Differential Equations MA2041－A Midterm Exam 2

National Central University，Dec． 222015

學號： \qquad姓名：

1	$2(1)$	$2(2)$	$3(1)$	$3(2)$	$4(1)$	$4(2)$	5	Total

Problem 1. (15\%) Use the method of reduction of order to find the general solution to the second order differential equation

$$
\begin{equation*}
(\sin t) y^{\prime \prime}-(\sin t+\cos t) y^{\prime}+(\cos t) y=0 \quad \text { where } \quad 0<t<\pi \tag{1}
\end{equation*}
$$

provided that one solution $y=\varphi_{1}(t)=e^{t}$ is given.
Solution: Assume the solution to (1) can be written as $y=v(t) e^{t}$. Then

$$
(\sin t)\left(v^{\prime \prime}+2 v^{\prime}+v\right) e^{t}-(\sin t+\cos t)\left(v^{\prime}+v\right) e^{t}+(\cos t) v e^{t}=0
$$

thus

$$
(\sin t) v^{\prime \prime}+[2 \sin t-(\sin t+\cos t)] v^{\prime}=0
$$

Therefore,

$$
v^{\prime \prime}+(1-\cot t) v^{\prime}=0 .
$$

Since $\int \cos t d t=\log \sin t$, we find that

$$
\left(\frac{e^{t}}{\sin t} v^{\prime}\right)^{\prime}=0
$$

Therefore, $v^{\prime}(t)=C_{1} e^{-t} \sin t$ which implies that

$$
v(t)=C_{1} \int e^{-t} \sin t d t=-\frac{C_{1}}{2} e^{-t}(\sin t+\cos t)+C_{2} .
$$

As a consequence, the general solution to (1) is

$$
y(t)=v(t) e^{t}=C_{1}(\sin t+\cos t)+C_{2} e^{t} .
$$

Problem 2. (1) (15\%) Use the method of variation of parameters to show that

$$
y(t)=C_{1} \cos 3 t+C_{2} \sin 3 t+\frac{1}{3} \int_{0}^{t} f(s) \sin 3(t-s) d s
$$

is a general solution to the ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}+9 y=f(t) \tag{2}
\end{equation*}
$$

(2) (15\%) Find the solution to

$$
\begin{equation*}
y^{\prime \prime}+9 y=4 \cos ^{3} t \tag{3}
\end{equation*}
$$

that also satisfies the initial condition $y(0)=y^{\prime}(0)=0$.

Solution:

1. Note that $\{\cos 3 t, \sin 3 t\}$ is a fundamental set of the corresponding homogeneous equation $y^{\prime \prime}+$ $9 y=0$. The method of variation of parameters implies that a particular solution to (2) is given by

$$
\begin{aligned}
y & =Y(t)=-\cos 3 t \int_{0}^{t} \frac{\sin 3 s f(s)}{W(\cos 3 s, \sin 3 s)} d s+\sin 3 t \int_{0}^{t} \frac{\cos 3 s f(s)}{W(\cos 3 s, \sin 3 s)} d s \\
& =\frac{1}{3} \int_{0}^{t} f(s)(\cos 3 s \sin 3 t-\cos 3 t \sin 3 s) d s=\frac{1}{3} \int_{0}^{t} f(s) \sin 3(t-s) d s
\end{aligned}
$$

Therefore, the general solution to (2) is

$$
y=C_{1} \cos 3 t+C_{2} \sin 3 t+\frac{1}{3} \int_{0}^{t} f(s) \sin 3(t-s) d s
$$

2. Note that we can rewrite (3) as

$$
y^{\prime \prime}+9 y=\cos (3 t)+3 \cos t
$$

Therefore, the convolution formula provides that the general solution to the ODE above is

$$
\begin{aligned}
y & =C_{1} \cos 3 t+C_{2} \sin 3 t+\frac{1}{3} \int_{0}^{t}(\cos 3 s+3 \cos s) \sin 3(t-s) d s \\
& =C_{1} \cos 3 t+C_{2} \sin 3 t+\frac{1}{3} \int_{0}^{t}\left[\frac{\sin 3 t+\sin (3 t-6 s)}{2}+3 \frac{\sin (3 t-2 s)+\sin (3 t-4 s)}{2}\right] d s \\
& =C_{1} \cos 3 t+C_{2} \sin 3 t+\left.\frac{1}{6}\left[s \sin 3 t+\frac{1}{6} \cos (3 t-6 s)+\frac{3}{2} \cos (3 t-2 s)+\frac{3}{4} \cos (3 t-4 s)\right]\right|_{s=0} ^{s=t} \\
& =C_{1} \cos 3 t+C_{2} \sin 3 t+\frac{1}{6}\left[t \sin 3 t+\frac{3}{2} \cos t+\frac{3}{4} \cos t-\frac{3}{2} \cos 3 t-\frac{3}{4} \cos 3 t\right] \\
& =\left(C_{1}-\frac{3}{8}\right) \cos 3 t+C_{2} \sin 3 t+\frac{1}{6} t \sin 3 t+\frac{3}{8} \cos t
\end{aligned}
$$

To satisfy the initial condition $y(0)=0$, we must have $C_{1}=0$. To satisfy the initial condition $y^{\prime}(0)=0$, we must have $C_{2}=0$. Therefore, the solution is $y=\frac{1}{6} t \sin 3 t+\frac{3}{8}(\cos t-\cos 3 t)$.

Problem 3. Solve the differential equation

$$
\begin{equation*}
\frac{\sin ^{2}(2 x)}{4} y^{\prime \prime}(x)+\sin (2 x) \cos ^{2} x y^{\prime}(x)-2 y(x)=0, \quad 0<x<\frac{\pi}{2} \tag{0.1}
\end{equation*}
$$

following the steps below:
(1) (10\%) Let $t=\tan x$ and $z(t)=y(\arctan t)$. Find the corresponding differential equation that z satisfies (the function arctan is identical to $\tan ^{-1}$).
(2) (15%) Find the general solution to the equation for z, and then use it to find a solution to (0.1).

Solution:

(1) Let $t=\tan x$ and $z(t)=y\left(\tan ^{-1} t\right)$. Then

$$
z^{\prime}(t)=y^{\prime}\left(\tan ^{-1} t\right) \frac{1}{1+t^{2}} \quad \text { and } \quad z^{\prime \prime}(t)=y^{\prime \prime}\left(\tan ^{-1} t\right) \frac{1}{\left(1+t^{2}\right)^{2}}+y^{\prime}\left(\tan ^{-1} t\right) \frac{-2 t}{\left(1+t^{2}\right)^{2}}
$$

Therefore,

$$
y^{\prime}\left(\tan ^{-1} t\right)=\left(1+t^{2}\right) z^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}\left(\tan ^{-1} t\right)=\left(1+t^{2}\right)^{2} z^{\prime \prime}(t)+2 t\left(1+t^{2}\right) z^{\prime}(t)
$$

Letting $x=\tan ^{-1} t$ in the ODE we find that

$$
\frac{t^{2}}{\left(1+t^{2}\right)^{2}} y^{\prime \prime}\left(\tan ^{-1} t\right)+\frac{2 t}{\left(1+t^{2}\right)^{2}} y^{\prime}\left(\tan ^{-1} t\right)-2 y\left(\tan ^{-1} t\right)=0
$$

thus

$$
t^{2} z^{\prime \prime}(t)+2 t z^{\prime}(t)-2 z(t)=0
$$

(2) Let r satisfy $r(r-1)+2 r-2=0$. Then $r^{2}+r-2=0$ which implies $r=-2$ and $r=1$. Therefore, the general solution of (0.1) is

$$
z(t)=C_{1} t^{-2}+C_{2} t .
$$

Therefore,

$$
y(x)=z(\tan x)=C_{1} \cot ^{2} x+C_{2} \tan x
$$

Problem 4. (1) (15\%) Let $\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n-1}, \varphi_{n}\right\}$ be a linear independent set of n-times continuously differentiable functions on an interval $(a, b) \subseteq \mathbb{R}$. Show that there exists a set of continuous functions $\left\{p_{n-1}, \cdots, p_{1}, p_{0}\right\}$ such that

$$
\varphi_{i}^{(n)}+p_{n-1}(t) \varphi_{i}^{(n-1)}+\cdots+p_{1}(t) \varphi_{i}^{\prime}+p_{0}(t) \varphi_{i}=0 .
$$

(2) (10%) Find a second order linear ODE that has $\left\{e^{t}, \sin t\right\}$ as a fundamental set.

Proof. (1) First, we note that since $\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n-1}, \varphi_{n}\right\}$ is a linear independent set of n-times continuously differentiable functions on an interval $(a, b) \subseteq \mathbb{R}$, the Wronskian $W\left(\varphi_{1}, \cdots, \varphi_{n}\right)(t) \neq$ 0 for all $t \in(a, b)$; thus the matrix

$$
\left[\begin{array}{cccc}
\varphi_{1} & \varphi_{1}^{\prime} & \cdots & \varphi_{1}^{(n-1)} \\
\varphi_{2} & \varphi_{2}^{\prime} & \cdots & \varphi_{2}^{(n-1)} \\
\vdots & & \ddots & \vdots \\
\varphi_{n} & \varphi_{n}^{\prime} & \cdots & \varphi_{n}^{(n-1)}
\end{array}\right]
$$

is invertible. Let $\left\{p_{n-1}, p_{n-2}, \cdots, p_{1}, p_{0}\right\}$ be the solution to the linear system

$$
\left[\begin{array}{cccc}
\varphi_{1} & \varphi_{1}^{\prime} & \cdots & \varphi_{1}^{(n-1)} \\
\varphi_{2} & \varphi_{2}^{\prime} & \cdots & \varphi_{2}^{(n-1)} \\
\vdots & & \ddots & \vdots \\
\varphi_{n} & \varphi_{n}^{\prime} & \cdots & \varphi_{n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n-1}
\end{array}\right]=\left[\begin{array}{c}
-\varphi_{1}^{(n)} \\
-\varphi_{2}^{(n)} \\
\vdots \\
-\varphi_{n}^{(n)}
\end{array}\right] .
$$

Write the equation above as $A(t) p(t)=b(t)$. Since $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n-1}, \varphi_{n}$ are n-times continuously differentiable functions, the determinant of A, the adjoint matrix of A, and the vector b are continuous; thus the inverse of A is a continuous matrix and the solution p is also continuous.
(2) As indicated in (1), we let p_{0} and p_{1} be the solution to the linear system

$$
\left[\begin{array}{cc}
e^{t} & e^{t} \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1}
\end{array}\right]=\left[\begin{array}{c}
-e^{t} \\
\sin t
\end{array}\right]
$$

and we have

$$
\left[\begin{array}{c}
-e^{t} \\
\sin t
\end{array}\right]=\frac{1}{e^{t}(\cos t-\sin t)}\left[\begin{array}{cc}
\cos t & -e^{t} \\
-\sin t & e^{t}
\end{array}\right]\left[\begin{array}{c}
-e^{t} \\
\sin t
\end{array}\right]=\frac{1}{(\cos t-\sin t)}\left[\begin{array}{c}
-(\sin t+\cos t) \\
2 \sin t
\end{array}\right]
$$

Therefore, the second order ODE that has $\left\{e^{t}, \sin t\right\}$ as a fundamental set is

$$
(\cos t-\sin t) y^{\prime \prime}+2 \sin t y^{\prime}-(\sin t+\cos t) y=0
$$

Problem 5. (25\%) Find the general solution to the ODE

$$
\left(t^{2}-2 t+2\right) y^{\prime \prime \prime}-t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

given two of the solutions $y=\varphi_{1}(t)=e^{t}$ and $y=\varphi_{2}(t)=t$.
Solution: Suppose that $y=v(t) e^{t}$ is a solution to the ODE above. Then

$$
\left(t^{2}-2 t+2\right)\left(v^{\prime \prime \prime}+3 v^{\prime \prime}+3 v^{\prime}+v\right) e^{t}-t^{2}\left(v^{\prime \prime}+2 v^{\prime}+v\right) e^{t}+2 t\left(v^{\prime}+v\right) e^{t}-2 v e^{t}=0 ;
$$

thus v satisfies

$$
\left(t^{2}-2 t+2\right) v^{\prime \prime \prime}+\left[3\left(t^{2}-2 t+2\right)-t^{2}\right] v^{\prime \prime}+\left[3\left(t^{2}-2 t+2\right)-2 t^{2}+2 t\right] v^{\prime}=0
$$

or equivalently,

$$
\begin{equation*}
\left(t^{2}-2 t+2\right) v^{\prime \prime \prime}+\left(2 t^{2}-6 t+6\right) v^{\prime \prime}+\left(t^{2}-4 t+6\right) v^{\prime}=0 . \tag{0.2}
\end{equation*}
$$

Since $y=\varphi_{2}(t)=t$ is also a solution of the original ODE, we find that $v=v_{1}(t)=t e^{-t}$ is also a solution to (0.2). Therefore, by assuming that the solution v to (0.2) can be written as $v=t e^{-t} u$, we find that u satisfies that

$$
\left(t^{2}-2 t+2\right)\left(t e^{-t} u\right)^{\prime \prime \prime}+\left(2 t^{2}-6 t+6\right)\left(t e^{-t} u\right)^{\prime \prime}+\left(t^{2}-4 t+6\right)\left(t e^{-t} u\right)^{\prime}=0 .
$$

As a consequence, u satisfies

$$
t\left(t^{2}-2 t+2\right) u^{\prime \prime \prime}+\left[3(1-t)\left(t^{2}-2 t+2\right)+t\left(2 t^{2}-6 t+6\right)\right] u^{\prime \prime}=0
$$

or equivalently,

$$
t\left(t^{2}-2 t+2\right) u^{\prime \prime \prime}+\left(-t^{3}+3 t^{2}-6 t+6\right) u^{\prime \prime}=0 .
$$

Since

$$
\frac{-t^{3}+3 t^{2}-6 t+6}{t\left(t^{2}-2 t+2\right)}=-1+\frac{t^{2}-4 t+6}{t\left(t^{2}-2 t+2\right)}=-1+\frac{3}{t}+\frac{-2 t+2}{t^{2}-2 t+2},
$$

the integrating factor is $\exp \left(-t+3 \log t-\log \left(t^{2}-2 t+2\right)\right)$; thus solving for $u^{\prime \prime}$ we find that

$$
\left(e^{-t} \frac{t^{3}}{t^{2}-2 t+2} u^{\prime \prime}\right)^{\prime}=0
$$

We note that $u(t)=\frac{e^{t}}{t}$ must be a solution to the ODE above, and $\left(\frac{e^{t}}{t}\right)^{\prime \prime}=e^{t} \frac{t^{2}-2 t+2}{t^{3}}$; thus

$$
u^{\prime \prime}=C_{1} e^{t^{2}-2 t+2}-C_{1}\left(\frac{e^{t}}{t}\right)^{\prime \prime} .
$$

Therefore,

$$
u(t)=C_{1} \frac{e^{t}}{t}+C_{2} t+C_{3}
$$

which implies that the general solution to the original ODE is

$$
y(t)=C_{1} e^{t}+C_{2} t^{2}+C_{3} t
$$

