Differential Equations MA2042 Final Exam

National Central University，Jun． 142017

學號： \qquad姓名： \qquad

Problem 1．（15pts）Let $x_{1}=y, x_{2}=y^{\prime}$ and $x_{3}=y^{\prime \prime}$ ，then the third order equation

$$
\begin{equation*}
y^{\prime \prime \prime}+p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0 \tag{0.1}
\end{equation*}
$$

corresponds to the system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{0.2a}\\
& x_{2}^{\prime}=x_{3}, \tag{0.2b}\\
& x_{3}^{\prime}=-r(t) x_{1}-q(t) x_{2}-p(t) x_{3} . \tag{0.2c}
\end{align*}
$$

Show that if $\left\{y_{1}, y_{2}, y_{3}\right\}$ and $\left\{\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right\}$ are fundamental sets of equation（0．1）and（0．2），respectively， then $W\left[y_{1}, y_{2}, y_{3}\right](t)=c \mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)$ ，where c is a non－zero constant and W and W denote the Wronskian functions given by

$$
W\left[y_{1}, y_{2}, y_{3}\right](t)=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| \quad \text { and } \quad \mathrm{W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)=\operatorname{det}\left(\left[\boldsymbol{\varphi}_{1} \vdots \boldsymbol{\varphi}_{2} \vdots \boldsymbol{\varphi}_{3}\right]\right)
$$

Problem 2．（15pts）Consider the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=1, \quad y^{\prime}(0)=3 .
$$

Let $x_{1}=y$ and $x_{2}=y^{\prime}$ ．For $\boldsymbol{x}=\left(x_{1}, x_{2}\right)^{\mathrm{T}}, \boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ ．Find the matrix \boldsymbol{A} and solve the initial value problem by finding $\exp (\boldsymbol{A} t)$ ．
Problem 3．Let $\boldsymbol{P}(t)=\frac{1}{t}\left[\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right]$ and $\boldsymbol{f}(t)=\left[\begin{array}{l}t^{2} \\ t^{4}\end{array}\right]$ ．
（a）（15pts）Find the solution $\boldsymbol{\Phi}$ to $\boldsymbol{\Phi}^{\prime}=\boldsymbol{P}(t) \boldsymbol{\Phi}$ satisfying the initial condition $\boldsymbol{\Phi}(1)=\boldsymbol{I}_{2}$ ，where \boldsymbol{I}_{2} is the 2×2 identity matrix．
（b）（15pts）Find the general solution of the ODE $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}+\boldsymbol{f}(t)$ using the method of variation of parameters．
（c）（15pts）Find the general solution of the ODE $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}+\boldsymbol{f}(t)$ using Theorem 8.28 in the lecture note．
Problem 4．（a）（20pts）Find the Jordan decomposition of the matrix $\boldsymbol{A}=\left[\begin{array}{cccc}0 & 0 & 0 & -8 \\ 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & -14 \\ 0 & 0 & 1 & 6\end{array}\right]$ ．
（b） $\mathbf{(1 5 \%)}$ Find the general solution to $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ ．

