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Problem 1. (15%) Solve the differential equation dy

dt
+ y = t sin t with initial condition y(0) =

3

2
.

Solution: Multiplying both side of the ODE by the integrating factor et, we find that(
ety

)1
= tet sin t . (0.1)

We need to find the anti-derivative of tet sin t in order to solve the ODE. First we find the anti-
derivative of et sin t. Integrating by parts,

ż

et sin t dt =

ż

sin td(et) dt = et sin t ´

ż

et cos t dt = et sin t ´

ż

cos td(et)

= et sin t ´

[
et cos t+

ż

et sin t dt
]
= et(sin t ´ cos t) ´

ż

et sin t dt ;

thus
ż

et sin t dt =
1

2
et(sin t ´ cos t). Similarly,

ż

et cos t dt =
ż

cos t d(et) = et cos t+
ż

et sin t dt

= et cos t+ 1

2
et(sin t ´ cos t) = 1

2
et(sin t+ cos t) .

As a consequence,
ż

tet sin t dt =

ż

t d
(1
2
et(sin t ´ cos t)

)
=

t

2
et(sin t ´ cos t) ´

1

2

ż

et(sin t ´ cos t) dt

=
t

2
et(sin t ´ cos t) ´

1

4
et(sin t ´ cos t) + 1

4
et(sin t+ cos t)

=
t

2
et(sin t ´ cos t) + 1

2
et cos t ,

and (0.1) implies that
ety =

t

2
et(sin t ´ cos t) + 1

2
et cos t+ C .

Therefore, y(t) = t

2
(sin t ´ cos t) + 1

2
cos t + Ce´t. Using the initial data, we find that C = 1; thus

the solution to the ODE we are interested in is

y(t) =
t

2
(sin t ´ cos t) + 1

2
cos t+ e´t . ˝



Problem 2. 1. (5%) Consider a first order homogeneous equation dy

dx
= G

(y
x

)
. Show that by

defining v =
y

x
, v satisfies the ordinary differential equation x

dv

dx
= G(v) ´ v.

2. (10%) Solve the ordinary differential equation
(
y+ x sec y

x

)
dx ´ xdy = 0 with initial condition

y(1) =
π

6
.

Solution:

1. Since v =
y

x
, y = xv; thus dy

dx
= v + x

dv

dx
which implies that x

dv

dx
= G(v) ´ v.

2. Rearranging terms, we find that
dy

dx
=

y

x
+ sec y

x
.

Letting v =
y

x
, then 1 implies that

x
dv

dx
= sec v + v ´ v = sec v ;

thus cos vdv =
dx

x
. As a consequence

sin v = log |x| + C .

Since y(1) = 1, v(1) = y(1)/1 =
π

6
; thus C = sin π

6
=

1

2
. Finally,

y(x) = xv(x) = x arcsin
(1
2
+ log |x|

)
. ˝



Problem 3. 1. (10%) Let M,N : R2 Ñ R be continuous functions. Suppose that

Nx(x, y) ´ My(x, y)

xM(x, y) ´ yN(x, y)
= h(xy)

for some continuous function h : R Ñ R. Show that the ordinary differential equation Mdx +

Ndy = 0 has an integrating factor of the form µ(x, y) = z(xy). Give the general formula for z.

2. (10%) Solve (3y + 2xy2)dx+ (x+ 2x2y)dy = 0 with initial data y(1) = 1.

Solution:

1. Consider an integrating factor of the form µ(x, y) = g(xy). Then

(µM)y ´ (µN)x = 0 ñ µ(My ´ Nx) + µyM ´ µxN = 0 .

Since µy(x, y) = g1(xy)x and µx(x, y) = g1(xy)y, we conclude that

g(My ´ Nx) + g1(xM ´ yN) = 0 .

Therefore, g1 ´ hg = 0. Let H be an anti-derivative of h, then (e´Hg)1 = 0 which implies that
g = eH can be an integrating factor.

2. Let M(x, y) = 3y + 2xy2 and N(x, y) = x+ 2x2y. Then

Nx ´ My

xM ´ yN
=

1 + 4xy ´ (3 + 4xy)

3xy + 2x2y2 ´ (xy + 2x2y2)
=

´1

xy
.

Let h(z) =
´1

z
. Then Nx(x, y) ´ My(x, y)

xM(x, y) ´ yN(x, y)
= h(xy); thus 1 implies that g(xy) = e´ log |xy| is a

valid integrating factor. As a consequence, we instead consider

3y + 2xy2

xy
dx+

x+ 2x2y

xy
dy = 0

or (
3

x
+ 2y

)
dx+

(
1

y
+ 2x

)
dy = 0 .

The ODE above is exact; thus there exists Φ such that Φx(x, y) =
3

x
+2y and Φy(x, y) =

1

y
+2x.

Such Φ has the form
Φ(x, y) = 3 logx+ 2xy + log y .

Since y(1) = 1, Φ(x, y) = 2 is the integral curve we are looking for.



Problem 4. Suppose that the population y of a certain creature in a given area is described by the
equation

dy

dt
= ´ay2 + by ´ c , (1)

where a, b, c are positive constants.

1. (5%) Provide the condition the there are two positive equilibriums solutions to (1).

2. (10%) Under condition provided in 1, suppose that the two equilibrium solution is y = p1 and
y = p2 with p1 ă p2. Show that y(t) = p2 (analytically) is asymptotically unstable equilibrium
solution to (1).

Solution:

1. To have two equilibrium solutions, the equation ´aλ2 + bλ´ c = 0 must have two distinct real
roots. Therefore, b2 ´ 4ac ą 0. Moreover, the smaller root must be postive; thus

p1 =
b ´

?
b2 ´ 4ac

2a
ą 0 .

Since a, b, c ą 0, the inequality above holds automatically. Therefore, the only requirement for
having two equilibrium solutions is b2 ´ 4ac ą 0.

2. Let p2 =
b+

?
b2 ´ 4ac

2a
. Then

dy

dt
= ´ay2 + by ´ c ñ

dy

(y ´ p1)(y ´ p2)
= ´adt ñ

( 1

y ´ p2
´

1

y ´ p1

)
dy = a(p1 ´ p2)dt

ñ log
ˇ

ˇ

ˇ

y ´ p2
y ´ p1

ˇ

ˇ

ˇ
= a(p1 ´ p2)t+ C1

ñ

ˇ

ˇ

ˇ

y(t) ´ p2
y(t) ´ p1

ˇ

ˇ

ˇ
= C2e

a(p1´p2)t .

Since lim
tÑ8

ea(p1´p2)t = 0, we must have lim
tÑ8

y(t) = p2. ˝



Problem 5. (15%) To solve a first order equation y 1 = f(t, y) with initial condition y(t0) = y0, one
can use the improved Euler method which is the iteration method given by the

un+1 = un +
h

2

[
f(tn, un) + f

(
tn+1, un + hf(tn, un)

)]
, u0 = y0

where with h denoting the time step, tn = t0 + nh. Use the improved Euler method to solve y 1 = y

with y(0) = y0 and show that for each fixed T = Nh, one has uN Ñ y0e
T as h Ñ 0.

Proof. Let T ą 0 be given, and N = T/h. Since f(y) = y, using the improved Euler we have

un+1 = un +
h

2

(
un + un + hun

)
=

(
1 + h+

h2

2

)
un .

As a consequence,
un =

(
1 + h+

h2

2

)n

u0 =
(
1 + h+

h2

2

)n

y0 ;

thus uN =
(
1 + h+

h2

2

)T
h
y0. Since

lim
hÑ0

(
1 + h+

h2

2

)T
h
= lim

hÑ0

(
1 + h+

h2

2

) T
h+h2/2

(1+h/2)

= eT ,

we conclude that uN = y0e
T . ˝



Problem 6. (15%) Let p : R Ñ R be a differentiable function. Use the Picard iteration to solve the
ordinary differential equation

dy

dt
+ p1y = 2p1

with initial condition y(0) = y0.

Solution: The Picard iteration is

φn+1(t) = y0 +

ż t

0

(
2p1(s) ´ p1(s)φn(s)

)
ds = y0 + 2

(
p(t) ´ p(0)

)
´

ż t

0

p1(s)φn(s) ds

with initial data φ0(t) = y0. Letting q(t) = p(t) ´ p(0), we obtain that p1 = q1; thus

φn+1(t) = y0 + 2q(t) ´

ż t

0

q1(s)φn(s) ds .

Therefore,

φ1(t) = y0 + 2q(t) ´

ż t

0

y0q
1(s) ds = y0 + 2q(t) ´ y0q(t) = y0 + (2 ´ y0)q(t) ,

φ2(t) = y0 + 2q(t) ´

ż t

0

q1(s)
[
y0 + (2 ´ y0)q(s)

]
ds

= y0 + (2 ´ y0)q(t) ´
2 ´ y0

2

ż t

0

(
q(s)2

)1
ds = y0 + (2 ´ y0)q(t) ´

2 ´ y0
2

q(t)2 ,

φ3(t) = y0 + 2q(t) ´

ż t

0

q1(s)
[
y0 + (2 ´ y0)q(s) ´

2 ´ y0
2

q(s)2
]
ds

= y0 + (2 ´ y0)q(t) ´

ż t

0

[
2 ´ y0

2

(
q(s)2

)1
´

2 ´ y0
3!

(
q(s)3

)1
]
ds

= y0 + (2 ´ y0)q(t) ´
2 ´ y0
2!

q(t)2 +
2 ´ y0
3!

q(t)3 .

We observe φn for n = 1, 2, 3 and conjecture that

φn(t) = y0 + (2 ´ y0)q(t) ´
2 ´ y0
2!

q(t)2 +
2 ´ y0
3!

q(t)3 ´
2 ´ y0
4!

q(t)4 + ¨ ¨ ¨

= 2 ´ (2 ´ y0)
n

ÿ

j=0

(´1)j

j!
q(t)j .

This conjecture can be proved by induction: we have established the case n = 1, and suppose that
the above identity holds for n = ℓ. Then for n = ℓ+ 1,

φℓ+1(t) = y0 + 2q(t) ´

ż t

0

q1(s)
[
2 ´ (2 ´ y0)

n
ÿ

j=0

(´1)j

j!
q(t)j

]
ds

= y0 + (2 ´ y0)

ż t

0

q1(s)
n

ÿ

j=0

(´1)j

j!
q(t)j ds

= y0 + (2 ´ y0)
n

ÿ

j=0

(´1)j

(j + 1)!
q(t)j+1 = y0 ´ (2 ´ y0)

n+1
ÿ

j=1

(´1)j

j!
q(t)j

= 2 ´ (2 ´ y0)
n+1
ÿ

j=0

(´1)j

j!
q(t)j .



Finally, we pass to the limit as n Ñ 8 and obtain that

y(t) = lim
nÑ8

φn(t) = 2 ´ (2 ´ y0) exp
(

´ q(t)
)
= 2 ´ (2 ´ y0) exp

(
p(0) ´ p(t)

)
. ˝



Problem 7. (10%) Let x : R Ñ R be a continuous functions satisfying

0 ď x(t) ď 1 +

ż t

0

(s2 + 1)x(s) ds @ t ě 0 .

Show that x(t) ď exp
(
t3

3
+ t

)
for all t ě 0.

Proof. Let y(t) =
ż t

0
(s2+1)x(s) ds. The fundamental theorem of Calculus implies that y1(t)

t2 + 1
= x(t);

thus
y1(t) ď (t2 + 1) + (t2 + 1)y(t) .

As a consequence, [
exp

(
´

t3

3
´ t

)
y(t)

]1

ď (t2 + 1) exp
(

´
t3

3
´ t

)
;

thus by the fact that y(0) = 0,

exp
(

´
t3

3
´ t

)
y(t) ď 1 ´ exp

(
´

t3

3
´ t

)
.

Therefore, y(t) ď exp
(
t3

3
+ t

)
´ 1, and this further implies that

0 ď x(t) ď 1 + y(t) ď exp
(
t3

3
+ t

)
. ˝



Problem 8. (10%) Let f : R Ñ R be a twice continuously differentiable function, c = f(c), and
consider the difference equation yn+1 = f(yn) with y0 given. Suppose that

ˇ

ˇf 1(c)
ˇ

ˇ ą 1. Show that
there exists δ ą 0 and ρ ą 1 such that if 0 ă |yn ´ c| ă δ, then |yn+1 ´ c| ě ρ|yn ´ c|.

Proof. By that f is twice continuously differentiable,

lim
δÑ0+

(
|f 1(c)| ´

δ

2
max

xP[c´δ,c+δ]
|f2(x)|

)
= |f 1(c)| ą 1 ;

thus there exists δ ą 0 such that ρ(δ) ” |f 1(c)| ´
δ

2
max

xP[c´δ,c+δ]
|f2(x)| ą 1. Fix such δ ą 0 and let

ρ ” ρ(δ). If 0 ă |yn ´ c| ă δ, then Taylor’s theorem implies that for some dn in between yn and c,

yn+1 = f(yn) = f(c) + f 1(c)(yn ´ c) +
1

2
f 2(dn)(yn ´ c)2

= c+ f 1(c)(yn ´ c) +
1

2
f 2(dn)(yn ´ c)2

which further implies that

|yn+1 ´ c| ě |f 1(c)||yn ´ c| ´
1

2
max

xP(c´δ,c+δ)
|f 2(x)||yn ´ c|2

=
(

|f 1(c)| ´
1

2
max

xP(c´δ,c+δ)
|f 2(x)||yn ´ c|

)
|yn ´ c|

ě

(
|f 1(c)| ´

1

2
max

xP(c´δ,c+δ)
|f 2(x)|δ

)
|yn ´ c| ě ρ|yn ´ c| .

˝


