Differential Equations MA2041－A Final Exam

National Central University，Jan． 112017

學號： \qquad姓名： \qquad
In the following problems，when you obtain a＂candidate＂of solutions to a specific ODE or IVP， verify that it is indeed a solution．Each verification counts 5pts．

Problem 1．Complete the following．
1．Given a solution $y=\varphi_{1}(t)=t^{2}$ to

$$
\begin{equation*}
t^{2}(t+3) y^{\prime \prime \prime}-3 t(t+2) y^{\prime \prime}+6(1+t) y^{\prime}-6 y=0 \quad \text { for } \quad t>0, \tag{0.1}
\end{equation*}
$$

find a fundamental set of the ODE above．
2．Find the solution to the IVP

$$
t^{2}(t+3) y^{\prime \prime \prime}-3 t(t+2) y^{\prime \prime}+6(1+t) y^{\prime}-6 y=t+3, \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0
$$

Problem 2．Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+4 y=t^{2} e^{t}, \quad y(0)=y^{\prime}(0)=0
$$

using
1．the method of undetermined coefficients．
2．the method of variation of parameters．
3．the method of annihilator．
4．the Laplace transform．
Problem 3．Find the Laplace transform of the function $f(t)=t^{n} e^{a t}$ ．
Problem 4．Complete the following．
1．Show that if f is piecewise continuous and of exponential order α for some α ，then $\mathscr{L}(f)$ ，the Laplace transform of f ，is bounded for $s>2 \alpha$ ．

2．Find the solution to the initial value problem

$$
y^{\prime \prime}+3 t y^{\prime}-6 y=1, \quad y(0)=y^{\prime}(0)=0
$$

