Differential Equations MA2041－A Midterm Exam 1
National Central University，Oct． 272015

學號： \qquad姓名： \qquad

1	$2(1)$	$2(2)$	$3(1)$	$3(2)$	4	5	6	7	8	Total

Problem 1. (15\%) Solve the differential equation $\frac{d y}{d t}+y=t \sin t$ with initial condition $y(0)=\frac{3}{2}$.
Solution: Multiplying both side of the ODE by the integrating factor e^{t}, we find that

$$
\begin{equation*}
\left(e^{t} y\right)^{\prime}=t e^{t} \sin t \tag{0.1}
\end{equation*}
$$

We need to find the anti-derivative of $t e^{t} \sin t$ in order to solve the ODE. First we find the antiderivative of $e^{t} \sin t$. Integrating by parts,

$$
\begin{aligned}
\int e^{t} \sin t d t & =\int \sin t d\left(e^{t}\right) d t=e^{t} \sin t-\int e^{t} \cos t d t=e^{t} \sin t-\int \cos t d\left(e^{t}\right) \\
& =e^{t} \sin t-\left[e^{t} \cos t+\int e^{t} \sin t d t\right]=e^{t}(\sin t-\cos t)-\int e^{t} \sin t d t
\end{aligned}
$$

thus $\int e^{t} \sin t d t=\frac{1}{2} e^{t}(\sin t-\cos t)$. Similarly,

$$
\begin{aligned}
\int e^{t} \cos t d t & =\int \cos t d\left(e^{t}\right)=e^{t} \cos t+\int e^{t} \sin t d t \\
& =e^{t} \cos t+\frac{1}{2} e^{t}(\sin t-\cos t)=\frac{1}{2} e^{t}(\sin t+\cos t)
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
\int t e^{t} \sin t d t & =\int t d\left(\frac{1}{2} e^{t}(\sin t-\cos t)\right)=\frac{t}{2} e^{t}(\sin t-\cos t)-\frac{1}{2} \int e^{t}(\sin t-\cos t) d t \\
& =\frac{t}{2} e^{t}(\sin t-\cos t)-\frac{1}{4} e^{t}(\sin t-\cos t)+\frac{1}{4} e^{t}(\sin t+\cos t) \\
& =\frac{t}{2} e^{t}(\sin t-\cos t)+\frac{1}{2} e^{t} \cos t
\end{aligned}
$$

and (0.1) implies that

$$
e^{t} y=\frac{t}{2} e^{t}(\sin t-\cos t)+\frac{1}{2} e^{t} \cos t+C .
$$

Therefore, $y(t)=\frac{t}{2}(\sin t-\cos t)+\frac{1}{2} \cos t+C e^{-t}$. Using the initial data, we find that $C=1$; thus the solution to the ODE we are interested in is

$$
y(t)=\frac{t}{2}(\sin t-\cos t)+\frac{1}{2} \cos t+e^{-t} .
$$

Problem 2. 1. (5\%) Consider a first order homogeneous equation $\frac{d y}{d x}=G\left(\frac{y}{x}\right)$. Show that by defining $v=\frac{y}{x}, v$ satisfies the ordinary differential equation $x \frac{d v}{d x}=G(v)-v$.
2. (10\%) Solve the ordinary differential equation $\left(y+x \sec \frac{y}{x}\right) d x-x d y=0$ with initial condition $y(1)=\frac{\pi}{6}$.

Solution:

1. Since $v=\frac{y}{x}, y=x v$; thus $\frac{d y}{d x}=v+x \frac{d v}{d x}$ which implies that $x \frac{d v}{d x}=G(v)-v$.
2. Rearranging terms, we find that

$$
\frac{d y}{d x}=\frac{y}{x}+\sec \frac{y}{x} .
$$

Letting $v=\frac{y}{x}$, then 1 implies that

$$
x \frac{d v}{d x}=\sec v+v-v=\sec v
$$

thus $\cos v d v=\frac{d x}{x}$. As a consequence

$$
\sin v=\log |x|+C .
$$

Since $y(1)=1, v(1)=y(1) / 1=\frac{\pi}{6}$; thus $C=\sin \frac{\pi}{6}=\frac{1}{2}$. Finally,

$$
y(x)=x v(x)=x \arcsin \left(\frac{1}{2}+\log |x|\right) .
$$

Problem 3. 1. (10%) Let $M, N: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous functions. Suppose that

$$
\frac{N_{x}(x, y)-M_{y}(x, y)}{x M(x, y)-y N(x, y)}=h(x y)
$$

for some continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$. Show that the ordinary differential equation $M d x+$ $N d y=0$ has an integrating factor of the form $\mu(x, y)=z(x y)$. Give the general formula for z.
2. (10%) Solve $\left(3 y+2 x y^{2}\right) d x+\left(x+2 x^{2} y\right) d y=0$ with initial data $y(1)=1$.

Solution:

1. Consider an integrating factor of the form $\mu(x, y)=g(x y)$. Then

$$
(\mu M)_{y}-(\mu N)_{x}=0 \Rightarrow \mu\left(M_{y}-N_{x}\right)+\mu_{y} M-\mu_{x} N=0 .
$$

Since $\mu_{y}(x, y)=g^{\prime}(x y) x$ and $\mu_{x}(x, y)=g^{\prime}(x y) y$, we conclude that

$$
g\left(M_{y}-N_{x}\right)+g^{\prime}(x M-y N)=0 .
$$

Therefore, $g^{\prime}-h g=0$. Let H be an anti-derivative of h, then $\left(e^{-H} g\right)^{\prime}=0$ which implies that $g=e^{H}$ can be an integrating factor.
2. Let $M(x, y)=3 y+2 x y^{2}$ and $N(x, y)=x+2 x^{2} y$. Then

$$
\frac{N_{x}-M_{y}}{x M-y N}=\frac{1+4 x y-(3+4 x y)}{3 x y+2 x^{2} y^{2}-\left(x y+2 x^{2} y^{2}\right)}=\frac{-1}{x y} .
$$

Let $h(z)=\frac{-1}{z}$. Then $\frac{N_{x}(x, y)-M_{y}(x, y)}{x M(x, y)-y N(x, y)}=h(x y)$; thus 1 implies that $g(x y)=e^{-\log |x y|}$ is a valid integrating factor. As a consequence, we instead consider

$$
\frac{3 y+2 x y^{2}}{x y} d x+\frac{x+2 x^{2} y}{x y} d y=0
$$

or

$$
\left(\frac{3}{x}+2 y\right) d x+\left(\frac{1}{y}+2 x\right) d y=0 .
$$

The ODE above is exact; thus there exists Φ such that $\Phi_{x}(x, y)=\frac{3}{x}+2 y$ and $\Phi_{y}(x, y)=\frac{1}{y}+2 x$.
Such Φ has the form

$$
\Phi(x, y)=3 \log x+2 x y+\log y
$$

Since $y(1)=1, \Phi(x, y)=2$ is the integral curve we are looking for.

Problem 4. Suppose that the population y of a certain creature in a given area is described by the equation

$$
\begin{equation*}
\frac{d y}{d t}=-a y^{2}+b y-c \tag{1}
\end{equation*}
$$

where a, b, c are positive constants.

1. (5%) Provide the condition the there are two positive equilibriums solutions to (1).
2. (10%) Under condition provided in 1 , suppose that the two equilibrium solution is $y=p_{1}$ and $y=p_{2}$ with $p_{1}<p_{2}$. Show that $y(t)=p_{2}$ (analytically) is asymptotically unstable equilibrium solution to (1).

Solution:

1. To have two equilibrium solutions, the equation $-a \lambda^{2}+b \lambda-c=0$ must have two distinct real roots. Therefore, $b^{2}-4 a c>0$. Moreover, the smaller root must be postive; thus

$$
p_{1}=\frac{b-\sqrt{b^{2}-4 a c}}{2 a}>0 .
$$

Since $a, b, c>0$, the inequality above holds automatically. Therefore, the only requirement for having two equilibrium solutions is $b^{2}-4 a c>0$.
2. Let $p_{2}=\frac{b+\sqrt{b^{2}-4 a c}}{2 a}$. Then

$$
\begin{aligned}
\frac{d y}{d t}=-a y^{2}+b y-c & \Rightarrow \frac{d y}{\left(y-p_{1}\right)\left(y-p_{2}\right)}=-a d t \Rightarrow\left(\frac{1}{y-p_{2}}-\frac{1}{y-p_{1}}\right) d y=a\left(p_{1}-p_{2}\right) d t \\
& \Rightarrow \log \left|\frac{y-p_{2}}{y-p_{1}}\right|=a\left(p_{1}-p_{2}\right) t+C_{1} \\
& \Rightarrow\left|\frac{y(t)-p_{2}}{y(t)-p_{1}}\right|=C_{2} e^{a\left(p_{1}-p_{2}\right) t} .
\end{aligned}
$$

Since $\lim _{t \rightarrow \infty} e^{a\left(p_{1}-p_{2}\right) t}=0$, we must have $\lim _{t \rightarrow \infty} y(t)=p_{2}$.

Problem 5. (15\%) To solve a first order equation $y^{\prime}=f(t, y)$ with initial condition $y\left(t_{0}\right)=y_{0}$, one can use the improved Euler method which is the iteration method given by the

$$
u_{n+1}=u_{n}+\frac{h}{2}\left[f\left(t_{n}, u_{n}\right)+f\left(t_{n+1}, u_{n}+h f\left(t_{n}, u_{n}\right)\right)\right], \quad u_{0}=y_{0}
$$

where with h denoting the time step, $t_{n}=t_{0}+n h$. Use the improved Euler method to solve $y^{\prime}=y$ with $y(0)=y_{0}$ and show that for each fixed $T=N h$, one has $u_{N} \rightarrow y_{0} e^{T}$ as $h \rightarrow 0$.

Proof. Let $T>0$ be given, and $N=T / h$. Since $f(y)=y$, using the improved Euler we have

$$
u_{n+1}=u_{n}+\frac{h}{2}\left(u_{n}+u_{n}+h u_{n}\right)=\left(1+h+\frac{h^{2}}{2}\right) u_{n} .
$$

As a consequence,

$$
u_{n}=\left(1+h+\frac{h^{2}}{2}\right)^{n} u_{0}=\left(1+h+\frac{h^{2}}{2}\right)^{n} y_{0}
$$

thus $u_{N}=\left(1+h+\frac{h^{2}}{2}\right)^{\frac{T}{h}} y_{0}$. Since

$$
\lim _{h \rightarrow 0}\left(1+h+\frac{h^{2}}{2}\right)^{\frac{T}{h}}=\lim _{h \rightarrow 0}\left(1+h+\frac{h^{2}}{2}\right)^{\frac{T}{h+h^{2} / 2}(1+h / 2)}=e^{T},
$$

we conclude that $u_{N}=y_{0} e^{T}$.

Problem 6. (15\%) Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Use the Picard iteration to solve the ordinary differential equation

$$
\frac{d y}{d t}+p^{\prime} y=2 p^{\prime}
$$

with initial condition $y(0)=y_{0}$.
Solution: The Picard iteration is

$$
\varphi_{n+1}(t)=y_{0}+\int_{0}^{t}\left(2 p^{\prime}(s)-p^{\prime}(s) \varphi_{n}(s)\right) d s=y_{0}+2(p(t)-p(0))-\int_{0}^{t} p^{\prime}(s) \varphi_{n}(s) d s
$$

with initial data $\varphi_{0}(t)=y_{0}$. Letting $q(t)=p(t)-p(0)$, we obtain that $p^{\prime}=q^{\prime}$; thus

$$
\varphi_{n+1}(t)=y_{0}+2 q(t)-\int_{0}^{t} q^{\prime}(s) \varphi_{n}(s) d s .
$$

Therefore,

$$
\begin{aligned}
\varphi_{1}(t) & =y_{0}+2 q(t)-\int_{0}^{t} y_{0} q^{\prime}(s) d s=y_{0}+2 q(t)-y_{0} q(t)=y_{0}+\left(2-y_{0}\right) q(t), \\
\varphi_{2}(t) & =y_{0}+2 q(t)-\int_{0}^{t} q^{\prime}(s)\left[y_{0}+\left(2-y_{0}\right) q(s)\right] d s \\
& =y_{0}+\left(2-y_{0}\right) q(t)-\frac{2-y_{0}}{2} \int_{0}^{t}\left(q(s)^{2}\right)^{\prime} d s=y_{0}+\left(2-y_{0}\right) q(t)-\frac{2-y_{0}}{2} q(t)^{2}, \\
\varphi_{3}(t) & =y_{0}+2 q(t)-\int_{0}^{t} q^{\prime}(s)\left[y_{0}+\left(2-y_{0}\right) q(s)-\frac{2-y_{0}}{2} q(s)^{2}\right] d s \\
& =y_{0}+\left(2-y_{0}\right) q(t)-\int_{0}^{t}\left[\frac{2-y_{0}}{2}\left(q(s)^{2}\right)^{\prime}-\frac{2-y_{0}}{3!}\left(q(s)^{3}\right)^{\prime}\right] d s \\
& =y_{0}+\left(2-y_{0}\right) q(t)-\frac{2-y_{0}}{2!} q(t)^{2}+\frac{2-y_{0}}{3!} q(t)^{3} .
\end{aligned}
$$

We observe φ_{n} for $n=1,2,3$ and conjecture that

$$
\begin{aligned}
\varphi_{n}(t) & =y_{0}+\left(2-y_{0}\right) q(t)-\frac{2-y_{0}}{2!} q(t)^{2}+\frac{2-y_{0}}{3!} q(t)^{3}-\frac{2-y_{0}}{4!} q(t)^{4}+\cdots \\
& =2-\left(2-y_{0}\right) \sum_{j=0}^{n} \frac{(-1)^{j}}{j!} q(t)^{j} .
\end{aligned}
$$

This conjecture can be proved by induction: we have established the case $n=1$, and suppose that the above identity holds for $n=\ell$. Then for $n=\ell+1$,

$$
\begin{aligned}
\varphi_{\ell+1}(t) & =y_{0}+2 q(t)-\int_{0}^{t} q^{\prime}(s)\left[2-\left(2-y_{0}\right) \sum_{j=0}^{n} \frac{(-1)^{j}}{j!} q(t)^{j}\right] d s \\
& =y_{0}+\left(2-y_{0}\right) \int_{0}^{t} q^{\prime}(s) \sum_{j=0}^{n} \frac{(-1)^{j}}{j!} q(t)^{j} d s \\
& =y_{0}+\left(2-y_{0}\right) \sum_{j=0}^{n} \frac{(-1)^{j}}{(j+1)!} q(t)^{j+1}=y_{0}-\left(2-y_{0}\right) \sum_{j=1}^{n+1} \frac{(-1)^{j}}{j!} q(t)^{j} \\
& =2-\left(2-y_{0}\right) \sum_{j=0}^{n+1} \frac{(-1)^{j}}{j!} q(t)^{j} .
\end{aligned}
$$

Finally, we pass to the limit as $n \rightarrow \infty$ and obtain that

$$
y(t)=\lim _{n \rightarrow \infty} \varphi_{n}(t)=2-\left(2-y_{0}\right) \exp (-q(t))=2-\left(2-y_{0}\right) \exp (p(0)-p(t)) .
$$

Problem 7. (10\%) Let $x: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous functions satisfying

$$
0 \leqslant x(t) \leqslant 1+\int_{0}^{t}\left(s^{2}+1\right) x(s) d s \quad \forall t \geqslant 0
$$

Show that $x(t) \leqslant \exp \left(\frac{t^{3}}{3}+t\right)$ for all $t \geqslant 0$.
Proof. Let $y(t)=\int_{0}^{t}\left(s^{2}+1\right) x(s) d s$. The fundamental theorem of Calculus implies that $\frac{y^{\prime}(t)}{t^{2}+1}=x(t)$; thus

$$
y^{\prime}(t) \leqslant\left(t^{2}+1\right)+\left(t^{2}+1\right) y(t) .
$$

As a consequence,

$$
\left[\exp \left(-\frac{t^{3}}{3}-t\right) y(t)\right]^{\prime} \leqslant\left(t^{2}+1\right) \exp \left(-\frac{t^{3}}{3}-t\right)
$$

thus by the fact that $y(0)=0$,

$$
\exp \left(-\frac{t^{3}}{3}-t\right) y(t) \leqslant 1-\exp \left(-\frac{t^{3}}{3}-t\right)
$$

Therefore, $y(t) \leqslant \exp \left(\frac{t^{3}}{3}+t\right)-1$, and this further implies that

$$
0 \leqslant x(t) \leqslant 1+y(t) \leqslant \exp \left(\frac{t^{3}}{3}+t\right)
$$

Problem 8. (10\%) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function, $c=f(c)$, and consider the difference equation $y_{n+1}=f\left(y_{n}\right)$ with y_{0} given. Suppose that $\left|f^{\prime}(c)\right|>1$. Show that there exists $\delta>0$ and $\rho>1$ such that if $0<\left|y_{n}-c\right|<\delta$, then $\left|y_{n+1}-c\right| \geqslant \rho\left|y_{n}-c\right|$.

Proof. By that f is twice continuously differentiable,

$$
\lim _{\delta \rightarrow 0^{+}}\left(\left|f^{\prime}(c)\right|-\frac{\delta}{2} \max _{x \in[c-\delta, c+\delta]}\left|f^{\prime \prime}(x)\right|\right)=\left|f^{\prime}(c)\right|>1 ;
$$

thus there exists $\delta>0$ such that $\rho(\delta) \equiv\left|f^{\prime}(c)\right|-\frac{\delta}{2} \max _{x \in[c-\delta, c+\delta]}\left|f^{\prime \prime}(x)\right|>1$. Fix such $\delta>0$ and let $\rho \equiv \rho(\delta)$. If $0<\left|y_{n}-c\right|<\delta$, then Taylor's theorem implies that for some d_{n} in between y_{n} and c,

$$
\begin{aligned}
y_{n+1}=f\left(y_{n}\right) & =f(c)+f^{\prime}(c)\left(y_{n}-c\right)+\frac{1}{2} f^{\prime \prime}\left(d_{n}\right)\left(y_{n}-c\right)^{2} \\
& =c+f^{\prime}(c)\left(y_{n}-c\right)+\frac{1}{2} f^{\prime \prime}\left(d_{n}\right)\left(y_{n}-c\right)^{2}
\end{aligned}
$$

which further implies that

$$
\begin{aligned}
\left|y_{n+1}-c\right| & \geqslant\left|f^{\prime}(c)\right|\left|y_{n}-c\right|-\frac{1}{2} \max _{x \in(c-\delta, c+\delta)}\left|f^{\prime \prime}(x)\right|\left|y_{n}-c\right|^{2} \\
& =\left(\left|f^{\prime}(c)\right|-\frac{1}{2} \max _{x \in(c-\delta, c+\delta)}\left|f^{\prime \prime}(x)\right|\left|y_{n}-c\right|\right)\left|y_{n}-c\right| \\
& \geqslant\left(\left|f^{\prime}(c)\right|-\frac{1}{2} \max _{x \in(c-\delta, c+\delta)}\left|f^{\prime \prime}(x)\right| \delta\right)\left|y_{n}-c\right| \geqslant \rho\left|y_{n}-c\right| .
\end{aligned}
$$

