最佳化方法與應用 MA5037
 期中考加分題

Due Dec．06． 2023

Problem 1．Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function given by

$$
f(x, y)=x e^{-x^{2}-y^{2}}
$$

whose gradient and Hessian are given respectively by

$$
(\nabla f)(x, y)=e^{-x^{2}-y^{2}}\left[1-2 x^{2} ;-2 x y\right]
$$

and

$$
\left(\nabla^{2} f\right)(x, y)=e^{-x^{2}-y^{2}}\left[\begin{array}{cc}
4 x^{3}-6 x & 4 x^{2} y-2 y \\
4 x^{2} y-2 y & 4 x y^{2}-2 x
\end{array}\right]
$$

1．At the k－th iterate x_{k} ，let

$$
B_{k}=\left(\nabla^{2} f\right)\left(x_{k}\right)+\delta_{k} \mathrm{I}_{2},
$$

where $\delta_{k} \geqslant 0$ is chosen so that the minimal eigenvalue of B_{k} is not less then 10^{-5} ．Write a matlab ${ }^{\circledR}$ function named $B_{-} \mathrm{k}$ to generate such B_{k} for a given x_{k} ：

$$
B_{k}=\mathrm{B} _\mathrm{k}\left(x_{k}\right) .
$$

2．At the k－th iterate x_{k} ，for a given trust region radius Δ_{k} consider solving the problem

$$
\min _{x \in \mathbb{R}^{n}} m(p)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\mathrm{T}} p+\frac{1}{2} p^{\mathrm{T}} B_{k} p \quad \text { subject to } \quad\|p\| \leqslant \Delta_{k}
$$

Write a matlab ${ }^{\circledR}$ function named Dogleg which implements the Dogleg method of finding an approximated value of the exact minimizer p_{k}^{*} ：

$$
p_{k}=\operatorname{Dogleg}\left(x_{k}, B_{k}, \Delta_{k}\right)
$$

3．Write a matlab ${ }^{\circledR}$ function named algorithm41 to implement Algorithm 4.1 （together with Dog－ leg of obtaining p_{k} ）in the textbook／slides：

$$
x_{\mathrm{final}}=\operatorname{algorithm} 41\left(x_{0}, \Delta_{0}, \widehat{\Delta}, \eta, \varepsilon, N\right),
$$

where
（a）x_{0} is the initial guess of the minimizer of f ，
（b）Δ_{0} is the initial guess of the trust region radius，
（c）$\widehat{\Delta}$ is the upper bound for trust region radius，
（d）η is the parameter which is used to judge if we will step forward $\left(x_{k+1}=x_{k}+p_{k}\right)$ ，
（e）ε and N are the parameters for the stopping criteria：go on to the next step if $k \leqslant N$ and $\left\|\nabla f\left(x_{k}\right)\right\|_{\infty}>\varepsilon\left[1+f\left(x_{k}\right)\right]$.
（f）$x_{\text {final }}$ is the last iterate of the sequence．
4．Try various initial guess x_{0} and Δ_{0}（with $\widehat{\Delta}=10^{-2}, \eta=0.1, \varepsilon=10^{-5}$ and $N=10^{4}$ ）to observe the performance of the trust region method．

