} ;
$$

thus the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to x_{*} ，and the rate of conver－ gence is quadratic．

To see that the sequence $\left\{\left\|\nabla f_{k}\right\|\right\}_{k=1}^{\infty}$ converges to 0 quadratically， we note that

$$
\nabla f_{k}+\nabla^{2} f_{k} p_{k}^{N}=0
$$

thus by the chain rule again，

§3．3 Rate of Convergence

Proof（cont＇d）．

thus by the chain rule again，

$$
\begin{aligned}
\left\|\nabla f_{k+1}\right\| & =\left\|(\nabla f)\left(x_{k+1}\right)-(\nabla f)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N}\right\| \\
& =\left\|\int_{0}^{1} \frac{d}{d t}(\nabla f)\left((1-t) x_{k}+t x_{k+1}\right) d t-\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N}\right\| \\
& =\left\|\int_{0}^{1}\left(\nabla^{2} f\right)\left(x_{k}+t p_{k}^{N}\right) p_{k}^{N} d t-\int_{0}^{1}\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N} d t\right\| \\
& =\left\|\int_{0}^{1}\left[\left(\nabla^{2} f\right)\left(x_{k}+t p_{k}^{N}\right)-\left(\nabla^{2} f\right)\left(x_{k}\right)\right] p_{k}^{N} d t\right\| \\
& \leqslant \int_{0}^{1} L t\left\|p_{k}^{N}\right\|^{2} d t=\frac{L}{2}\left\|p_{k}^{N}\right\|^{2} \leqslant \frac{L}{2}\left\|\left(\nabla^{2} f\right)\left(x_{k}\right)^{-1}\right\|^{2}\left\|\nabla f_{k}\right\|^{2} \\
& \leqslant 2 L\left\|\left(\nabla^{2} f\right)\left(x_{*}\right)^{-1}\right\|^{2}\left\|\nabla f_{k}\right\|^{2} .
\end{aligned}
$$

Therefore，$\left\{\left\|\nabla f_{k}\right\|\right\}_{k=1}^{\infty}$ converges quadratically to zero．

§3．3 Rate of Convergence

Remark：If f is assumed to be twice continuously differentiable only but not necessarily Lipschitz in a neighborhood of x_{*} ，the sequence of iterates generated by Newton＇s method may not achieve quadratic convergence． Nevertheless， the convergence is still superlinear since for $x_{k} \in B\left(x_{*}, \delta\right)$ in the proof，

where the last equality follows from the continuity of $\nabla^{2} f$ ．

§3．3 Rate of Convergence

Remark：If f is assumed to be twice continuously differentiable only but not necessarily Lipschitz in a neighborhood of x_{*} ，the sequence of iterates generated by Newton＇s method may not achieve quadratic convergence．Nevertheless，the convergence is still superlinear since for $x_{k} \in B\left(x_{*}, \delta\right)$ in the proof，

$$
\begin{aligned}
& \left\|\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right\| \\
& \quad=\left\|\int_{0}^{1}\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right) d t\right\| \\
& \quad \leqslant \int_{0}^{1}\left\|\left[\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right)\right\| d t \\
& \quad \leqslant \int_{0}^{1}\left\|\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right\|\left\|x_{k}-x_{*}\right\| d t \\
& \quad=o\left(\left\|x_{k}-x_{*}\right\|\right),
\end{aligned}
$$

where the last equality follows from the continuity of $\nabla^{2} f$ ．

§3．3 Rate of Convergence

Therefore，using

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right] \tag{14}
\end{align*}
$$

and

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

we obtain

$$
\left\|x_{k+1}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right) .
$$

Even though we always＂assume＂that the sequence of iterates gen－ erated by Newton＇s method converges quadratically，in most of the situations（when we only assume the continuity of $\nabla^{2} f$ ）superlinear convergence is the best rate of convergence result we can have．

§3．3 Rate of Convergence

Therefore，using

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}+p_{k}^{N}-x_{*}=x_{k}-x_{*}-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k} \tag{14}\\
& =\left(\nabla^{2} f_{k}\right)^{-1}\left[\left(\nabla^{2} f_{k}\right)\left(x_{k}-x_{*}\right)-\left(\nabla f_{k}-\nabla f_{*}\right)\right]
\end{align*}
$$

and

$$
\left\|\left(\nabla^{2} f\right)^{-1}(x)\right\| \leqslant 2\left\|\left(\nabla^{2} f\right)^{-1}\left(x_{*}\right)\right\| \quad \forall x \in B\left(x_{*}, \delta\right)
$$

we obtain

$$
\left\|x_{k+1}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right) .
$$

Even though we always＂assume＂that the sequence of iterates gen－ erated by Newton＇s method converges quadratically，in most of the situations（when we only assume the continuity of $\nabla^{2} f$ ）superlinear convergence is the best rate of convergence result we can have．

§3．3 Rate of Convergence

－Convergence Rate of Quasi－Newton Method：

Suppose now that the search direction has the form $p_{k}=-B_{k}^{-1} \nabla f_{k}$ ， where the symmetric and positive definite matrix B_{k} is updated at every iteration by a quasi－Newton updating formula．In this part of the section we aim for showing the superlinear convergence of quasi－Newton method under the assumption that B_{k} satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

We note that in the case of Newton＇s method，$B_{k}=\left(\nabla^{2} f\right)\left(x_{k}\right)$ so （15）holds if f is twice continuously differentiable：

$$
\lim _{k \rightarrow \infty} \frac{\left\|\left(\left(\nabla^{2} f\right)\left(x_{k}\right)-\left(\nabla^{2} f\right)\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0
$$

§3．3 Rate of Convergence

An amazing consequence of this result is that a superlinear conver－ gence rate can be attained even if the sequence of quasi－Newton matrices B_{k} does not converge to $\nabla^{2} f\left(x_{*}\right)$ ；it suffices that the B_{k} become increasingly accurate approximations to $\nabla^{2} f\left(x_{*}\right)$ along the search directions p_{k} ．

In fact，under the assumption that f is twice continuously differ－ entiable，we can show that a quasi－Newton method has superlinear convergence if and onlv if the quasi－Newton matrices B_{k} satisfies
（15）is called the Dennis－Moré characterization of superlinear convergence．We start with an equivalent condition of superlinear minimization algorithm．

§3．3 Rate of Convergence

An amazing consequence of this result is that a superlinear conver－ gence rate can be attained even if the sequence of quasi－Newton matrices B_{k} does not converge to $\nabla^{2} f\left(x_{*}\right)$ ；it suffices that the B_{k} become increasingly accurate approximations to $\nabla^{2} f\left(x_{*}\right)$ along the search directions p_{k} ．

In fact，under the assumption that f is twice continuously differ－ entiable，we can show that a quasi－Newton method has superlinear convergence if and only if the quasi－Newton matrices B_{k} satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

（15）is called the Dennis－Moré characterization of superlinear convergence．We start with an equivalent condition of superlinear minimization algorithm．

§3．3 Rate of Convergence

An amazing consequence of this result is that a superlinear conver－ gence rate can be attained even if the sequence of quasi－Newton matrices B_{k} does not converge to $\nabla^{2} f\left(x_{*}\right)$ ；it suffices that the B_{k} become increasingly accurate approximations to $\nabla^{2} f\left(x_{*}\right)$ along the search directions p_{k} ．

In fact，under the assumption that f is twice continuously differ－ entiable，we can show that a quasi－Newton method has superlinear convergence if and only if the quasi－Newton matrices B_{k} satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

（15）is called the Dennis－Moré characterization of superlinear convergence．We start with an equivalent condition of superlinear minimization algorithm．

§3．3 Rate of Convergence

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable，and $\left\{x_{k}\right\}$ be a sequence of iterates generated by some minimization algorithm．As－ sume that $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to a point x_{*} such that $(\nabla f)\left(x_{*}\right)=0$ and $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges super－ linearly if and only if

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right), \tag{16}
\end{equation*}
$$

where $p_{k}^{N}=-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k}$ is the Newton direction．
Proof．
First we note that the remark after the quadratic converngence of Newton＇s method shows that under the current setting we have

§3．3 Rate of Convergence

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable，and $\left\{x_{k}\right\}$ be a sequence of iterates generated by some minimization algorithm．As－ sume that $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to a point x_{*} such that $(\nabla f)\left(x_{*}\right)=0$ and $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges super－ linearly if and only if

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right), \tag{16}
\end{equation*}
$$

where $p_{k}^{N}=-\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k}$ is the Newton direction．

Proof．

First we note that the remark after the quadratic converngence of Newton＇s method shows that under the current setting we have

$$
\begin{equation*}
\left\|x_{k}+p_{k}^{N}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right) . \tag{17}
\end{equation*}
$$

§3．3 Rate of Convergence

Proof（cont＇d）．

Assume that

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right) \tag{16}
\end{equation*}
$$

holds．By the superlinear convergence of Newton＇s iterates（17），

$$
\begin{align*}
\left\|x_{k+1}-x_{*}\right\| & \leqslant\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|+\left\|x_{k}+p_{k}^{N}-x_{*}\right\| \\
& =o\left(\left\|x_{k+1}-x_{k}\right\|\right)+o\left(\left\|x_{k}-x_{*}\right\|\right) \tag{18}
\end{align*}
$$

Moreover，using the inequality above， $\left\|x_{k+1}-x_{k}\right\| \leqslant\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}-x_{*}\right\|$
thus $\left\|x_{k+1}-x_{k}\right\|=\mathcal{O}\left(\left\|x_{k}-x_{*}\right\|\right)$ ．Using this result back in（18），we
conclude that

$$
\left\|x_{k+1}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right),
$$

giving the superlinear convergence result．

§3．3 Rate of Convergence

Proof（cont＇d）．

Assume that

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right) \tag{16}
\end{equation*}
$$

holds．By the superlinear convergence of Newton＇s iterates（17），

$$
\begin{align*}
\left\|x_{k+1}-x_{*}\right\| & \leqslant\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|+\left\|x_{k}+p_{k}^{N}-x_{*}\right\| \\
& =o\left(\left\|x_{k+1}-x_{k}\right\|\right)+o\left(\left\|x_{k}-x_{*}\right\|\right) \tag{18}
\end{align*}
$$

Moreover，using the inequality above，

$$
\begin{aligned}
\left\|x_{k+1}-x_{k}\right\| & \leqslant\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}-x_{*}\right\| \\
& \leqslant o\left(\left\|x_{k+1}-x_{k}\right\|\right)+\mathcal{O}\left(\left\|x_{k}-x_{*}\right\|\right) ;
\end{aligned}
$$

thus $\left\|x_{k+1}-x_{k}\right\|=\mathcal{O}\left(\left\|x_{k}-x_{*}\right\|\right)$ ．Using this result back in（18），we
conclude that
$\left\|x_{k+1}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right)$,
giving the superlinear convergence result．

§3．3 Rate of Convergence

Proof（cont＇d）．

Assume that

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right) \tag{16}
\end{equation*}
$$

holds．By the superlinear convergence of Newton＇s iterates（17），

$$
\begin{align*}
\left\|x_{k+1}-x_{*}\right\| & \leqslant\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\|+\left\|x_{k}+p_{k}^{N}-x_{*}\right\| \\
& =o\left(\left\|x_{k+1}-x_{k}\right\|\right)+o\left(\left\|x_{k}-x_{*}\right\|\right) \tag{18}
\end{align*}
$$

Moreover，using the inequality above，

$$
\begin{aligned}
\left\|x_{k+1}-x_{k}\right\| & \leqslant\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}-x_{*}\right\| \\
& \leqslant o\left(\left\|x_{k+1}-x_{k}\right\|\right)+\mathcal{O}\left(\left\|x_{k}-x_{*}\right\|\right)
\end{aligned}
$$

thus $\left\|x_{k+1}-x_{k}\right\|=\mathcal{O}\left(\left\|x_{k}-x_{*}\right\|\right)$ ．Using this result back in（18），we conclude that

$$
\left\|x_{k+1}-x_{*}\right\|=o\left(\left\|x_{k}-x_{*}\right\|\right),
$$

giving the superlinear convergence result．

§3．3 Rate of Convergence

Proof（cont＇d）．

On the other hand，suppose that $\left\{x_{k}\right\}$ converges superlinearly to x_{*} ． Then the fact that

$$
\begin{aligned}
\left\|x_{k}-x_{*}\right\| & \leqslant\left\|x_{k+1}-x_{k}\right\|+\left\|x_{k+1}-x_{*}\right\| \\
& =\left\|x_{k+1}-x_{k}\right\|+o\left(\left\|x_{k}-x_{*}\right\|\right)
\end{aligned}
$$

shows that

$$
\left\|x_{k}-x_{*}\right\|=\mathcal{O}\left(\left\|x_{k+1}-x_{k}\right\|\right) .
$$

Therefore， using the （17），we conclude that
\square

§3．3 Rate of Convergence

Proof（cont＇d）．

On the other hand，suppose that $\left\{x_{k}\right\}$ converges superlinearly to x_{*} ． Then the fact that

$$
\begin{aligned}
\left\|x_{k}-x_{*}\right\| & \leqslant\left\|x_{k+1}-x_{k}\right\|+\left\|x_{k+1}-x_{*}\right\| \\
& =\left\|x_{k+1}-x_{k}\right\|+o\left(\left\|x_{k}-x_{*}\right\|\right)
\end{aligned}
$$

shows that

$$
\left\|x_{k}-x_{*}\right\|=\mathcal{O}\left(\left\|x_{k+1}-x_{k}\right\|\right) .
$$

Therefore，using the superlinear convergence of Newton＇s iterates （17），we conclude that

$$
\begin{aligned}
\left\|x_{k+1}-x_{k}-p_{k}^{N}\right\| & \leqslant\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}+p_{k}^{N}-x_{*}\right\| \\
& \leqslant\left\|x_{k+1}-x_{*}\right\|+o\left(\left\|x_{k}-x_{*}\right\|\right) \\
& =o\left(\left\|x_{k}-x_{*}\right\|\right)=o\left(\left\|x_{k+1}-x_{k}\right\|\right) ;
\end{aligned}
$$

thus condition（16）holds．

§3．3 Rate of Convergence

If，as in Newton＇s method，the unit step length is taken in an algo－ rithm，then $x_{k+1}=x_{k}+p_{k}$ and the equivalence of the superlinear convergence（18）can be rewritten as

$$
\begin{equation*}
\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}\right\|\right) . \tag{19}
\end{equation*}
$$

In other words，for an algorithm that eventually adopts unit step length，that the search direction approximates the Newton direction well enough is crucial for the superlinear convergence．
The result on the next page provides a sufficient condition for the admissibility of unite step length：

§3．3 Rate of Convergence

If，as in Newton＇s method，the unit step length is taken in an algo－ rithm，then $x_{k+1}=x_{k}+p_{k}$ and the equivalence of the superlinear convergence（18）can be rewritten as

$$
\begin{equation*}
\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}\right\|\right) . \tag{19}
\end{equation*}
$$

In other words，for an algorithm that eventually adopts unit step length，that the search direction approximates the Newton direction well enough is crucial for the superlinear convergence．
The result on the next page provides a sufficient condition for the admissibility of unite step length：if the search direction approxi－ mates the Newton direction in the sense

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{20}
\end{equation*}
$$

then the unit step length will satisfy the Wolfe conditions as the iterates converge to the solution．

§3．3 Rate of Convergence

Lemma

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable．Con－ sider the iteration $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ ，where p_{k} is a descent direction and α_{k} satisfies the Wolfe conditions

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5a}\\
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} & \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5b}
\end{align*}
$$

with $c_{1}<1 / 2$ ．If the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to a point x_{*} such that $\nabla f\left(x_{*}\right)=0$ and $\nabla^{2} f\left(x_{*}\right)$ is positive definite，and if the search direction p_{k} satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{20}
\end{equation*}
$$

then the step length $\alpha_{k}=1$ is admissible for all $k \gg 1$ ．

§3．3 Rate of Convergence

Proof．

Note that the positive definiteness of $\nabla^{2} f_{*}$ shows that

$$
p_{k}^{\mathrm{T}} \nabla^{2} f_{*} p_{k} \geqslant \lambda_{\min }\left(\nabla^{2} f_{*}\right)\left\|p_{k}\right\|^{2} \geqslant o\left(\left\|p_{k}\right\|^{2}\right) \quad \forall k \gg 1,
$$

where $\lambda_{\min }\left(\nabla^{2} f_{*}\right)$ denotes the smallest eigenvalue of $\nabla^{2} f_{*}$ ．

so the curvature condition（5b）holds for the unit step length for
\qquad

§3．3 Rate of Convergence

Proof．

Note that the positive definiteness of $\nabla^{2} f_{*}$ shows that

$$
p_{k}^{\mathrm{T}} \nabla^{2} f_{*} p_{k} \geqslant \lambda_{\min }\left(\nabla^{2} f_{*}\right)\left\|p_{k}\right\|^{2} \geqslant o\left(\left\|p_{k}\right\|^{2}\right) \quad \forall k \gg 1,
$$

where $\lambda_{\min }\left(\nabla^{2} f_{*}\right)$ denotes the smallest eigenvalue of $\nabla^{2} f_{*}$ ．Under the assumption（20），Taylor＇s Theorem shows that

$$
\begin{aligned}
& (\nabla f)\left(x_{k}+p_{k}\right)^{\mathrm{T}} p_{k} \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k} \\
& \quad \Leftrightarrow\left[\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right]^{\mathrm{T}} p_{k}+o\left(\left\|p_{k}\right\|^{2}\right) \\
& \quad \geqslant c_{2}\left[\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right]^{\mathrm{T}} p_{k}-c_{2} p_{k}^{\mathrm{T}} \nabla^{2} f_{k} p_{k} \\
& \quad \Leftrightarrow o\left(\left\|p_{k}\right\|^{2}\right) \leqslant c_{2} p_{k}^{\mathrm{T}} \nabla^{2} f_{*} p_{k}
\end{aligned}
$$

so the curvature condition（5b）holds for the unit step length for $k \gg 1$ ．

§3．3 Rate of Convergence

Proof（cont＇d）．

Moreover，by the assumption（20）and Taylor＇s Theorem again we find that

$$
\begin{aligned}
& f\left(x_{k}+p_{k}\right) \leqslant f\left(x_{k}\right)+c_{1} \nabla f_{k}^{\mathrm{T}} p_{k} \\
& \Leftrightarrow \quad \nabla f_{k}^{\mathrm{T}} p_{k}+\frac{1}{2} p_{k}^{\mathrm{T}} \nabla^{2} f_{k} p_{k}+o\left(\left\|p_{k}\right\|^{2}\right) \leqslant c_{1} \nabla f_{k}^{\mathrm{T}} p_{k} \\
& \Leftrightarrow\left[\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right]^{\mathrm{T}} p_{k}-\frac{1}{2} p_{k}^{\mathrm{T}} \nabla^{2} f_{k} p_{k}+o\left(\left\|p_{k}\right\|^{2}\right) \\
& \quad \leqslant c_{1}\left[\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right]^{\mathrm{T}} p_{k}-c_{1} p_{k}^{\mathrm{T}} \nabla^{2} f_{k} p_{k} \\
& \Leftrightarrow o\left(\left\|p_{k}\right\|^{2}\right) \leqslant\left(\frac{1}{2}-c_{1}\right) p_{k}^{\mathrm{T}} \nabla^{2} f_{*} p_{k},
\end{aligned}
$$

so if $c_{1}<\frac{1}{2}$ the Armijo condition（5a）holds for the unit step length for $k \gg 1$ ．

§3．3 Rate of Convergence

Note that under the assumptions of previous two lemmas；that is，f is twice continuously differentiable and the sequence of iterates $\left\{x_{k}\right\}$ converges to x_{*} at which $\nabla f_{*}=0$ and $\nabla^{2} f_{*}$ is positive definite，the necessary condition for the admissibility of unit step length in the Wolfe conditions

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{20}
\end{equation*}
$$

is equivalent to the condition for superlinear convergence

$$
\begin{equation*}
\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}\right\|\right) \quad \Leftrightarrow \quad \lim _{k \rightarrow \infty} \frac{\left\|p_{k}-p_{k}^{N}\right\|}{\left\|p_{k}\right\|}=0 \tag{19}
\end{equation*}
$$

since

$$
\begin{aligned}
& \nabla f_{k}+\nabla^{2} f_{k} p_{k}=\left(\nabla^{2} f_{k}\right)\left(p_{k}-p_{k}^{N}\right) \\
& \quad \Leftrightarrow p_{k}-p_{k}^{N}=\left(\nabla^{2} f_{k}\right)^{-1}\left(\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right)
\end{aligned}
$$

and $\left\|\nabla^{2} f_{k}\right\| \approx\left\|\nabla^{2} f_{*}\right\|$ and $\left\|\left(\nabla^{2} f_{k}\right)^{-1}\right\| \approx\left\|\left(\nabla^{2} f_{*}\right)^{-1}\right\|$ for $k \gg 1$ ．

§3．3 Rate of Convergence

The observation from the previous page together with the previous two lemmas motivate the following

Theorem

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable．Con－ sider the iteration $x_{k+1}=x_{k}+p_{k}$（that is，the step length α_{k} is uniformly 1）and that p_{k} is given by $p_{k}=-B_{k}^{-1} \nabla f_{k}$ ．Assume that $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to a point x_{*} such that $(\nabla f)\left(x_{*}\right)=0$ and $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges superlinearly if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

Proof．
It suffices to show that（15）is equivalent to（20）

§3．3 Rate of Convergence

The observation from the previous page together with the previous two lemmas motivate the following

Theorem

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable．Con－ sider the iteration $x_{k+1}=x_{k}+p_{k}$（that is，the step length α_{k} is uniformly 1）and that p_{k} is given by $p_{k}=-B_{k}^{-1} \nabla f_{k}$ ．Assume that $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to a point x_{*} such that $(\nabla f)\left(x_{*}\right)=0$ and $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is positive definite．Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges superlinearly if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

Proof．

It suffices to show that（15）is equivalent to（20）．

§3．3 Rate of Convergence

Proof（cont＇d）．
Let $\nabla^{2} f_{*}=\left(\nabla^{2} f\right)\left(x_{*}\right)$ ．Note that for $p_{k}=-B_{k}^{-1} \nabla f_{k}$ ，

$$
\left(B_{k}-\nabla^{2} f_{*}\right) p_{k}=-\left(\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right)+\left(\nabla^{2} f_{k}-\nabla^{2} f_{*}\right) p_{k},
$$

and the continuity of $\nabla^{2} f$ implies that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\left(\nabla^{2} f_{k}-\nabla^{2} f_{*}\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 .
$$

Therefore，

if and only if

§3．3 Rate of Convergence

Proof（cont＇d）．

Let $\nabla^{2} f_{*}=\left(\nabla^{2} f\right)\left(x_{*}\right)$ ．Note that for $p_{k}=-B_{k}^{-1} \nabla f_{k}$ ，

$$
\left(B_{k}-\nabla^{2} f_{*}\right) p_{k}=-\left(\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right)+\left(\nabla^{2} f_{k}-\nabla^{2} f_{*}\right) p_{k},
$$

and the continuity of $\nabla^{2} f$ implies that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\left(\nabla^{2} f_{k}-\nabla^{2} f_{*}\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0
$$

Therefore，

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f_{*}\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{15}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{20}
\end{equation*}
$$

giving the result．

§3．4 Newton＇s Method with Hessian Modification

Away from the solution，the Hessian matrix $\left(\nabla^{2} f\right)(x)$ may not be positive definite，so the Newton direction p_{k}^{N} defined by

$$
\begin{equation*}
\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N}=-(\nabla f)\left(x_{k}\right) \tag{21}
\end{equation*}
$$

may not be a descent direction．We now describe an approach to
overcome this difficulty when a direct linear algebra technique，such as Gaussian elimination，is used to solve the Newton equations（21） This approach obtains the step p_{k} from a linear svstem identical to （21），except that the coefficient matrix is replaced with a positive definite approximation，formed before or during the solution process． The modified Hessian is obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．A general description of this method follows．

§3．4 Newton＇s Method with Hessian Modification

Away from the solution，the Hessian matrix $\left(\nabla^{2} f\right)(x)$ may not be positive definite，so the Newton direction p_{k}^{N} defined by

$$
\begin{equation*}
\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N}=-(\nabla f)\left(x_{k}\right) \tag{21}
\end{equation*}
$$

may not be a descent direction．We now describe an approach to overcome this difficulty when a direct linear algebra technique，such as Gaussian elimination，is used to solve the Newton equations（21）． This approach obtains the step p_{k} from a linear system identical to （21），except that the coefficient matrix is replaced with a positive definite approximation，formed before or during the solution process．

[^1]
§3．4 Newton＇s Method with Hessian Modification

Away from the solution，the Hessian matrix $\left(\nabla^{2} f\right)(x)$ may not be positive definite，so the Newton direction p_{k}^{N} defined by

$$
\begin{equation*}
\left(\nabla^{2} f\right)\left(x_{k}\right) p_{k}^{N}=-(\nabla f)\left(x_{k}\right) \tag{21}
\end{equation*}
$$

may not be a descent direction．We now describe an approach to overcome this difficulty when a direct linear algebra technique，such as Gaussian elimination，is used to solve the Newton equations（21）． This approach obtains the step p_{k} from a linear system identical to （21），except that the coefficient matrix is replaced with a positive definite approximation，formed before or during the solution process． The modified Hessian is obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．A general description of this method follows．

§3．4 Newton＇s Method with Hessian Modification

Algorithm 3.2 （Line Search Newton with Modification）：
Given initial point x_{0} ；
for $k=0,1,2, \cdots$
Factorize the matrix $B_{k}=\left(\nabla^{2} f\right)\left(x_{k}\right)+E_{k}$ ，where $E_{k}=0$ if $\left(\nabla^{2} f\right)\left(x_{k}\right)$ is sufficiently positive definite；otherwise，E_{k} is chosen to ensure that B_{k} is sufficiently positive definite；
Solve $B_{k} p_{k}=-(\nabla f)\left(x_{k}\right)$ ；
Set $x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}$ ，where α_{k} satisfies the Wolfe，Goldstein， or Armijo backtracking conditions；
end

§3．4 Newton＇s Method with Hessian Modification

Algorithm 3.2 is a practical Newton method that can be applied from any starting point．We can establish fairly satisfactory global convergence results for it，provided that the strategy for choosing E_{k}（and hence B_{k} ）satisfies the bounded modified factorization property．This property is that the matrices in the sequence $\left\{B_{k}\right\}_{k=1}^{\infty}$ have bounded condition number whenever the sequence of Hessians $\left\{\left(\nabla^{2} f\right)\left(x_{k}\right)\right\}_{k=1}^{\infty}$ is bounded；that is，there exists $C>0$ such that

$$
\begin{equation*}
\kappa\left(B_{k}\right) \equiv\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leqslant C \quad \forall k \in \mathbb{N} . \tag{22}
\end{equation*}
$$

If this property holds，global convergence of the modified line search Newton method follows from the results of Section 3.2 （page 73 of this slide）．

§3．4 Newton＇s Method with Hessian Modification

Theorem

Let f be twice continuously differentiable on an open set \mathcal{D} ，and assume that the starting point x_{0} of Algorithm 3.2 is such that the level set $\left.\left\{x \in \mathcal{D} \mid f(x) \leqslant f\left(x_{0}\right)\right)\right\}$ is compact．Then if the bounded modified factorization property holds，we have that

$$
\lim _{k \rightarrow \infty}(\nabla f)\left(x_{k}\right)=0
$$

Note that since the level set $\left.\left\{x \in \mathcal{D} \mid f(x) \leqslant f\left(x_{0}\right)\right)\right\}$ is indeed $\left.f^{-1}\left(\left(-\infty, f\left(x_{0}\right)\right)\right]\right)$ which is closed by the continuity of f ，by the Heine－Borel Theorem this level set is compact if and only if it is bounded．

§3．4 Newton＇s Method with Hessian Modification

We now consider the convergence rate of Algorithm 3．2．Suppose that the sequence of iterates x_{k} converges to a point x_{*} where $\left(\nabla^{2} f\right)\left(x_{*}\right)$ is sufficiently positive definite in the sense that the mod－ ification strategies described in the next section return the modifi－ cation $E_{k}=0$ for all sufficiently large k ．By one of the previous theorem，we have that $\alpha_{k}=1$ for all sufficiently large k ，so that Algorithm 3.2 reduces to a pure Newton method，and the rate of convergence is quadratic．

§3．4 Newton＇s Method with Hessian Modification

For problems in which $\nabla^{2} f_{*}$ is close to singular，there is no guarantee that the modification E_{k} will eventually vanish，and the convergence rate may be only linear．Besides requiring the modified matrix B_{k} to be well conditioned（so that the previous theorem holds），we would like the modification to be as small as possible，so that the second－order information in the Hessian is preserved as far as pos－ sible．Naturally，we would also like the modified factorization to be computable at moderate cost．

§3．4 Newton＇s Method with Hessian Modification

To set the stage for the matrix factorization techniques that will be used in Algorithm 3．2，we will begin by assuming that the eigen－ value decomposition of $\left(\nabla^{2} f\right)\left(x_{k}\right)$ is available．This is not realistic for large－scale problems because this decomposition is generally too expensive to compute，but it will motivate several practical modifi－ cation strategies．
－Eigenvalue modification
Consider a problem in which，at the current iterate $x_{k},(\nabla f)\left(x_{k}\right)=$ $(1,-3,2)^{\mathrm{T}}$ and $\left(\nabla^{2} f\right)\left(x_{k}\right)=\operatorname{diag}(10,3,-1)$ ，which is clearly indef－ inite．By the spectral decomposition theorem we can define $Q=I$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ ，and write

§3．4 Newton＇s Method with Hessian Modification

To set the stage for the matrix factorization techniques that will be used in Algorithm 3．2，we will begin by assuming that the eigen－ value decomposition of $\left(\nabla^{2} f\right)\left(x_{k}\right)$ is available．This is not realistic for large－scale problems because this decomposition is generally too expensive to compute，but it will motivate several practical modifi－ cation strategies．

－Eigenvalue modification

Consider a problem in which，at the current iterate $x_{k},(\nabla f)\left(x_{k}\right)=$ $(1,-3,2)^{\mathrm{T}}$ and $\left(\nabla^{2} f\right)\left(x_{k}\right)=\operatorname{diag}(10,3,-1)$ ，which is clearly indef－ inite．By the spectral decomposition theorem we can define $Q=\mathrm{I}$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ ，and write

$$
\begin{equation*}
\left(\nabla^{2} f\right)\left(x_{k}\right)=Q \Lambda Q^{\mathrm{T}}=\sum_{i=1}^{3} \lambda_{i} \boldsymbol{q}_{i} \boldsymbol{q}_{i}^{\mathrm{T}} \tag{23}
\end{equation*}
$$

§3．4 Newton＇s Method with Hessian Modification

The pure Newton step－the solution of $(21)-$ is $p_{k}^{N}=(-0.1,1,2)^{\mathrm{T}}$ ， which is not a descent direction，since $\nabla f\left(x_{k}\right)^{\mathrm{T}} p_{k}^{N}>0$ ．One might suggest a modified strategy in which we replace $\left(\nabla^{2} f\right)\left(x_{k}\right)$ by a pos－ itive definite approximation B_{k} ，in which all negative eigenvalues in $\left(\nabla^{2} f\right)\left(x_{k}\right)$ are replaced by a small positive number δ that is some－ what larger than machine precision \boldsymbol{u} ；say $\delta=\sqrt{\boldsymbol{u}}$ ．For a machine precision of 10^{-16} ，the resulting matrix in our example is

$$
\begin{equation*}
B_{k}=\sum_{i=1}^{2} \lambda_{i} \boldsymbol{q}_{i} \boldsymbol{q}_{i}^{\mathrm{T}}+\delta \boldsymbol{q}_{3} \boldsymbol{q}_{3}^{\mathrm{T}}=\operatorname{diag}\left(10,3,10^{-8}\right) \tag{24}
\end{equation*}
$$

which is numerically positive definite and whose curvature along the eigenvectors q_{1} and q_{2} has been preserved．Note，however，that the search direction based on this modified Hessian is

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} \nabla f_{k}=-\sum_{i=1}^{2} \frac{1}{\lambda_{i}} \boldsymbol{q}_{i}\left(\boldsymbol{q}_{i}^{\mathrm{T}} \nabla f_{k}\right)-\frac{1}{\delta} \boldsymbol{q}_{3}\left(\boldsymbol{q}_{3}^{\mathrm{T}} \nabla f_{k}\right) . \tag{25}
\end{equation*}
$$

§3．4 Newton＇s Method with Hessian Modification

For small δ ，this step is nearly parallel to \boldsymbol{q}_{3} and quite long．Although f decreases along the direction p_{k} ，its extreme length violates the spirit of Newton＇s method，which relies on a quadratic approximation of the objective function in a neighborhood of the current iterate x_{k} ． It is therefore not clear that this search direction is effective．

> Various other modification strategies are possible．We could
> （1）flip the signs of the negative eigenvalues in（23），
> which amounts to setting $\delta=1$ in our example，or
> （2）set the last term in（25）to zero，so that the search direction has no components along the negative curvature directions，or
> B）adant the choice of δ to ensure that the length of the sten is not excessive，a strategy with the flavor of trust－region methods． There is a great deal of freedom in devising modification strategies， and there is currently no aoreement on which strateov is hest

§3．4 Newton＇s Method with Hessian Modification

For small δ ，this step is nearly parallel to \boldsymbol{q}_{3} and quite long．Although f decreases along the direction p_{k} ，its extreme length violates the spirit of Newton＇s method，which relies on a quadratic approximation of the objective function in a neighborhood of the current iterate x_{k} ． It is therefore not clear that this search direction is effective．

Various other modification strategies are possible．We could
（1）flip the signs of the negative eigenvalues in（23），which amounts to setting $\delta=1$ in our example，or
（2）set the last term in（25）to zero，so that the search direction has no components along the negative curvature directions，or
（3）adapt the choice of δ to ensure that the length of the step is not excessive，a strategy with the flavor of trust－region methods．

[^2]
§3．4 Newton＇s Method with Hessian Modification

For small δ ，this step is nearly parallel to \boldsymbol{q}_{3} and quite long．Although f decreases along the direction p_{k} ，its extreme length violates the spirit of Newton＇s method，which relies on a quadratic approximation of the objective function in a neighborhood of the current iterate x_{k} ． It is therefore not clear that this search direction is effective．

Various other modification strategies are possible．We could
（1）flip the signs of the negative eigenvalues in（23），which amounts to setting $\delta=1$ in our example，or
（2）set the last term in（25）to zero，so that the search direction has no components along the negative curvature directions，or
（3）adapt the choice of δ to ensure that the length of the step is not excessive，a strategy with the flavor of trust－region methods．
There is a great deal of freedom in devising modification strategies， and there is currently no agreement on which strategy is best．

§3．4 Newton＇s Method with Hessian Modification

Setting the issue of the choice of δ aside for the moment，let us look more closely at the process of modifying a matrix so that it becomes positive definite．The modification（24）to the example matrix（23）can be shown to be optimal in the following sense：if A is a symmetric matrix with spectral decomposition $A=Q \Lambda Q^{\mathrm{T}}$ ， then the correction matrix ΔA of minimum Frobenius norm that ensures that $\lambda_{\min }(A+\Delta A) \geqslant \delta$ is given by

$$
\Delta A=Q \operatorname{diag}\left(\tau_{1}, \cdots, \tau_{n}\right) Q^{\mathrm{T}}, \quad \tau_{i}=\left\{\begin{array}{cl}
0 & \text { if } \lambda_{i} \geqslant \delta \tag{26}\\
\delta-\lambda_{i} & \text { if } \lambda_{i}<\delta
\end{array}\right.
$$

Here，$\lambda_{\min }(A)$ denotes the smallest eigenvalue of A ，and the Frobe－ nius norm of a matrix A is defined as $\|A\|_{F}^{2}=\operatorname{tr}\left(A A^{\mathrm{T}}\right)$ ．
ΔA is not diagonal in general，and that the modified matrix is

§3．4 Newton＇s Method with Hessian Modification

Setting the issue of the choice of δ aside for the moment，let us look more closely at the process of modifying a matrix so that it becomes positive definite．The modification（24）to the example matrix（23）can be shown to be optimal in the following sense：if A is a symmetric matrix with spectral decomposition $A=Q \Lambda Q^{\mathrm{T}}$ ， then the correction matrix ΔA of minimum Frobenius norm that ensures that $\lambda_{\min }(A+\Delta A) \geqslant \delta$ is given by

$$
\Delta A=Q \operatorname{diag}\left(\tau_{1}, \cdots, \tau_{n}\right) Q^{\mathrm{T}}, \quad \tau_{i}=\left\{\begin{array}{cc}
0 & \text { if } \lambda_{i} \geqslant \delta, \tag{26}\\
\delta-\lambda_{i} & \text { if } \lambda_{i}<\delta .
\end{array}\right.
$$

Here，$\lambda_{\min }(A)$ denotes the smallest eigenvalue of A ，and the Frobe－ nius norm of a matrix A is defined as $\|A\|_{F}^{2}=\operatorname{tr}\left(A A^{\mathrm{T}}\right)$ ．Note that
ΔA is not diagonal in general，and that the modified matrix is

$$
A+\Delta A=Q(\Lambda+\operatorname{diag}(\boldsymbol{\tau})) Q^{\mathrm{T}}
$$

§3．4 Newton＇s Method with Hessian Modification

By using a different norm we can obtain a diagonal modification． Suppose again that A is a symmetric matrix with spectral decom－ position $A=Q \Lambda Q^{T}$ ．A correction matrix ΔA with minimum Eu－ clidean norm that satisfies $\lambda_{\text {min }}(A+\Delta A) \geqslant \delta$ is given by

$$
\begin{equation*}
\Delta A=\tau \mathrm{I} \quad \text { with } \quad \tau=\max \left\{0, \delta-\lambda_{\min }(A)\right\} . \tag{27}
\end{equation*}
$$

All the eigenvalues of $A+\Delta A$ have thus been shifted，and all are greater than δ ．The modified matrix now has the form $A+\tau \mathrm{I}$ which happens to have the same form as the matrix occurring in（unscaled） trust－region methods（see Chapter 4）．

§3．4 Newton＇s Method with Hessian Modification

These results suggest that both diagonal and non－diagonal modifi－ cations can be considered．Even though we have not answered the question of what constitutes a good modification，various practical diagonal and non－diagonal modifications have been proposed and implemented in software．They do not make use of the spectral decomposition of the Hessian，since it is generally too expensive to compute．Instead，they use Gaussian elimination，choosing the modifications indirectly and hoping that somehow they will produce good steps．Numerical experience indicates that the strategies de－ scribed next often（but not always）produce good search directions．

§3．4 Newton＇s Method with Hessian Modification

－Adding a multiple of the identity

Perhaps the simplest idea is to find a scalar $\tau>0$ such that $\nabla^{2} f\left(x_{k}\right)+\tau$ I is sufficiently positive definite．From the previous discussion we know that τ must satisfy（27），but a good estimate of the smallest eigenvalue of the Hessian is normally not available． The following algorithm describes a method that tries successively larger values of τ ．

§3．4 Newton＇s Method with Hessian Modification

Algorithm 3.3 （Cholesky with Added Multiple of the Identity）：
Choose $\beta>0$ ；
if $\min _{j} a_{j j}>0$
set $\tau_{0} \leftarrow 0$ ；
else

$$
\tau_{0}=-\min _{j} a_{j j}+\beta ;
$$

end（if）
for $k=0,1,2, \cdots$
Try to apply the Cholesky algorithm to obtain $L L^{T}=A+\tau_{k} \mathrm{I}$ ；
if the factorization is completed successfully stop and return L ；
else

$$
\tau_{k+1}=\max \left\{2 \tau_{k}, \beta\right\}
$$

end（if）
end（for）

§3．4 Newton＇s Method with Hessian Modification

The choice of β is heuristic；a typical value is $\beta=10^{-3}$ ．We could choose the first nonzero shift of to be proportional to be the final value of τ used in the latest Hessian modification；see also Algorithm B．1．The strategy implemented in Algorithm 3.3 is quite simple and may be preferable to the modified factorization techniques described next，but it suffers from one drawback：every value of τ_{k} requires a new factorization of $A+\tau_{k} \mathrm{I}$ ，and the algorithm can be quite expensive if several trial values are generated．Therefore it may be advantageous to increase τ more rapidly，say by a factor of 10 instead of 2 in the last else clause．

§3．4 Newton＇s Method with Hessian Modification

－Modified Cholesky factorization

Another approach for modifying a Hessian matrix that is not positive definite is to perform a Cholesky factorization of $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ，but to increase the diagonal elements encountered during the factorization （where necessary）to ensure that they are sufficiently positive．This modified Cholesky approach is designed to accomplish two goals：It guarantees that the modified Cholesky factors exist and are bounded relative to the norm of the actual Hessian，and it does not modify the Hessian if it is sufficiently positive definite．

§3．4 Newton＇s Method with Hessian Modification

We begin our description of this approach by briefly reviewing the Cholesky factorization．Every symmetric positive definite matrix A can be written as

$$
\begin{equation*}
A=L D L^{\mathrm{T}} \tag{28}
\end{equation*}
$$

where L is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix with positive elements on the diagonal． By equating the elements in（28），column by column，it is easy to derive formulas for computing L and D ．

§3．4 Newton＇s Method with Hessian Modification

Example

Consider the case $n=3$ ．Suppose the symmetric matrix $A=\left[a_{i j}\right]$ is factorized into

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & \ell_{21} & \ell_{31} \\
0 & 1 & \ell_{32} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & d_{1} \ell_{21} & d_{1} \ell_{31} \\
0 & d_{2} & d_{2} \ell_{32} \\
0 & 0 & d_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
d_{1} & d_{1} \ell_{21} & d_{1} \ell_{31} \\
d_{1} \ell_{21} & d_{1} \ell_{21}^{2}+d_{2} & d_{1} \ell_{31} \ell_{21}+d_{2} \ell_{32} \\
d_{1} \ell_{31} & d_{1} \ell_{31} \ell_{21}+d_{2} \ell_{32} & d_{1} \ell_{31}^{2}+d_{2} \ell_{32}^{2}+d_{3}
\end{array}\right] .
\end{aligned}
$$

§3．4 Newton＇s Method with Hessian Modification

Example（cont＇d）

By equating the elements of the first column，we have

$$
\begin{array}{ll}
a_{11}=d_{1} & \Rightarrow \quad d_{1}=a_{11}, \\
a_{21}=d_{1} \ell_{21} & \Rightarrow \quad \ell_{21}=\frac{a_{21}}{d_{1}}, \\
a_{31}=d_{1} \ell_{31} & \Rightarrow \quad \ell_{31}=\frac{a_{31}}{d_{1}} .
\end{array}
$$

Proceeding with the next two columns，we obtain

$$
\begin{array}{lll}
a_{22}=d_{1} \ell_{21}^{2}+d_{2} & \Rightarrow & d_{2}=a_{22}-d_{1} \ell_{21}^{2}, \\
a_{32}=d_{1} \ell_{31} \ell_{21}+d_{2} \ell_{32} & \Rightarrow & \ell_{32}=\frac{a_{32}-d_{1} \ell_{31} \ell_{21}}{d_{2}}, \\
a_{33}=d_{1} \ell_{31}^{2}+d_{2} \ell_{32}^{2}+d_{3} & \Rightarrow & d_{3}=a_{33}-d_{1} \ell_{31}^{2}+d_{2} \ell_{32}^{2} .
\end{array}
$$

§3．4 Newton＇s Method with Hessian Modification

In general，for symmetric $n \times n$ matrix A ，we want to have the following decomposition

$$
A=L D L^{\mathrm{T}}, \quad A=\left[a_{i j}\right], L=\left[\ell_{i j}\right], D=\left[d_{i j}\right]
$$

where L is lower triangular matrix with unit diagonal elements，and D is a diagonal matrix．Writing $d_{j j}$ as d_{j} ，we have

$$
a_{i j}=\sum_{r, s=1}^{n} \ell_{i r} d_{r s} \ell_{j s}=\sum_{s=1}^{n} d_{s} \ell_{i s} \ell_{j s}
$$

Assuming $i \geqslant j$ ，the identity above shows that

§3．4 Newton＇s Method with Hessian Modification

In general，for symmetric $n \times n$ matrix A ，we want to have the following decomposition

$$
A=L D L^{\mathrm{T}}, \quad A=\left[a_{i j}\right], L=\left[\ell_{i j}\right], D=\left[d_{i j}\right]
$$

where L is lower triangular matrix with unit diagonal elements，and D is a diagonal matrix．Writing $d_{j j}$ as d_{j} ，we have

$$
a_{i j}=\sum_{r, s=1}^{n} \ell_{i r} d_{r s} \ell_{j s}=\sum_{s=1}^{n} d_{s} \ell_{i s} \ell_{j s}
$$

Assuming $i \geqslant j$ ，the identity above shows that

$$
a_{i j}=\sum_{s=1}^{j} d_{s} \ell_{i s} \ell_{j s}=d_{j} \ell_{i j}+\sum_{s=1}^{j-1} d_{s} \ell_{i s} \ell_{j s}
$$

or

$$
d_{j} \ell_{i j}=c_{i j} \equiv a_{i j}-\sum_{s=1}^{j-1} d_{s} \ell_{i s} \ell_{j s}
$$

§3．4 Newton＇s Method with Hessian Modification

Algorithm 3.4 （Cholesky Factorization，$L D L^{\mathrm{T}}$ Form）．
for $j=1,2, \cdots, n$
for $i=j, j+1, \cdots, n$
$c_{i j} \leftarrow a_{i j}-\sum_{s=1}^{j-1} d_{s} \ell_{i s} \ell_{j s} ;$
$d_{j} \leftarrow c_{j j} ;$
$\ell_{i j} \leftarrow c_{i j} / d_{j} ;$
end
end

§3．4 Newton＇s Method with Hessian Modification

One can show that the diagonal elements d_{j} are all positive whenever A is positive definite．The scalars $c_{i j}$ have been introduced only to facilitate the description of the modified factorization discussed below．We should note that Algorithm 3.4 differs a little from the standard form of the Cholesky factorization，which produces a lower triangular matrix M such that

$$
\begin{equation*}
A=M M^{T} \tag{29}
\end{equation*}
$$

In fact，we can make the identification $M=L D^{1 / 2}$ to relate M to the factors L and D computed in Algorithm 3．4．The technique for computing M appears as Algorithm A． 2 in Appendix A．

§3．4 Newton＇s Method with Hessian Modification

One can show that the diagonal elements d_{j} are all positive whenever A is positive definite．The scalars $c_{i j}$ have been introduced only to facilitate the description of the modified factorization discussed below．We should note that Algorithm 3.4 differs a little from the standard form of the Cholesky factorization，which produces a lower triangular matrix M such that

$$
\begin{equation*}
A=M M^{\mathrm{T}} \tag{29}
\end{equation*}
$$

In fact，we can make the identification $M=L D^{1 / 2}$ to relate M to the factors L and D computed in Algorithm 3．4．The technique for computing M appears as Algorithm A． 2 in Appendix A．

§3．4 Newton＇s Method with Hessian Modification

If A is indefinite，the factorization $A=L D L^{\mathrm{T}}$ may not exist．Even if it does exist，Algorithm 3.4 is numerically unstable when applied to such matrices，in the sense that the elements of L and D can become arbitrarily large．It follows that a strategy of computing the $L D L^{\mathrm{T}}$ factorization and then modifying the diagonal after the fact to force its elements to be positive may break down，or may result in a matrix that is drastically different from A ．

§3．4 Newton＇s Method with Hessian Modification

Instead，we can modify the matrix A during the course of the factor－ ization in such a way that all elements in D are sufficiently positive， and so that the elements of D and L are not too large．To control the quality of the modification，we choose two positive parameters δ and β ，and require that during the computation of the j－th columns of L and D in Algorithm 3.4 （that is，for each j in the outer loop of the algorithm）the following bounds be satisfied：

$$
\begin{equation*}
d_{j} \geqslant \delta, \quad\left|m_{i j}\right| \leqslant \beta \text { for } i=j+1, j+2, \cdots, n \tag{30}
\end{equation*}
$$

where $m_{i j}=\ell_{i j} \sqrt{d_{j}}$ ．To satisfy these bounds we only need to change
one step in Algorithm 3．4：
：The formula for computing the diagonal

§3．4 Newton＇s Method with Hessian Modification

Instead，we can modify the matrix A during the course of the factor－ ization in such a way that all elements in D are sufficiently positive， and so that the elements of D and L are not too large．To control the quality of the modification，we choose two positive parameters δ and β ，and require that during the computation of the j－th columns of L and D in Algorithm 3.4 （that is，for each j in the outer loop of the algorithm）the following bounds be satisfied：

$$
\begin{equation*}
d_{j} \geqslant \delta, \quad\left|m_{i j}\right| \leqslant \beta \text { for } i=j+1, j+2, \cdots, n \tag{30}
\end{equation*}
$$

where $m_{i j}=\ell_{i j} \sqrt{d_{j}}$ ．To satisfy these bounds we only need to change one step in Algorithm 3．4：The formula for computing the diagonal element d_{j} in Algorithm 3.4 is replaced by

$$
\begin{equation*}
d_{j}=\max \left\{\left|c_{j j}\right|,\left(\frac{\theta_{j}}{\beta}\right)^{2}, \delta\right\} \quad \text { with } \theta_{j}=\max _{j<i \leqslant n}\left|c_{i j}\right| \tag{31}
\end{equation*}
$$

§3．4 Newton＇s Method with Hessian Modification

Instead，we can modify the matrix A during the course of the factor－ ization in such a way that all elements in D are sufficiently positive， and so that the elements of D and L are not too large．To control the quality of the modification，we choose two positive parameters δ and β ，and require that during the computation of the j－th columns of L and D in Algorithm 3.4 （that is，for each j in the outer loop of the algorithm）the following bounds be satisfied：

$$
\begin{equation*}
d_{j} \geqslant \delta, \quad\left|m_{i j}\right| \leqslant \beta \text { for } i=j, j+1, j+2, \cdots, n \tag{30}
\end{equation*}
$$

where $m_{i j}=\ell_{i j} \sqrt{d_{j}}$ ．To satisfy these bounds we only need to change one step in Algorithm 3．4：The formula for computing the diagonal element d_{j} in Algorithm 3.4 is replaced by

$$
\begin{equation*}
d_{j}=\max \left\{\left|c_{j j}\right|,\left(\frac{\theta_{j}}{\beta}\right)^{2}, \delta\right\} \quad \text { with } \theta_{j}=\max _{j \leqslant i \leqslant n}\left|c_{i j}\right| \tag{31}
\end{equation*}
$$

§3．4 Newton＇s Method with Hessian Modification

Algorithm 3.4 （Cholesky Factorization，$L D L^{\mathrm{T}}$ Form）．
for $j=1,2, \cdots, n$

$$
\text { for } i=j, j+1, \cdots, n
$$

$$
c_{i j} \leftarrow a_{i j}-\sum_{s=1}^{j-1} d_{s} \ell_{i s} \ell_{j s}
$$

$$
\theta_{j} \leftarrow \max _{j<i \leqslant n}\left|c_{i j}\right|\left(\text { or } \max _{j \leqslant i \leqslant n}\left|c_{i j}\right|\right) ;
$$

$$
d_{j} \leftarrow \max \left\{\left|c_{j j}\right|,\left(\frac{\theta_{j}}{\beta}\right)^{2}, \delta\right\} ;
$$

$$
\ell_{i j} \leftarrow c_{i j} / d_{j}
$$

end
end

§3．4 Newton＇s Method with Hessian Modification

To verify that（30）holds，we note from Algorithm 3.4 that $c_{i j}=\ell_{i j} d_{j}$ ， and therefore

$$
\left|m_{i j}\right|=\left|\ell_{i j} \sqrt{d_{j}}\right|=\frac{\left|c_{i j}\right|}{\sqrt{d_{j}}} \leqslant \frac{\left|c_{i j}\right| \beta}{\theta_{j}} \leqslant \beta \text { for all } i>(\text { or } \geqslant) j .
$$

We note that θ_{j} can be computed prior to d_{j} because the elements $c_{i j}$ in the second for loop of Algorithm 3.4 do not involve d_{j} ．In fact， this is the reason for introducing the quantities $c_{i j}$ into the algorithm．

§3．4 Newton＇s Method with Hessian Modification

These observations are the basis of the modified Cholesky algorithm described in detail in Gill，Murray，and Wright［130］，which intro－ duces symmetric interchanges of rows and columns to try to reduce the size of the modification．If P denotes the permutation matrix associated with the row and column interchanges，the algorithm pro－ duces the Cholesky factorization of the permuted，modified matrix $P A P^{\mathrm{T}}+E$ ；that is，

$$
\begin{equation*}
P A P^{\mathrm{T}}+E=L D L^{\mathrm{T}}=M M^{\mathrm{T}}, \tag{32}
\end{equation*}
$$

where E is a non－negative diagonal matrix that is zero if A is suffi－ ciently positive definite．One can show that the matrices B_{k} obtained by this modified Cholesky algorithm to the exact Hessians $\left(\nabla^{2} f\right)\left(x_{k}\right)$ have bounded condition numbers；that is，the bound（22）holds for some value of C ．

§3．4 Newton＇s Method with Hessian Modification

－Modified symmetric indefinite factorization

Another strategy for modifying an indefinite Hessian is to use a pro－ cedure based on a symmetric indefinite factorization．Any symmetric matrix A ，whether positive definite or not，can be written as

$$
\begin{equation*}
P A P^{\mathrm{T}}=\angle B L^{\mathrm{T}} \tag{33}
\end{equation*}
$$

where L is unit lower triangular，B is a block diagonal matrix with blocks of dimension 1 or 2 ，and P is a permutation matrix（see our discussion in Appendix A and also Golub and Van Loan［136， Section 4．4］）．By using the block diagonal matrix B ，which allows 2×2 blocks as well as 1×1 blocks on the diagonal，we can guarantee that the factorization（33）always exists and can be computed by a numerically stable process．

§3．4 Newton＇s Method with Hessian Modification

Example

The matrix $A=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 3 \\ 3 & 2 & 3 & 4\end{array}\right]$ can be written in the form（33）with $P=\left[\mathbf{e}_{1}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{e}_{2}\right]$,

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{9} & \frac{2}{3} & 1 & 0 \\
\frac{2}{9} & \frac{1}{3} & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & 3 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & \frac{7}{9} & \frac{5}{9} \\
0 & 0 & \frac{5}{9} & \frac{10}{9}
\end{array}\right] .
$$

Note that both diagonal blocks in B are 2×2 ．Several algorithms for computing symmetric indefinite factorizations are discussed in Section A． 1 of Appendix A．

§3．4 Newton＇s Method with Hessian Modification

The symmetric indefinite factorization allows us to determine the inertia of a matrix；that is，the number of positive，zero，and negative eigenvalues．One can show that the inertia of B equals the inertia of A ．Moreover，the 2×2 blocks in B are always constructed to have one positive and one negative eigenvalue；thus the number of positive eigenvalues in A equals the number of positive 1×1 blocks plus the number of 2×2 blocks．

§3．4 Newton＇s Method with Hessian Modification

As for the Cholesky factorization，an indefinite symmetric factoriza－ tion algorithm can be modified to ensure that the modified factors are the factors of a positive definite matrix．The strategy is first to compute the factorization（33），as well as the spectral decom－ position $B=Q \Lambda Q^{\mathrm{T}}$ ，which is inexpensive to compute because B is block diagonal．We then construct a modification matrix F such that

$$
L(B+F) L^{\mathrm{T}}
$$

is sufficiently positive definite．Motivated by the modified spectral decomposition（26），we choose a parameter $\delta>0$ and define F to be

$$
F=Q \operatorname{diag}\left(\tau_{i}\right) Q^{\mathrm{T}}, \tau_{i}=\left\{\begin{array}{cl}
0 & \text { if } \lambda_{i} \geqslant \delta, \tag{34}\\
\delta-\lambda_{i} & \text { if } \lambda_{i}<\delta, i=1,2, \cdots, n
\end{array}\right.
$$

where λ_{i} are the eigenvalues of B ．

§3．4 Newton＇s Method with Hessian Modification

The matrix F is thus the modification of minimum Frobenius norm that ensures that all eigenvalues of the modified matrix $B+F$ are no less than δ ．This strategy therefore modifies the factorization（33） as follows：

$$
P(A+E) P^{\mathrm{T}}=L(B+F) L^{\mathrm{T}}, \quad \text { where } E=P^{\mathrm{T}} L F L^{\mathrm{T}} P .
$$

Note that in general E will not be diagonal；thus in contrast to the modified Cholesky approach，this modification strategy changes the entire matrix A ，not just its diagonal．

that the modified matrix satisfies $\lambda_{\min }(A+E) \approx \delta$ whenever the original matrix A has $\lambda_{\min }(A)<\delta$ ．It is not clear；however，whether it always comes close to attaining this goal．

§3．4 Newton＇s Method with Hessian Modification

The matrix F is thus the modification of minimum Frobenius norm that ensures that all eigenvalues of the modified matrix $B+F$ are no less than δ ．This strategy therefore modifies the factorization（33） as follows：

$$
P(A+E) P^{\mathrm{T}}=L(B+F) L^{\mathrm{T}}, \quad \text { where } E=P^{\mathrm{T}} L F L^{\mathrm{T}} P
$$

Note that in general E will not be diagonal；thus in contrast to the modified Cholesky approach，this modification strategy changes the entire matrix A ，not just its diagonal．The aim of strategy（34）is that the modified matrix satisfies $\lambda_{\min }(A+E) \approx \delta$ whenever the original matrix A has $\lambda_{\text {min }}(A)<\delta$ ．It is not clear；however，whether it always comes close to attaining this goal．

§3．5 Step－Length Selection Algorithms

We now consider techniques for finding a minimum of the one－ dimensional function

$$
\begin{equation*}
\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \tag{35}
\end{equation*}
$$

or for simply finding a step length α_{k} satisfying one of the termi－ nation conditions such as the Wolfe conditions and the Goldstein conditions in Section 3．1．We assume that p_{k} is a descent direction； that is，$\varphi^{\prime}(0)<0$ ，so that our search can be confined to positive values of α ．

§3．5 Step－Length Selection Algorithms

If f is a convex quadratic given by

$$
f(x)=\frac{1}{2} x^{\mathrm{T}} Q x-b^{\mathrm{T}} x,
$$

its one－dimensional minimizer along the ray $x_{k}+\alpha p_{k}$ can be com－ puted analytically and is given by

$$
\begin{equation*}
\alpha_{k}=-\frac{\nabla f_{k}^{\mathrm{T}} p_{k}}{p_{k}^{\mathrm{T}} Q p_{k}} \tag{36}
\end{equation*}
$$

For general nonlinear functions，it is necessary to use an iterative procedure．The line search procedure deserves particular attention because it has a major impact on the robustness and efficiency of all nonlinear optimization methods．

§3．5 Step－Length Selection Algorithms

Line search procedures can be classified according to the type of derivative information they use．Algorithms that use only function values can be inefficient since，to be theoretically sound，they need to continue iterating until the search for the minimizer is narrowed down to a small interval．In contrast，knowledge of gradient infor－ mation allows us to determine whether a suitable step length has been located，as stipulated，for example，by the Wolfe conditions

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5a}\\
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k} & \geqslant c_{2} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{5b}
\end{align*}
$$

with $0<c_{1}<c_{2}<1$ or Goldstein conditions

$$
\begin{equation*}
f\left(x_{k}\right)+(1-c) \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \leqslant f\left(x_{k}+\alpha_{k} p_{k}\right) \leqslant f\left(x_{k}\right)+c \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k} \tag{8}
\end{equation*}
$$

with $0<c<1 / 2$ ．

§3．5 Step－Length Selection Algorithms

All line search procedures require an initial estimate α_{0} and generate a sequence $\left\{\alpha_{i}\right\}$ that either terminates with a step length satisfying the conditions specified by the user（for example，the Wolfe condi－ tions）or determines that such a step length does not exist．Typical procedures consist of two phases：a bracketing phase that finds an interval $[\bar{a}, \bar{b}]$ containing acceptable step lengths，and a selection phase that zooms in to locate the final step length．

In the following discussion we let α_{k} and α_{k-1} denote the step lengths used at iterations k and $k-1$ of the optimization algo－ rithm，respectively．On the other hand，we denote the trial step lengths generated during the line search by α_{i} and α_{i-1} and also α_{j} We use α_{0} to denote the initial guess．

§3．5 Step－Length Selection Algorithms

All line search procedures require an initial estimate α_{0} and generate a sequence $\left\{\alpha_{i}\right\}$ that either terminates with a step length satisfying the conditions specified by the user（for example，the Wolfe condi－ tions）or determines that such a step length does not exist．Typical procedures consist of two phases：a bracketing phase that finds an interval $[\bar{a}, \bar{b}]$ containing acceptable step lengths，and a selection phase that zooms in to locate the final step length．

In the following discussion we let α_{k} and α_{k-1} denote the step lengths used at iterations k and $k-1$ of the optimization algo－ rithm，respectively．On the other hand，we denote the trial step lengths generated during the line search by α_{i} and α_{i-1} and also α_{j} ． We use α_{0} to denote the initial guess．

§3．5 Step－Length Selection Algorithms

－Interpolation

We begin by describing a line search procedure based on interpola－ tion of known function and derivative values of the function φ ．This procedure can be viewed as an enhancement of Algorithm 3．1，the Backtracking Line Search algorithm．The aim is to find a value of α that satisfies the sufficient decrease condition（5a），without being ＂too small＂．Accordingly，the procedures here generate a decreas－ ing sequence of values α_{i} such that each value α_{i} is not too much smaller than its predecessor α_{i-1} ．

§3．5 Step－Length Selection Algorithms

Note that we can write the sufficient decrease condition，in the notation of $\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$ ，as

$$
\begin{equation*}
\varphi\left(\alpha_{k}\right) \leqslant \varphi(0)+c_{1} \alpha_{k} \varphi^{\prime}(0), \tag{37}
\end{equation*}
$$

and that since the constant c_{1} is usually chosen to be small in prac－ tice（ $c_{1}=10^{-4}$ ，say），this condition asks for little more than descent in f ．We design the procedure to be＂efficient＂in the sense that it computes the derivative $\nabla f(x)$ as few times as possible．

§3．5 Step－Length Selection Algorithms

Suppose that the initial guess α_{0} is given．If we have

$$
\varphi\left(\alpha_{0}\right) \leqslant \varphi(0)+c_{1} \alpha_{0} \varphi^{\prime}(0),
$$

this step length satisfies the condition，and we terminate the search． Otherwise，we know that the interval $\left[0, \alpha_{0}\right]$ contains acceptable step lengths．
interpolating the three pieces of information available $-\varphi(0), \varphi^{\prime}(0)$ ， and $\varphi\left(\alpha_{0}\right)$－to obtain

Note that this function is constructed so that it satisfies the inter－
polation conditions $\varphi_{a}(0)=\varphi(0) \cdot \varphi_{\sim}^{\prime}(0)=\varphi^{\prime}(0)$ ．and

§3．5 Step－Length Selection Algorithms

Suppose that the initial guess α_{0} is given．If we have

$$
\varphi\left(\alpha_{0}\right) \leqslant \varphi(0)+c_{1} \alpha_{0} \varphi^{\prime}(0),
$$

this step length satisfies the condition，and we terminate the search． Otherwise，we know that the interval $\left[0, \alpha_{0}\right]$ contains acceptable step lengths．We form a quadratic approximation $\varphi_{q}(\alpha)$ to φ by interpolating the three pieces of information available $-\varphi(0), \varphi^{\prime}(0)$ ， and $\varphi\left(\alpha_{0}\right)$－to obtain

$$
\begin{equation*}
\varphi_{q}(\alpha)=\left(\frac{\varphi\left(\alpha_{0}\right)-\varphi(0)-\alpha_{0} \varphi^{\prime}(0)}{\alpha_{0}^{2}}\right) \alpha^{2}+\varphi^{\prime}(0) \alpha+\varphi(0) . \tag{38}
\end{equation*}
$$

Note that this function is constructed so that it satisfies the inter－ polation conditions $\varphi_{q}(0)=\varphi(0), \varphi_{q}^{\prime}(0)=\varphi^{\prime}(0)$ ，and $\varphi_{q}\left(\alpha_{0}\right)=$ $\varphi\left(\alpha_{0}\right)$ ．

§3．5 Step－Length Selection Algorithms

The new trial value α_{1} is defined as the minimizer of this quadratic； that is，we obtain

$$
\begin{equation*}
\alpha_{1}=-\frac{\varphi^{\prime}(0) \alpha_{0}^{2}}{2\left[\varphi\left(\alpha_{0}\right)-\varphi(0)-\varphi^{\prime}(0) \alpha_{0}\right]} . \tag{39}
\end{equation*}
$$

We note that $0<c_{1}<\frac{1}{2}$ if and only if $\alpha_{1} \in\left(0, \alpha_{0}\right)$ ．
If the sufficient decrease condition（37）is satisfied at α_{1} ，we termi－ nate the search．Otherwise，we construct a cubic function φ_{c} that interpolates the four pieces of information $\omega(0) \cdot \omega^{\prime}(0) . \omega\left(\alpha_{n}\right)$ ．and

§3．5 Step－Length Selection Algorithms

The new trial value α_{1} is defined as the minimizer of this quadratic； that is，we obtain

$$
\begin{equation*}
\alpha_{1}=-\frac{\varphi^{\prime}(0) \alpha_{0}^{2}}{2\left[\varphi\left(\alpha_{0}\right)-\varphi(0)-\varphi^{\prime}(0) \alpha_{0}\right]} . \tag{39}
\end{equation*}
$$

We note that $0<c_{1}<\frac{1}{2}$ if and only if $\alpha_{1} \in\left(0, \alpha_{0}\right)$ ．
If the sufficient decrease condition（37）is satisfied at α_{1} ，we termi－ nate the search．Otherwise，we construct a cubic function φ_{c} that interpolates the four pieces of information $\varphi(0), \varphi^{\prime}(0), \varphi\left(\alpha_{0}\right)$ ，and $\varphi\left(\alpha_{1}\right)$ ，obtaining $\varphi_{c}(\alpha)=a \alpha^{3}+b \alpha^{2}+\alpha \varphi^{\prime}(0)+\varphi(0)$ ，where

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{1}-\alpha_{0}\right)}\left[\begin{array}{cc}
\alpha_{0}^{2} & -\alpha_{1}^{2} \\
-\alpha_{0}^{3} & \alpha_{1}^{3}
\end{array}\right]\left[\begin{array}{l}
\varphi\left(\alpha_{0}\right)-\varphi(0)-\alpha_{0} \varphi^{\prime}(0) \\
\varphi\left(\alpha_{1}\right)-\varphi(0)-\alpha_{1} \varphi^{\prime}(0)
\end{array}\right]
$$

§3．5 Step－Length Selection Algorithms

By differentiating $\varphi_{c}(x)$ ，we see that the minimizer α_{2} of φ_{c} lies in the interval $\left[0, \alpha_{1}\right]$ and is given by

$$
\alpha_{2}=\frac{-b+\sqrt{b^{2}-3 a \varphi^{\prime}(0)}}{3 a} .
$$

If necessary，this process is repeated，using a cubic interpolant of $\varphi(0), \varphi^{\prime}(0)$ and the two most recent values of φ ，until an α that satisfies（37）is located．
α_{i-1} or else too much smaller than α_{i-1} ，we reset $\alpha_{i}=\alpha_{i-1} / 2$ ．This
safeguard procedure ensures that we make reasonable progress on
each iteration and that the final α is not too small．

§3．5 Step－Length Selection Algorithms

By differentiating $\varphi_{c}(x)$ ，we see that the minimizer α_{2} of φ_{c} lies in the interval $\left[0, \alpha_{1}\right]$ and is given by

$$
\alpha_{2}=\frac{-b+\sqrt{b^{2}-3 a \varphi^{\prime}(0)}}{3 a} .
$$

If necessary，this process is repeated，using a cubic interpolant of $\varphi(0), \varphi^{\prime}(0)$ and the two most recent values of φ ，until an α that satisfies（37）is located．If any α_{i} is either too close to its predecessor α_{i-1} or else too much smaller than α_{i-1} ，we reset $\alpha_{i}=\alpha_{i-1} / 2$ ．This safeguard procedure ensures that we make reasonable progress on each iteration and that the final α is not too small．

§3．5 Step－Length Selection Algorithms

The strategy just described assumes that derivative values are signif－ icantly more expensive to compute than function values．It is often possible，however，to compute the directional derivative simulta－ neously with the function，at little additional cost；see Chapter 8. Accordingly，we can design an alternative strategy based on cubic interpolation of the values of φ and φ^{\prime} at the two most recent val－ ues of α ．Cubic interpolation provides a good model for functions with significant changes of curvature．Suppose we have an inter－ val $[\bar{a}, b]$ known to contain desirable step lengths，and two previous step length estimates α_{i-1} and α_{i} in this interval．We use a cubic function to interpolate $\varphi\left(\alpha_{i-1}\right), \varphi^{\prime}\left(\alpha_{i-1}\right), \varphi\left(\alpha_{i}\right)$ ，and $\varphi^{\prime}\left(\alpha_{i}\right)$ ．（This cubic function always exists and is unique；see，for example，Bulirsch and Stoer［41，p．52］．）

§3．5 Step－Length Selection Algorithms

The strategy just described assumes that derivative values are signif－ icantly more expensive to compute than function values．It is often possible，however，to compute the directional derivative simulta－ neously with the function，at little additional cost；see Chapter 8. Accordingly，we can design an alternative strategy based on cubic interpolation of the values of φ and φ^{\prime} at the two most recent val－ ues of α ．Cubic interpolation provides a good model for functions with significant changes of curvature．Suppose we have an inter－ val $[\bar{a}, \bar{b}]$ known to contain desirable step lengths，and two previous step length estimates α_{i-1} and α_{i} in this interval．We use a cubic function to interpolate $\varphi\left(\alpha_{i-1}\right), \varphi^{\prime}\left(\alpha_{i-1}\right), \varphi\left(\alpha_{i}\right)$ ，and $\varphi^{\prime}\left(\alpha_{i}\right)$ ．（This cubic function always exists and is unique；see，for example，Bulirsch and Stoer［41，p．52］．）

§3．5 Step－Length Selection Algorithms

The minimizer of this cubic function in $[\bar{a}, \bar{b}]$ is either at one of the endpoints or else in the interior，in which case it is given by

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}-\left(\alpha_{i}-\alpha_{i-1}\right)\left[\frac{\varphi^{\prime}\left(\alpha_{i}\right)+d_{2}-d_{1}}{\varphi^{\prime}\left(\alpha_{i}\right)-\varphi^{\prime}\left(\alpha_{i-1}\right)+2 d_{2}}\right] \tag{40}
\end{equation*}
$$

with

$$
\begin{aligned}
& d_{1}=\varphi^{\prime}\left(\alpha_{i-1}\right)+\varphi^{\prime}\left(\alpha_{i}\right)-3 \frac{\varphi\left(\alpha_{i-1}\right)-\varphi\left(\alpha_{i}\right)}{\alpha_{i-1}-\alpha_{i}} \\
& d_{2}=\operatorname{sign}\left(\alpha_{i}-\alpha_{i-1}\right) \sqrt{d_{1}^{2}-\varphi^{\prime}\left(\alpha_{i-1}\right) \varphi^{\prime}\left(\alpha_{i}\right)}
\end{aligned}
$$

§3．5 Step－Length Selection Algorithms

The interpolation process can be repeated by discarding the data at one of the step lengths α_{i-1} or α_{i} and replacing it by $\varphi\left(\alpha_{i+1}\right)$ and $\varphi^{\prime}\left(\alpha_{i+1}\right)$ ．The decision on which of α_{i-1} and α_{i} should be kept and which discarded depends on the specific conditions used to terminate the line search；we discuss this issue further below in the context of the Wolfe conditions． \qquad
strategy，since it usually produces a quadratic rate of convergence of the iteration（40）to the minimizing value of α

§3．5 Step－Length Selection Algorithms

The interpolation process can be repeated by discarding the data at one of the step lengths α_{i-1} or α_{i} and replacing it by $\varphi\left(\alpha_{i+1}\right)$ and $\varphi^{\prime}\left(\alpha_{i+1}\right)$ ．The decision on which of α_{i-1} and α_{i} should be kept and which discarded depends on the specific conditions used to terminate the line search；we discuss this issue further below in the context of the Wolfe conditions．Cubic interpolation is a powerful strategy，since it usually produces a quadratic rate of convergence of the iteration（40）to the minimizing value of α ．

§3．5 Step－Length Selection Algorithms

－Initial Step Length

For Newton and quasi－Newton methods，the step $\alpha_{0}=1$ should always be used as the initial trial step length．This choice ensures that unit step lengths are taken whenever they satisfy the termina－ tion conditions and allows the rapid rate－of－convergence properties of these methods to take effect．
conjugate gradient methods，it is important to use current informa－
tion about the problem and the aloorithm to make the initial guess
A popular strategy is to assume that the first－order change in the
function at iterate x_{k} will be the same as that obtained at the pre－
vious step．In other words，we choose the initial guess α_{0} so that
$\alpha_{0} \nabla f_{k}^{T} p_{k}=\alpha_{k-1} \nabla f_{k-1}^{T} p_{k-1}$ ；that is

§3．5 Step－Length Selection Algorithms

－Initial Step Length

For Newton and quasi－Newton methods，the step $\alpha_{0}=1$ should always be used as the initial trial step length．This choice ensures that unit step lengths are taken whenever they satisfy the termina－ tion conditions and allows the rapid rate－of－convergence properties of these methods to take effect．For methods that do not pro－ duce well scaled search directions，such as the steepest descent and conjugate gradient methods，it is important to use current informa－ tion about the problem and the algorithm to make the initial guess．
A popular strategy is to assume that the first－order change in the function at iterate x_{k} will be the same as that obtained at the pre－ vious step．In other words，we choose the initial guess α_{0} so that
\square

§3．5 Step－Length Selection Algorithms

－Initial Step Length

For Newton and quasi－Newton methods，the step $\alpha_{0}=1$ should always be used as the initial trial step length．This choice ensures that unit step lengths are taken whenever they satisfy the termina－ tion conditions and allows the rapid rate－of－convergence properties of these methods to take effect．For methods that do not pro－ duce well scaled search directions，such as the steepest descent and conjugate gradient methods，it is important to use current informa－ tion about the problem and the algorithm to make the initial guess． A popular strategy is to assume that the first－order change in the function at iterate x_{k} will be the same as that obtained at the pre－ vious step．In other words，we choose the initial guess α_{0} so that $\alpha_{0} \nabla f_{k}^{\mathrm{T}} p_{k}=\alpha_{k-1} \nabla f_{k-1}^{\mathrm{T}} p_{k-1}$ ；that is，$\alpha_{0}=\alpha_{k-1} \frac{\nabla f_{k-1}^{\mathrm{T}} p_{k-1}}{\nabla f_{k}^{\mathrm{T}} p_{k}}$ ．

§3．5 Step－Length Selection Algorithms

Don＇t know what this slide is about！！！

Another useful strategy is to interpolate a quadratic to the data $f\left(x_{k-1}\right), f\left(x_{k}\right)$ ，and $\nabla f_{k-1}^{T} p_{k-1}$ and to define α_{0} to be its minimizer． This strategy yields

$$
\begin{equation*}
\alpha_{0}=\frac{2\left(f_{k}-f_{k-1}\right)}{\varphi^{\prime}(0)} . \tag{41}
\end{equation*}
$$

It can be shown that if $x_{k} \rightarrow x_{*}$ superlinearly，then the ratio in this expression converges to 1 ．If we adjust the choice（41）by setting $\alpha_{0} \leftarrow \min \left(1,1.01 \alpha_{0}\right)$ ，we find that the unit step length $\alpha_{0}=1$ will eventually always be tried and accepted，and the superlinear convergence properties of Newton and quasi－Newton methods will be observed．

§3．5 Step－Length Selection Algorithms

－A Line Search Algorithm for the Wolfe Conditions

The Wolfe（or strong Wolfe）conditions are among the most widely applicable and useful termination conditions．We now describe in some detail a one－dimensional search procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leqslant f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}, \tag{6a}\\
\left|\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{\mathrm{T}} p_{k}\right| & \geqslant c_{2}\left|\nabla f_{k}^{\mathrm{T}} p_{k}\right|, \tag{6b}
\end{align*}
$$

for any parameters c_{1} and c_{2} satisfying $0<c_{1}<c_{2}<1$ ．As before， we assume that p is a descent direction and that f is bounded from below along the direction p ．

§3．5 Step－Length Selection Algorithms

The algorithm has two stages．This first stage begins with a trial estimate α_{1} ，and keeps increasing it until it finds either an acceptable step length or an interval that brackets the desired step lengths．In the latter case，the second stage is invoked by calling a function called zoom（Algorithm 3．6，below），which successively decreases the size of the interval until an acceptable step length is identified．

A formal specification of the line search algorithm follows．We refer to（6a）as the sufficient decrease condition and to（6b）as the cur－
vature condition．The parameter $\alpha_{\text {max }}$ is a user－supplied bound on the maximum step length allowed．The line search algorithm ter－ minates with α_{*} set to a step length that satisfies the strong Wolfe conditions

§3．5 Step－Length Selection Algorithms

The algorithm has two stages．This first stage begins with a trial estimate α_{1} ，and keeps increasing it until it finds either an acceptable step length or an interval that brackets the desired step lengths．In the latter case，the second stage is invoked by calling a function called zoom（Algorithm 3．6，below），which successively decreases the size of the interval until an acceptable step length is identified．

A formal specification of the line search algorithm follows．We refer to（6a）as the sufficient decrease condition and to（6b）as the cur－ vature condition．The parameter $\alpha_{\text {max }}$ is a user－supplied bound on the maximum step length allowed．The line search algorithm ter－ minates with α_{*} set to a step length that satisfies the strong Wolfe conditions．

§3．5 Step－Length Selection Algorithms

Algorithm 3.5 （Line Search Algorithm）．
Set $\alpha_{0} \leftarrow 0$ ，choose $\alpha_{\text {max }}>0$ and $\alpha_{1} \in\left(0, \alpha_{\text {max }}\right)$ ；
$i \leftarrow 1$ ；

repeat

Evaluate $\varphi\left(\alpha_{i}\right)$ ；
if $\left[\varphi\left(\alpha_{i}\right)>\varphi(0)+c_{1} \alpha_{i} \varphi^{\prime}(0)\right]$ or $\left[\varphi\left(\alpha_{i}\right) \geqslant \varphi\left(\alpha_{i-1}\right)\right.$ and $\left.i>1\right]$ $\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i-1}, \alpha_{i}\right)$ and stop；
Evaluate $\varphi^{\prime}\left(\alpha_{i}\right)$ ；
if $\left|\varphi^{\prime}\left(\alpha_{i}\right)\right| \leqslant-c_{2} \varphi^{\prime}(0)$
set $\alpha_{*} \leftarrow \alpha_{i}$ and stop；
if $\varphi^{\prime}\left(\alpha_{i}\right) \geqslant 0$
set $\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i}, \alpha_{i-1}\right)$ and stop；
Choose $\alpha_{i+1} \in\left(\alpha_{i}, \alpha_{\text {max }}\right)$ ；
$i \leftarrow i+1 ;$
end（repeat）

§3．5 Step－Length Selection Algorithms

Note that the sequence of trial step lengths $\left\{\alpha_{i}\right\}$ is monotonically increasing，but that the order of the arguments supplied to the zoom function may vary．The procedure uses the knowledge that the
interval $\left(\alpha_{i-1}, \alpha_{i}\right)$ contains step lengths satisfying the strong Wolfe conditions if＂one of the following three conditions is satisfied＂ （1）α ；violates the sufficient decrease condition：
（3）α_{i} violates the curvature condition and $\varphi^{\prime}\left(\alpha_{i}\right) \geqslant 0$ ．
The last sten of the algorithm nerforms extranolation to find the next trial value α_{i+1} ．To implement this step we can use approaches like the interpolation procedures above，or we can simply set α_{i+1} to some constant multiple of α_{i} ．Whichever strategy we use，it is important that the successive steps increase quickly enough to reach the upper limit $\alpha_{\max }$ in a finite number of iterations．

§3．5 Step－Length Selection Algorithms

Note that the sequence of trial step lengths $\left\{\alpha_{i}\right\}$ is monotonically increasing，but that the order of the arguments supplied to the zoom function may vary．The procedure uses the knowledge that the interval（ α_{i-1}, α_{i} ）contains step lengths satisfying the strong Wolfe conditions if＂one of the following three conditions is satisfied＂：
（1）α_{i} violates the sufficient decrease condition；
（2）$\varphi\left(\alpha_{i}\right) \geqslant \varphi\left(\alpha_{i-1}\right)$ ；
（3）α_{i} violates the curvature condition and $\varphi^{\prime}\left(\alpha_{i}\right) \geqslant 0$ ．

[^3]
§3．5 Step－Length Selection Algorithms

Note that the sequence of trial step lengths $\left\{\alpha_{i}\right\}$ is monotonically increasing，but that the order of the arguments supplied to the zoom function may vary．The procedure uses the knowledge that the interval（ α_{i-1}, α_{i} ）contains step lengths satisfying the strong Wolfe conditions if＂one of the following three conditions is satisfied＂：
（1）α_{i} violates the sufficient decrease condition；
（2）$\varphi\left(\alpha_{i}\right) \geqslant \varphi\left(\alpha_{i-1}\right)$ ；
（3）α_{i} violates the curvature condition and $\varphi^{\prime}\left(\alpha_{i}\right) \geqslant 0$ ．
The last step of the algorithm performs extrapolation to find the next trial value α_{i+1} ．To implement this step we can use approaches like the interpolation procedures above，or we can simply set α_{i+1} to some constant multiple of α_{i} ．Whichever strategy we use，it is important that the successive steps increase quickly enough to reach the upper limit $\alpha_{\text {max }}$ in a finite number of iterations．

§3．5 Step－Length Selection Algorithms

We now specify the function zoom，which requires a little explana－ tion．The order of its input arguments is such that each call has the form zoom $\left(\alpha_{\mathrm{lo}}, \alpha_{\mathrm{hi}}\right)$ ，where
（a）the interval bounded by α_{lo} and α_{hi} contains step lengths that satisfy the strong Wolfe conditions；
（b）$\alpha_{\text {lo }}$ is，among all step lengths generated so far and satisfying the sufficient decrease condition，the one giving the smallest function value；and
（c）α_{hi} is chosen so that $\varphi^{\prime}\left(\alpha_{10}\right)\left(\alpha_{\mathrm{hi}}-\alpha_{10}\right)<0$ ．
Each iteration of zoom generates an iterate α_{j} between $\alpha_{l 0}$ and α_{hi} ， and then replaces one of these endpoints by α_{j} in such a way that the properties（a），（b），and（c）continue to hold．

§3．5 Step－Length Selection Algorithms

Algorithm 3.6 （zoom）．
repeat
Interpolate（using quadratic，cubic，or bisection）to find a trial step length α_{j} between $\alpha_{\text {lo }}$ and α_{hi} ；
Evaluate $\varphi\left(\alpha_{j}\right)$ ；
if $\left[\varphi\left(\alpha_{j}\right)>\varphi(0)+c_{1} \alpha_{j} \varphi^{\prime}(0)\right]$ or $\left[\varphi\left(\alpha_{j}\right) \geqslant \varphi\left(\alpha_{\mathrm{lo}}\right)\right]$
$\alpha_{\text {hi }} \leftarrow \alpha_{j} ;$
else
Evaluate $\varphi^{\prime}\left(\alpha_{j}\right)$ ；
if $\left|\varphi^{\prime}\left(\alpha_{j}\right)\right| \leqslant-c_{2} \varphi^{\prime}(0)$
Set $\alpha_{*} \leftarrow \alpha_{j}$ and stop；
if $\varphi^{\prime}\left(\alpha_{j}\right)\left(\alpha_{\text {hi }}-\alpha_{\text {lo }}\right) \geqslant 0$
$\alpha_{\mathrm{hi}} \leftarrow \alpha_{\mathrm{lo}}$
$\alpha_{\text {lo }} \leftarrow \alpha_{j} ;$
end（repeat）

§3．5 Step－Length Selection Algorithms

If the new estimate α_{j} happens to satisfy the strong Wolfe condi－ tions，then zoom has served its purpose of identifying such a point， so it terminates with $\alpha_{*}=\alpha_{j}$ ．Otherwise，if α_{j} satisfies the sufficient decrease condition and has a lower function value than $\alpha_{l 0}$ ，then we set $\alpha_{l o} \leftarrow \alpha_{j}$ to maintain condition（b）．If this setting results in a violation of condition（c），we remedy the situation by setting $\alpha_{\text {hi }}$ to the old value of α_{lo} ．Readers should sketch some graphs to see for themselves how zoom works！

§3．5 Step－Length Selection Algorithms

One may ask how much more expensive it is to require the strong Wolfe conditions instead of the regular Wolfe conditions．Our expe－ rience suggests that for a＂loose＂line search（with parameters such as $c_{1}=10^{-4}$ and $c_{2}=0.9$ ），both strategies require a similar amount of work．
decreasing c_{2} we can directly control the quality of the search，by forcing the accepted value of α to lie closer to a local minimum． This feature is important in steepest descent or nonlinear conjugate gradient methods，and therefore forces the strong Wolfe conditions has wide applicability．

§3．5 Step－Length Selection Algorithms

One may ask how much more expensive it is to require the strong Wolfe conditions instead of the regular Wolfe conditions．Our expe－ rience suggests that for a＂loose＂line search（with parameters such as $c_{1}=10^{-4}$ and $c_{2}=0.9$ ），both strategies require a similar amount of work．The strong Wolfe conditions have the advantage that by decreasing c_{2} we can directly control the quality of the search，by forcing the accepted value of α to lie closer to a local minimum． This feature is important in steepest descent or nonlinear conjugate gradient methods，and therefore a step selection routine that en－ forces the strong Wolfe conditions has wide applicability．

[^0]: Co times the initial stope

[^1]: The modified Hessian is obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian $\left(\nabla^{2} f\right)\left(x_{k}\right)$ ．A general description of this method follows．

[^2]: There is a great deal of freedom in devising modification strategies

[^3]: The last step of the algorithm performs extrapolation to find the next trial value α_{i+1} ．To implement this step we can use approaches like the interpolation procedures above，or we can simply set α_{i+1} to some constant multiple of α_{i} ．Whichever strategy we use，it is important that the successive steps increase quickly enough to reach the upder limit $\alpha_{\text {mav }}$ in a finite number of iterations．

