Differential Equations Recommended Exercise 4

Problem 1. Use the Picard iteration to find the solution to the ODE y'(t) = ty(t) with initial value y(0) = 3.

Problem 2. Let $x, a : [0, T] \to \mathbb{R}$ be a non-negative continuous functions, and satisfies

$$x(t) \leq M + \int_0^t a(s)x(s) \, ds \qquad \forall \, t \in [0,T]$$

Show that $x(t) \leq M \exp\left(\int_0^t a(s)ds\right)$ for all $t \in [0,T]$.

Problem 3. Let T > 0 be given. Show that there exists $0 < T_0 \leq T$ such that if $x : [0,T] \to \mathbb{R}$ is a non-negative continuous function satisfying

$$x(t) \leq M + tx(t)^2 \qquad \forall t \in [0, T].$$

then $x(t) \leq 2M$ for all $t \in [0, T_0]$.