Differential Equations Recommended Exercise 4

Problem 1. Use the Picard iteration to find the solution to the ODE $y^{\prime}(t)=t y(t)$ with initial value $y(0)=3$.

Problem 2. Let $x, a:[0, T] \rightarrow \mathbb{R}$ be a non-negative continuous functions, and satisfies

$$
x(t) \leqslant M+\int_{0}^{t} a(s) x(s) d s \quad \forall t \in[0, T] .
$$

Show that $x(t) \leqslant M \exp \left(\int_{0}^{t} a(s) d s\right)$ for all $t \in[0, T]$.
Problem 3. Let $T>0$ be given. Show that there exists $0<T_{0} \leqslant T$ such that if $x:[0, T] \rightarrow \mathbb{R}$ is a non-negative continuous function satisfying

$$
x(t) \leqslant M+t x(t)^{2} \quad \forall t \in[0, T] .
$$

then $x(t) \leqslant 2 M$ for all $t \in\left[0, T_{0}\right]$.

