Numerical Analysis I MA3021 Midterm

National Central University, Jun. 29, 2020 (due. Jul. 01, 2020 4pm)
Problem 1. Consider solving $A \boldsymbol{x}=\boldsymbol{b}$, where A is a given $n \times n$ real matrix, and \boldsymbol{b} is a given $\mathrm{n} \times 1$ real vector, using the iterative scheme

$$
\boldsymbol{x}^{(k+1)}=g\left(\boldsymbol{x}^{(k)}\right) \equiv \boldsymbol{x}^{(k)}+\omega\left(\boldsymbol{b}-A \boldsymbol{x}^{(k)}\right),
$$

where $\omega \neq 0$ is a real constant.
(1) (10%) Show that \boldsymbol{x} satisfies $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ if and only if \boldsymbol{x} is a fixed-point of g.
(2) (10\%) Show that if $\left\|\mathrm{I}_{n \times n}-\omega A\right\|<1$ for some sub-ordinate matrix norm, then the iterative scheme (\star) converges; that is, (\star) produces convergent sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ for any given initial guess $\boldsymbol{x}^{(0)}$.
(3) (20\%) Suppose that A is a symmetric matrix with eigenvalue $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$. Show that the iterative scheme (\star) converges if $\left|1-\omega \lambda_{j}\right|<1$ for all $1 \leqslant j \leqslant n$.
(4) (20\%) Suppose that A is a symmetric positive definite matrix, and $0<\omega \ll 1$ so that $|1-\omega \lambda|<1$ for all eigenvalues λ of A. Define $\boldsymbol{e}^{(k)}=\boldsymbol{x}^{(k)}-A^{-1} \boldsymbol{b}$. Show that

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{2} \leqslant \frac{\left|1-\omega \lambda_{\min }\right|^{k}}{\lambda_{\min }}\left\|\boldsymbol{b}-A \boldsymbol{x}^{(0)}\right\|_{2} \quad \forall k \in \mathbb{N}
$$

where $\lambda_{\text {min }}$ is the smallest eigenvalue of A.
Problem 2. Let A be an $n \times n$ symmetric matrix with the property that dominant eigenvalue of A is simple; that is, the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ of A satisfies

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \geqslant \cdots \geqslant\left|\lambda_{n}\right| .
$$

Here λ_{1} is called the dominant eigenvalue of A.
(1) (10\%) Suppose that $\boldsymbol{v} \neq \mathbf{0}$ is not an eigenvector of A and \boldsymbol{v} is not orthogonal to the eigenvector corresponding to the dominant eigenvalue λ. Show that

$$
\lim _{m \rightarrow \infty} \frac{\boldsymbol{v}^{\mathrm{T}} A^{m+1} \boldsymbol{v}}{\boldsymbol{v}^{\mathrm{T}} A^{m} \boldsymbol{v}}=\lambda
$$

Hint: Write $\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}$ and find $\frac{\boldsymbol{v}^{\mathrm{T}} A^{m+1} \boldsymbol{v}}{\boldsymbol{v}^{\mathrm{T}} A^{m} \boldsymbol{v}}$.
(2) (10\%) Use (1) to provide an algorithm which computes the dominant eigenvalue of a symmetric matrix (with simple dominant eigenvalue).

Problem 3. (20\%) Show that

$$
x_{n+1}=x_{n}+\frac{h}{6}\left(k_{1}+4 k_{2}+k_{3}\right),
$$

where

$$
k_{1}=f\left(t_{n}, x_{n}\right), \quad k_{2}=f\left(t_{n}+\frac{h}{2}, x_{n}+\frac{h}{2} k_{1}\right), \quad k_{3}=f\left(t_{n}+h, x_{n}-h k_{1}+2 h k_{2}\right)
$$

is a third order method of solving the initial value problem

$$
x^{\prime}(t)=f(t, x(t)), \quad x\left(t_{0}\right)=x_{0}
$$

