Exercise Problem Sets 3

Problem 1. Solve $\boldsymbol{X}^{\prime}=\boldsymbol{A} \boldsymbol{X}$ for the following \boldsymbol{A} by the methodology that we talked about in class.

1. $\boldsymbol{A}=\left[\begin{array}{ccc}5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5\end{array}\right]$.
2. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 1\end{array}\right]$.
3. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0\end{array}\right]$.
4. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$.
5. $\boldsymbol{A}=\left[\begin{array}{ccc}4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4\end{array}\right]$.
6. $\boldsymbol{A}=\left[\begin{array}{ccc}2 & 4 & 4 \\ -1 & -2 & 0 \\ -1 & 0 & -2\end{array}\right]$.
7. $\boldsymbol{A}=\left[\begin{array}{cccc}2 & 1 & 0 & -2 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$.
8. $\boldsymbol{A}=\left[\begin{array}{cccc}4 & -2 & 0 & 2 \\ 0 & 6 & -2 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & -2 & 0 & 6\end{array}\right]$.
9. $\boldsymbol{A}=\left[\begin{array}{cccc}6 & 5 & 9 & 4 \\ -8 & -6 & -11 & -8 \\ 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2\end{array}\right]$.
10. $\boldsymbol{A}=\left[\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right]$.
11. $\boldsymbol{A}=\left[\begin{array}{lllll}a & 0 & 1 & 0 & 0 \\ 0 & a & 0 & 1 & 0 \\ 0 & 0 & a & 0 & 1 \\ 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 & a\end{array}\right]$, where a is a given constant.

Remark: It is easier to solve 11 by solving for x_{5} and x_{4} first and then solve for x_{3}, x_{2}, and finally solving for x_{1}. However, in order to make sure that you understand what I talked about in class, please avoid solving this problem in this way.

