數值分析 MA－3021

Chapter 5．Direct and Iterative Methods for Solving Linear Systems
§5．1 Introduction－Review on Linear Algebra
§5．2 LU decomposition
§5．3 Norms of Vectors and Matrices
§5．4 Iterative Methods
§5．5 Absolute Error，Relative Error and Condition Number

§5．1 Introduction－Review on Linear Algebra

We are interested in solving systems of linear equations of the form：

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & b_{2} \\
\vdots & \vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & = & b_{n}
\end{array}\right.
$$

This is a system of n equations in the n unknowns，$x_{1}, x_{2}, \cdots, x_{n}$ ． The elements $a_{i j}$ and b_{i} are assumed to be prescribed real numbers．
We can rewrite this system of linear equations in a matrix form：

We can denote these matrices by $\boldsymbol{A}, \boldsymbol{x}$ ，and \boldsymbol{b} ，giving the simpler equation：

§5．1 Introduction－Review on Linear Algebra

We are interested in solving systems of linear equations of the form：

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & b_{2} \\
\vdots & \vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & = & b_{n}
\end{array}\right.
$$

This is a system of n equations in the n unknowns，$x_{1}, x_{2}, \cdots, x_{n}$ ． The elements $a_{i j}$ and b_{i} are assumed to be prescribed real numbers． We can rewrite this system of linear equations in a matrix form：

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

We can denote these matrices by A, \boldsymbol{x} ，and \boldsymbol{b} ，giving the simpler equation：$A \boldsymbol{x}=\boldsymbol{b}$ ．

§5．1 Introduction－Review on Linear Algebra

Notation：

（1）Let A be a $m \times n$ matrix．Then
－The (i, j) entry of A is denoted by $A_{i j}, a_{i j}$ or $A(i, j)$ ．
－The j－th row of A is denoted by $A(j,:)$ ．
－The j－th column of A is denoted by $A(:, j)$ ．
（2）The $n \times n$ identity matrix is denoted by I_{n} or $I_{n \times n}$ ．When the dimension n is clear，$n \times n$ we sometimes also use $/$ to denote the identity matrix．

§5．1 Introduction－Review on Linear Algebra

If A and B are two matrices such that $A B=I$ ，then we say that B is a right inverse of A and that A is a left inverse of B ．For example，

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
\alpha & \beta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2}, \quad \forall \alpha, \beta \in \mathbb{R} .} \\
& {\left[\begin{array}{lll}
1 & 0 & \alpha \\
0 & 1 & \beta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2}, \quad \forall \alpha, \beta \in \mathbb{R} .}
\end{aligned}
$$

Notice that right inverse and left inverse may not unique．

§5．1 Introduction－Review on Linear Algebra

Theorem

A square matrix can possess at most one right inverse．

Proof．

Let $A B=I$ ．Then $\sum_{j=1}^{n} b_{j k} A(:, j)=I(:, k)$ for all $1 \leqslant k \leqslant n$ ．So，the columns of A form a basis for \mathbb{R}^{n} ．Therefore，the coefficients $b_{j k}$ above are uniquely determined．

Theorem

If A and B are square matrices such that $A B=1$ ，then $B A=1$

Proof

Let $C=B A-1+B$ ．Then $A C=A B A-A I+A B=A-A+1=1$
Since right inverse for square matrix is at most one，$B=C$

§5．1 Introduction－Review on Linear Algebra

Theorem

A square matrix can possess at most one right inverse．

Proof．

Let $A B=I$ ．Then $\sum_{j=1}^{n} b_{j k} A(:, j)=I(:, k)$ for all $1 \leqslant k \leqslant n$ ．So，the columns of A form a basis for \mathbb{R}^{n} ．Therefore，the coefficients $b_{j k}$ above are uniquely determined．

Theorem

If A and B are square matrices such that $A B=I$ ，then $B A=I$ ．

Proof．

Let $C=B A-I+B$ ．Then $A C=A B A-A I+A B=A-A+I=I$ ． Since right inverse for square matrix is at most one，$B=C$ ．
Hence，$C=B A-I+B=B A-I+C$ ；that is，$B A=I$ ．

§5．1 Introduction－Review on Linear Algebra

（1）If a square matrix A has a right inverse B ，then B is unique and $B A=A B=I$ ．We then call B the inverse of A and say that A is invertible or nonsingular．We denote $B=A^{-1}$ ．
（2）If A is invertible，then the system of equations $A \boldsymbol{x}=\boldsymbol{b}$ has the solution $\boldsymbol{x}=A^{-1} b$ ．If A^{-1} is not available，then in general，A^{-1} should not be computed solely for the purpose of obtaining x ．
（3）How do we get this A^{-1} ？

§5．1 Introduction－Review on Linear Algebra

（1）Let two linear systems be given，each consisting of n equations with n unknowns：

$$
A \boldsymbol{x}=\boldsymbol{b} \quad \text { and } \quad B \boldsymbol{x}=\boldsymbol{d} .
$$

If the two systems have precisely the same solutions，we call them equivalent systems．
（2）Note that A and B can be very different．
（3）Thus，to solve a linear system of equations，we can instead solve any equivalent system．This simple idea is at the heart of our numerical procedures．

§5．1 Introduction－Review on Linear Algebra

Let \mathcal{E}_{i} denote the i－th equation in the system $A \boldsymbol{x}=\boldsymbol{b}$ ．The following are the elementary operations which can be performed：
－Interchanging two equations in the system： $\mathcal{E}_{i} \leftrightarrow \mathcal{E}_{j}$ ；
－Multiplying an equation by a nonzero number：$\lambda \mathcal{E}_{i} \rightarrow \mathcal{E}_{i}$ ；
－Adding to an equation a multiple of some other equation： $\mathcal{E}_{i}+$ $\lambda \mathcal{E}_{j} \rightarrow \mathcal{E}_{i}$ ．

Theorem

If one system of equations is obtained from another by a finite se－ quence of elementary operations，then the two systems are equiva－ lent．

§5．1 Introduction－Review on Linear Algebra

（1）An elementary matrix is defined to be an $n \times n$ matrix that arises when an elementary operation is applied to the $n \times n$ identity matrix．
（2）The elementary operations expressed in terms of the rows of matrix A are：
－The interchange of two rows in $A: A(i,:) \leftrightarrow A(j,:) ;$
－Multiplying one row by a nonzero constant：$\lambda A(i,:) \rightarrow A(:, i)$ ；
－Adding to one row a multiple of another：

$$
A(i,:)+\lambda A(j,:) \rightarrow A(i,:) .
$$

（3）Each elementary row operation on A can be accomplished by multiplying A on the left by an elementary matrix．

§5．1 Introduction－Review on Linear Algebra

Example

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] .} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
\lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \lambda & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
\lambda a_{21}+a_{31} \lambda a_{22}+a_{32} \lambda a_{23}+a_{33}
\end{array}\right] .}
\end{aligned}
$$

§5．1 Introduction－Review on Linear Algebra

（1）If matrix A is invertible，then there exists a sequence of ele－ mentary row operations can be applied to A ，reducing it to the identity matrix I ，

$$
E_{m} E_{m-1} \cdots E_{2} E_{1} A=I
$$

（2）This gives us an equation for computing the inverse of a matrix：

$$
A^{-1}=E_{m} E_{m-1} \cdots E_{2} E_{1}=E_{m} E_{m-1} \cdots E_{2} E_{1} I
$$

Remark：This is not a practical method to compute A^{-1} ．

§5．1 Introduction－Review on Linear Algebra

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix．If there exists a nonzero vector $\boldsymbol{x} \in \mathbb{C}^{n}$ and a scalar $\lambda \in \mathbb{C}$ such that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

then λ is called an eigenvalue of A and \boldsymbol{x} is called the corresponding eigenvector of A ．

Remark：Computing λ and \boldsymbol{x} is a major task in numerical linear algebra．

§5．1 Introduction－Review on Linear Algebra

For an $n \times n$ real matrix A ，the following properties are equivalent：
（1）The inverse of A exists；that is，A is nonsingular；
（2）The determinant of A is nonzero；
（3）The rows of A form a basis for \mathbb{R}^{n} ；
（9）The columns of A form a basis for \mathbb{R}^{n} ；
（6）As a map from \mathbb{R}^{n} to \mathbb{R}^{n}, A is injective（one to one）；
（0）As a map from \mathbb{R}^{n} to \mathbb{R}^{n}, A is surjective（onto）；
（1）The equation $A \boldsymbol{x}=0$ implies $\boldsymbol{x}=\mathbf{0}$ ；
（8）For each $\boldsymbol{b} \in \mathbb{R}^{n}$ ，there is exactly one $x \in \mathbb{R}^{n}$ such that $A \boldsymbol{x}=\boldsymbol{b}$ ；
（0）A is a product of elementary matrices；
（10） 0 is not an eigenvalue of A ．

§5．1 Introduction－Review on Linear Algebra

There are some easy－to－solve systems：
（1）Diagonal Structure

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The solution is：（provided $a_{i i} \neq 0$ for all $i=1,2, \cdots, n$ ）

$$
\boldsymbol{x}=\left(\frac{b_{1}}{a_{11}}, \frac{b_{2}}{a_{22}}, \frac{b_{3}}{a_{33}}, \cdots, \frac{b_{n}}{a_{n n}}\right)^{\top} .
$$

－If $a_{i i}=0$ for some index i ，and if $b_{i}=0$ also，then x_{i} can be any real number．The number of solutions is infinity．
－If $a_{i i}=0$ and $b_{i} \neq 0$ ，no solution of the system exists．
－What is the complexity of the method？n divisions．

§5．1 Introduction－Review on Linear Algebra

There are some easy－to－solve systems：
（2）Lower Triangular Systems

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

Some simple observations：
－If $a_{11} \neq 0$ ，then we have $x_{1}=b_{1} / a_{11}$ ．
－Once we have x_{1} ，we can simplify the second equation，$x_{2}=$ $\left(b_{2}-a_{21} x_{1}\right) / a_{22}$ ，provided that $a_{22} \neq 0$ ．
Similarly，$x_{3}=\left(b_{3}-a_{31} x_{1}-a_{32} x_{2}\right) / a_{33}$ ，provided that $a_{33} \neq 0$ ． In general，to find the solution to this system，we use forward substitution（assume that $a_{i i} \neq 0$ for all i ）．

§5．1 Introduction－Review on Linear Algebra

There are some easy－to－solve systems：
（2）Lower Triangular Systems（cont＇d）
－Algorithm of forward substitution： input $n,\left(a_{i j}\right), b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\top}$ for $i=1$ to n do

$$
x_{i} \leftarrow\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / a_{i i}
$$

end do

$$
\text { output } x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}
$$

－Complexity of forward substitution：
－n divisions．
－the number of multiplications： 0 for $x_{1}, 1$ for $x_{2}, 2$ for x_{3}, \cdots

$$
\text { total }=0+1+2+\cdots+(n-1) \approx(n+1) n / 2=\mathcal{O}\left(n^{2}\right)
$$

－the number of subtractions：same as the number of multiplica－ tions $=\mathcal{O}\left(n^{2}\right)$ ．
Forward substitution is an $\mathcal{O}\left(n^{2}\right)$ algorithm．
－Remark：forward substitution is a sequential algorithm（not parallel at all）．

§5．1 Introduction－Review on Linear Algebra

There are some easy－to－solve systems：
（3）Upper Triangular Systems

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

－The formal algorithm to solve for x is called backward substitu－ tion．It is also an $\mathcal{O}\left(n^{2}\right)$ algorithm．
－Assume that $a_{i i} \neq 0$ for all i．Algorithm：
input $n,\left(a_{i j}\right), b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\top}$
for $i=n:-1: 1$ do

$$
x_{i} \leftarrow\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) / a_{i i}
$$

end do
output $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$

§5．2 LU Decomposition

$L U$ decomposition（factorization）：

Suppose that A can be factored into the product of a lower triangular matrix L and an upper triangular matrix U ：

$$
A=L U .
$$

Then，$A x=L U x=L(U x)$ ．Thus，to solve the system of equations $A \boldsymbol{x}=\boldsymbol{b}$ ，it is enough to solve this problem in two stages：

$$
\begin{array}{ll}
L \boldsymbol{z}=\boldsymbol{b} & \text { solve for } \boldsymbol{z}, \\
U \boldsymbol{x}=\boldsymbol{z} & \text { solve for } \boldsymbol{x} .
\end{array}
$$

§5．2 LU Decomposition

Example（Basic Gaussian elimination）

Let $A^{(1)}=\left(a_{i j}^{(1)}\right)=A=\left(a_{i j}\right)$ and $b^{(1)}=b$ ．Consider the following linear system $A \boldsymbol{x}=\boldsymbol{b}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

pivot row $=$ row 1 ；pivot element：$a_{i j}^{(1)}=6$ ．
row2 $-(12 / 6) \times$ row $1 \rightarrow$ row2．
row3 $-(3 / 6) \times$ row1 \rightarrow row3．
row4 $-(-6 / 6) \times$ row $1 \rightarrow$ row4．

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right] .
$$

multipliers： $12 / 6,3 / 6,(-6) / 6$

§5．2 LU Decomposition

Example（Basic Gaussian elimination－cont＇d）

We have the following equivalent system $A^{(2)} \boldsymbol{x}=\boldsymbol{b}^{(2)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right]
$$

pivot row $=$ row 2 ；pivot element $a_{22}^{(2)}=-4$ ．

$$
\begin{aligned}
& \text { row } 3-(-12 /-4) \times \text { row } 2 \rightarrow \text { row3. } \\
& \text { row } 4-(2 /-4) \times \text { row } 2 \rightarrow \text { row } 4 .
\end{aligned}
$$

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right] .
$$

multiplier：$(-12) /(-4), 2 /(-4)$

§5．2 LU Decomposition

Example（Basic Gaussian elimination－cont＇d）

We have the following equivalent system $A^{(3)} \boldsymbol{x}=\boldsymbol{b}^{(3)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right]
$$

pivot row $=$ row3；pivot element $a_{33}^{(3)}=2$ ．
row4－（4／2）×row3 \rightarrow row4．

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
12 \\
10 \\
-9 \\
-3
\end{array}\right] .
$$

multiplier： $4 / 2$

§5．2 LU Decomposition

Example（Basic Gaussian elimination－cont＇d）

Finally，we have the following equivalent upper triangular system $A^{(4)} \boldsymbol{x}=$ $\boldsymbol{b}^{(4)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-3
\end{array}\right]
$$

Using the backward substitution，we have

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3 \\
-2 \\
1
\end{array}\right] .
$$

§5．2 LU Decomposition

Example（Basic Gaussian elimination－cont＇d）

Display the multipliers in an unit lower triangular matrix $L=\left(\ell_{i j}\right)$ ：

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 3 & 1 & 0 \\
-1 & -\frac{1}{2} & 2 & 1
\end{array}\right]
$$

Let $U=\left(u_{i j}\right)$ be the final upper triangular matrix $A^{(4)}$ ．Then we have

$$
U=\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

and one can check that $A=L U$（the Doolittle Decomposition）．

§5．2 LU Decomposition

Remark：

（1）The entire elimination process will break down if any of the pivot elements are 0.
（2）The total number of arithmetic operations：
－multiplication and division $=\frac{n^{3}}{3}-\frac{n}{3} \quad\left(\sum_{k=1}^{n-1} k(k+1)\right)$ ；
－addition and subtraction $=\frac{n^{3}}{3}-\frac{n^{2}}{2}+\frac{n}{6} \quad\left(\sum_{k=1}^{n-1} k^{2}\right)$ ．
Therefore，the Gauss Elimination is an $\mathcal{O}\left(n^{3}\right)$ algorithm．

§5．3 Norms on Vectors and Matrices

Definition

A nomed vector space $(\mathcal{V},\|\cdot\|)$ is a vector space \mathcal{V} over field \mathbb{F} associated with a function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ such that
（1）$\|\boldsymbol{x}\| \geqslant 0$ for all $\boldsymbol{x} \in \mathcal{V}$ ．
（2）$\|\boldsymbol{x}\|=0$ if and only if $\boldsymbol{x}=\mathbf{0}$ ．
（3）$\|\lambda \cdot \boldsymbol{x}\|=|\lambda| \cdot\|\boldsymbol{x}\|$ for all $\lambda \in \mathbb{F}$ and $\boldsymbol{x} \in \mathcal{V}$ ．
（9）$\|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$ ．
A function $\|\cdot\|$ satisfies（1）－（4）is called a norm on \mathcal{V} ．

Remark：The norm of a vector can be viewed as the length of that vector．Moreover，the norm induces the concept of distance on the vector space：the distance between two points x and y in a normed vector space（V）

§5．3 Norms on Vectors and Matrices

Definition

A nomed vector space $(\mathcal{V},\|\cdot\|)$ is a vector space \mathcal{V} over field \mathbb{F} associated with a function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ such that
（1）$\|\boldsymbol{x}\| \geqslant 0$ for all $\boldsymbol{x} \in \mathcal{V}$ ．
（2）$\|\boldsymbol{x}\|=0$ if and only if $\boldsymbol{x}=\mathbf{0}$ ．
（3）$\|\lambda \cdot \boldsymbol{x}\|=|\lambda| \cdot\|\boldsymbol{x}\|$ for all $\lambda \in \mathbb{F}$ and $\boldsymbol{x} \in \mathcal{V}$ ．
（9）$\|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$ ．
A function $\|\cdot\|$ satisfies（1）－（4）is called a norm on \mathcal{V} ．
Remark：The norm of a vector can be viewed as the length of that vector．Moreover，the norm induces the concept of distance on the vector space：the distance between two points \boldsymbol{x} and \boldsymbol{y} in a normed vector space $(\mathcal{V},\|\cdot\|)$ is defined by $d(\boldsymbol{x}, \boldsymbol{y}) \equiv\|\boldsymbol{x}-\boldsymbol{y}\|$ ．

§5．3 Norms on Vectors and Matrices

Example

（1）Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$ ：
－The 2－norm（Euclidean norm，or ℓ^{2} norm）：$\|\boldsymbol{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
－The infinity norm（ ℓ^{∞}－norm）：$\|\boldsymbol{x}\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right|$
－The 1－norm（ ℓ^{1}－norm）：$\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
－The p－norm $\left(\ell^{p}\right.$－norm）, $1 \leqslant p<\infty$ ，is $\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
（2）Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}, \boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$ ．Then
－$\|\boldsymbol{x}-\boldsymbol{y}\|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
－$\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|x_{i}-y_{i}\right|$
－$\|\boldsymbol{x}-\boldsymbol{y}\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
－$\|\boldsymbol{x}-\boldsymbol{y}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}$

§5．3 Norms on Vectors and Matrices

Example

$\left(\mathbb{R}^{2},\|\cdot\|_{p}\right.$ ）is a normed vector space．Consider the ball centered at $\boldsymbol{x}_{0}=\mathbf{0}$ with radius 1 and $p=1, p=2$ and $p=\infty$ respectively．
（1）$p=1:\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$ ．
（2）$p=2:\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}$ ．
（3）$p=\infty:\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ ．

Figure 1：The 1 －ball about 0 in \mathbb{R}^{2} with different p

§5．3 Norms on Vectors and Matrices

Example

Let A be an invertible $n \times n$ matrix．For a given norm $\|\cdot\|_{\mathbb{R}^{n}}$ on \mathbb{R}^{n} ， define a map $\left\||\cdot \||: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ by

$$
\|\boldsymbol{x}\|=\|A \boldsymbol{x}\|_{\mathbb{R}^{n}}
$$

Then $\left|\left|\mid \cdot \|\right.\right.$ is a norm on \mathbb{R}^{n} ．
Definition

§5．3 Norms on Vectors and Matrices

Example

Let A be an invertible $n \times n$ matrix．For a given norm $\|\cdot\|_{\mathbb{R}^{n}}$ on \mathbb{R}^{n} ， define a map $\|\cdot\| \cdot \|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\|\boldsymbol{x}\|=\|A \boldsymbol{x}\|_{\mathbb{R}^{n}}
$$

Then $\left||\cdot| \|\right.$ is a norm on \mathbb{R}^{n} ．

Definition

Let $(\mathcal{V},\|\cdot\|)$ be a normed vector space，and $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{V} ．Then $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{\infty}$ is said to converge to a vector $\boldsymbol{x} \in \mathcal{V}$ ，denoted by $\lim _{n \rightarrow \infty} x^{(n)}=\boldsymbol{x}$ ，if for every $\varepsilon>0$ ，there exists $N>0$ such that

$$
\left\|x^{(n)}-x\right\|<\varepsilon \quad \text { whenever } \quad n \geqslant N
$$

Sequence $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{\infty}$ in \mathcal{V} is said to be convergent if there exists $\boldsymbol{x} \in \mathcal{V}$ such that $\lim _{n \rightarrow \infty} \boldsymbol{x}^{(n)}=\boldsymbol{x}$ ．

§5．3 Norms on Vectors and Matrices

Definition

Let $(\mathcal{V},\|\cdot\| \mathcal{V}),\left(\mathcal{W},\|\cdot\|_{\mathcal{W}}\right)$ be normed vector spaces，$A \subseteq \mathcal{V}$ ，and $f: A \rightarrow \mathcal{W}$ be a \mathcal{W}－valued function．f is said to be continuous at $a \in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\|f(\boldsymbol{x})-f(\mathbf{a})\| \mathcal{W}<\varepsilon \quad \text { whenever } \quad\|\boldsymbol{x}-\mathbf{a}\|_{\mathcal{V}}<\delta \text { and } \boldsymbol{x} \in A
$$

Definition
Two norms｜｜$\cdot \|$ and $\|\|\cdot\| \mid$ on a vector space \mathcal{V} are called equivalent if
there are positive constants C_{1} and C_{2} such that

Remark：Equivalent norms induce the same concept of convergence
of secuences，continuity of functions，and so on．For example，if
$\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is a convergent sequence in $\left(\mathcal{V},\|\cdot\|_{1}\right)$ and $\left\|_{2}\right\|_{2}$ is an
equivalent norm of $\|\cdot\|_{1}$ ，then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is convergent in（V）

§5．3 Norms on Vectors and Matrices

Definition

Let $(\mathcal{V},\|\cdot\| \mathcal{V}),\left(\mathcal{W},\|\cdot\|_{\mathcal{W}}\right)$ be normed vector spaces，$A \subseteq \mathcal{V}$ ，and $f: A \rightarrow \mathcal{W}$ be a \mathcal{W}－valued function．f is said to be continuous at $a \in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\|f(\boldsymbol{x})-f(\mathbf{a})\| \mathcal{W}<\varepsilon \quad \text { whenever } \quad\|\boldsymbol{x}-\boldsymbol{a}\|_{\mathcal{V}}<\delta \text { and } \boldsymbol{x} \in A
$$

Definition

Two norms $\|\cdot\|$ and $\|\|\cdot\|\|$ on a vector space \mathcal{V} are called equivalent if there are positive constants C_{1} and C_{2} such that

$$
C_{1}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\| \leqslant C_{2}\|\boldsymbol{x}\| \quad \forall \boldsymbol{x} \in \mathcal{V}
$$

Remark：Equivalent norms induce the same concept of convergence
of sequences，continuity of functions，and so on．For example，if
$\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is a convergent sequence in（1），$\|.\|_{1}$ ）and $\|.\|_{2}$ is an
equivalent norm of $\|\cdot\|_{1}$ ，then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is convergent in $(\mathcal{V}$

§5．3 Norms on Vectors and Matrices

Definition

Let $(\mathcal{V},\|\cdot\| \mathcal{V})$ ，$\left(\mathcal{W},\|\cdot\|_{\mathcal{W}}\right)$ be normed vector spaces，$A \subseteq \mathcal{V}$ ，and $f: A \rightarrow \mathcal{W}$ be a \mathcal{W}－valued function．f is said to be continuous at $a \in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\|f(\boldsymbol{x})-f(\mathbf{a})\|_{\mathcal{W}}<\varepsilon \quad \text { whenever } \quad\|\boldsymbol{x}-\boldsymbol{a}\|_{\mathcal{V}}<\delta \text { and } \boldsymbol{x} \in A
$$

Definition

Two norms $\|\cdot\|$ and $\|\|\cdot\|\|$ on a vector space \mathcal{V} are called equivalent if there are positive constants C_{1} and C_{2} such that

$$
C_{1}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\| \leqslant C_{2}\|\boldsymbol{x}\| \quad \forall \boldsymbol{x} \in \mathcal{V} .
$$

Remark：Equivalent norms induce the same concept of convergence of sequences，continuity of functions，and so on．For example，if $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is a convergent sequence in $\left(\mathcal{V},\|\cdot\|_{1}\right)$ and $\|\cdot\|_{2}$ is an equivalent norm of $\|\cdot\|_{1}$ ，then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is convergent in $\left(\mathcal{V},\|\cdot\|_{2}\right)$ ．

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof．

Let $\left\{\boldsymbol{e}_{k}\right\}_{k=1}^{N}$ be a basis of \mathcal{V} ．For each $\boldsymbol{x} \in \mathcal{V}$ ，we write $\boldsymbol{x}=\sum_{k=1}^{N} x_{k} \boldsymbol{e}_{k}$ and define a function $\|\cdot\|_{2}: \mathcal{V} \rightarrow \mathbb{R}$ by

$$
\|\boldsymbol{x}\|_{2}=\left(\sum_{k=1}^{N}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

Then
（1）$\|\boldsymbol{x}\|_{2} \geqslant 0$ for all $\boldsymbol{x} \in \mathcal{V}$ ，and $\|\boldsymbol{x}\|_{2}=0$ if and only if $\boldsymbol{x}=\mathbf{0}$ ．
（2）$\|\lambda \boldsymbol{x}\|_{2}=|\lambda|\|\boldsymbol{x}\|_{2}$ for all $\lambda \in \mathbb{R}$（or $\left.\mathbb{C}\right)$ and $\boldsymbol{x} \in \mathcal{V}$ ．
（3）$\|\boldsymbol{x}+\boldsymbol{y}\|_{2} \leqslant\|\boldsymbol{x}\|_{2}+\|\boldsymbol{y}\|_{2}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$ becuase of the Cauchy －Schwarz inequality．

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．

Therefore，$\|\cdot\|_{2}$ is a normed on \mathcal{V} ．It then suffices to shows that any norm $\|\cdot\|$ on \mathcal{V} is equivalent to $\|\cdot\|_{2}$ ：

$$
\begin{aligned}
& \text { if } C_{1}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\|_{2} \leqslant C_{2}\|\boldsymbol{x}\| \text { and } C_{3}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\|_{2} \leqslant C_{4}\|\boldsymbol{x}\| \text {, } \\
& \text { then } \frac{C_{1}}{C_{4}}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\| \leqslant \frac{C_{2}}{C_{3}}\|\boldsymbol{x}\| .
\end{aligned}
$$

By the definition of norms and the Cauchy－Schwarz inequality，

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．

Therefore，$\|\cdot\|_{2}$ is a normed on \mathcal{V} ．It then suffices to shows that any norm $\|\cdot\|$ on \mathcal{V} is equivalent to $\|\cdot\|_{2}$ ：

$$
\begin{aligned}
& \text { if } C_{1}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\|_{2} \leqslant C_{2}\|\boldsymbol{x}\| \text { and } C_{3}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\|_{2} \leqslant C_{4}\|\boldsymbol{x}\| \text {, } \\
& \text { then } \frac{C_{1}}{C_{4}}\|\boldsymbol{x}\| \leqslant\|\boldsymbol{x}\| \leqslant \frac{C_{2}}{C_{3}}\|\boldsymbol{x}\| .
\end{aligned}
$$

By the definition of norms and the Cauchy－Schwarz inequality，

$$
\|\boldsymbol{x}\| \leqslant \sum_{k=1}^{N} \mid x_{k}\| \| \boldsymbol{e}_{k}\|\leqslant\| \boldsymbol{x} \|_{2}\left(\sum_{k=1}^{N}\left\|\boldsymbol{e}_{k}\right\|^{2}\right)^{\frac{1}{2}}
$$

thus letting $C_{2}=\left(\sum_{k=1}^{N}\left\|\boldsymbol{e}_{k}\right\|^{2}\right)^{\frac{1}{2}}$ we have $\|\boldsymbol{x}\| \leqslant C_{2}\|\boldsymbol{x}\|_{2}$ ．

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．
Define $f:\left(\mathcal{V},\|\cdot\|_{2}\right) \rightarrow \mathbb{R}$ by $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ ．Then

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})|=|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| \leqslant C_{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}
$$

which implies that f is continuous．

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．

Define $f:\left(\mathcal{V},\|\cdot\|_{2}\right) \rightarrow \mathbb{R}$ by $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ ．Then

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})|=|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| \leqslant C_{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}
$$

which implies that f is continuous．Let \mathbb{S}^{n-1} be the unit sphere $\left\{\boldsymbol{x} \in \mathcal{V} \mid\|\boldsymbol{x}\|_{2}=1\right\}$ ．Then \mathbb{S}^{n-1} is（sequentially）compact in $\left(\mathcal{V},\|\cdot\|_{2}\right)$ ， so f attains its minimum on \mathbb{S}^{n-1} ．
for some $\boldsymbol{a} \in \mathbb{S}^{n-1}$ ．Then $f(\boldsymbol{a})>0$（for otherwise $\boldsymbol{a}=0$ ），and
\square

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．

Define $f:\left(\mathcal{V},\|\cdot\|_{2}\right) \rightarrow \mathbb{R}$ by $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ ．Then

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})|=|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| \leqslant C_{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}
$$

which implies that f is continuous．Let \mathbb{S}^{n-1} be the unit sphere $\left\{\boldsymbol{x} \in \mathcal{V} \mid\|\boldsymbol{x}\|_{2}=1\right\}$ ．Then \mathbb{S}^{n-1} is（sequentially）compact in $\left(\mathcal{V},\|\cdot\|_{2}\right)$ ， so f attains its minimum on \mathbb{S}^{n-1} ．Suppose that $\min _{x \in \mathbb{S}^{n-1}} f(\boldsymbol{x})=f(\boldsymbol{a})$ for some $\boldsymbol{a} \in \mathbb{S}^{n-1}$ ．Then $f(\boldsymbol{a})>0$（for otherwise $\boldsymbol{a}=\mathbf{0}$ ），

§5．3 Norms on Vectors and Matrices

Theorem

Any two norms on a finite dimensional real（or complex）normed vector space \mathcal{V} are equivalent．

Proof（cont＇d）．

Define $f:\left(\mathcal{V},\|\cdot\|_{2}\right) \rightarrow \mathbb{R}$ by $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ ．Then

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})|=|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| \leqslant C_{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}
$$

which implies that f is continuous．Let \mathbb{S}^{n-1} be the unit sphere $\left\{\boldsymbol{x} \in \mathcal{V} \mid\|\boldsymbol{x}\|_{2}=1\right\}$ ．Then \mathbb{S}^{n-1} is（sequentially）compact in $\left(\mathcal{V},\|\cdot\|_{2}\right)$ ， so f attains its minimum on \mathbb{S}^{n-1} ．Suppose that $\min _{x \in \mathbb{S}^{n-1}} f(\boldsymbol{x})=f(\boldsymbol{a})$ for some $\boldsymbol{a} \in \mathbb{S}^{n-1}$ ．Then $f(\boldsymbol{a})>0$（for otherwise $\boldsymbol{a}=\mathbf{0}$ ），and

$$
\left\|\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_{2}}\right\|=f\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_{2}}\right) \geqslant f(\boldsymbol{a}) \quad \forall \boldsymbol{x} \in \mathcal{V}
$$

which implies that $\|\boldsymbol{x}\| \geqslant C_{1}\|\boldsymbol{x}\|_{2}$ for $C_{1}=f(\boldsymbol{a})$ ．

§5．3 Norms on Vectors and Matrices

Theorem

Let $\|\cdot\|_{\mathbb{R}^{n}}$ be a norm on \mathbb{R}^{n} and $\|\cdot\|_{\mathbb{R}^{m}}$ be a norm on \mathbb{R}^{m} ．Then

$$
\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}: \boldsymbol{x} \in \mathbb{R}^{n},\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\}
$$

defines a norm on the vector space of all $m \times n$ real matrices．

Proof．

（1）Clearly $\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \geqslant 0$ ，and $\|A\|=0$ if and only if $A=0$ ．
（2）$\|\lambda A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}=\max \left\{\|\lambda A \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\}$

$$
\begin{aligned}
& =\max \left\{|\lambda|\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& =|\lambda| \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\}=|\lambda|\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}
\end{aligned}
$$

（3）$\|A+B\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}=\max \left\{\|(A+B) \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\}$

$$
\begin{aligned}
& \leqslant \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}+\|B \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& \leqslant \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\}+\max \left\{\|B \boldsymbol{x}\|_{\mathbb{R}^{m}}:\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& =\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}+\|B\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} .
\end{aligned}
$$

§5．3 Norms on Vectors and Matrices

Remark：

（1）$\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^{n}}$ and $\|\cdot\|_{\mathbb{R}^{m}}$ ．Moreover，

$$
\begin{aligned}
&\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}: \boldsymbol{x} \in \mathbb{R}^{n},\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& \Leftrightarrow\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\frac{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}}{\|\boldsymbol{x}\|_{\mathbb{R}^{n}}}: \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \neq \mathbf{0}\right\}
\end{aligned}
$$

（2）If $\|\cdot\|_{\mathbb{R}^{n}}=\|\cdot\|_{p}$ and $\|\cdot\|_{\mathbb{R}^{m}}=\|\cdot\|_{q}$ ，then $\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is simply denoted by $\|A\|_{p, q}$ ．If in addition $p=q$ ，then $\|A\|_{p, q}$ is simply denoted by $\|A\|_{p}$ ．
Theorem（Additional properties of matrix norms）
\square

§5．3 Norms on Vectors and Matrices

Remark：

（1）$\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^{n}}$ and $\|\cdot\|_{\mathbb{R}^{m}}$ ．Moreover，

$$
\begin{aligned}
&\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}: \boldsymbol{x} \in \mathbb{R}^{n},\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& \Leftrightarrow\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\frac{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}}{\|\boldsymbol{x}\|_{\mathbb{R}^{n}}}: \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \neq \mathbf{0}\right\}
\end{aligned}
$$

（2）If $\|\cdot\|_{\mathbb{R}^{n}}=\|\cdot\|_{p}$ and $\|\cdot\|_{\mathbb{R}^{m}}=\|\cdot\|_{q}$ ，then $\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is simply denoted by $\|A\|_{p, q}$ ．If in addition $p=q$ ，then $\|A\|_{p, q}$ is simply denoted by $\|A\|_{p}$ ．

Theorem（Additional properties of matrix norms）

Let A be a $m \times n$ matrix，and B be a $n \times k$ matrix．
（1）$\|A \boldsymbol{x}\|_{\mathbb{R}^{m}} \leqslant\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}\|\boldsymbol{x}\|_{\mathbb{R}^{n}} \text { for all } \boldsymbol{x} \in \mathbb{R}^{n} \quad \text {（sub－ordinance）}}$
（2）$\|A B\|_{\mathbb{R}^{k}, \mathbb{R}^{m}} \leqslant\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}\|B\|_{\mathbb{R}^{k}, \mathbb{R}^{n}} \quad$（sub－multiplicativity）
（3）$\left\|I_{n \times n}\right\|_{p}=1$ for all $p \in[1, \infty]$ ．

§5．3 Norms on Vectors and Matrices

Remark：

（1）$\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^{n}}$ and $\|\cdot\|_{\mathbb{R}^{m}}$ ．Moreover，

$$
\begin{aligned}
&\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}: \boldsymbol{x} \in \mathbb{R}^{n},\|\boldsymbol{x}\|_{\mathbb{R}^{n}}=1\right\} \\
& \Leftrightarrow\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}} \equiv \max \left\{\frac{\|A \boldsymbol{x}\|_{\mathbb{R}^{m}}}{\|\boldsymbol{x}\|_{\mathbb{R}^{n}}}: \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \neq \mathbf{0}\right\}
\end{aligned}
$$

（2）If $\|\cdot\|_{\mathbb{R}^{n}}=\|\cdot\|_{p}$ and $\|\cdot\|_{\mathbb{R}^{m}}=\|\cdot\|_{q}$ ，then $\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$ is simply denoted by $\|A\|_{p, q}$ ．If in addition $p=q$ ，then $\|A\|_{p, q}$ is simply denoted by $\|A\|_{p}$ ．

Theorem（Additional properties of matrix norms）

Let A be a $m \times n$ matrix，and B be a $n \times k$ matrix．

（2）$\|A B\|_{\mathbb{R}^{k}, \mathbb{R}^{m}} \leqslant\|A\|_{\mathbb{R}^{n}, \mathbb{R}^{m}\|B\|_{\mathbb{R}^{k}, \mathbb{R}^{n}} \quad(\|A B\| \leqslant\|A\|\|B\|), ~(1, ~) ~}$
（3）$\left\|I_{n \times n}\right\|_{p}=1$ for all $p \in[1, \infty]$ ．

§5．3 Norms on Vectors and Matrices

Example $\left(\|A\|_{\infty}\right)$

Let $A=\left[a_{i j}\right]_{m \times n}$ and $\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right|=\sum_{j=1}^{n}\left|a_{k j}\right|$ for some $1 \leqslant k \leqslant m$ ．
（1）Let $\boldsymbol{x}=\left(\operatorname{sgn}\left(a_{k 1}\right), \operatorname{sgn}\left(a_{k 2}\right), \cdots, \operatorname{sgn}\left(a_{k n}\right)\right)$ ．Then $\|x\|_{\infty}=1$ ， and $\|A \boldsymbol{x}\|_{\infty}=\sum_{j=1}^{n}\left|a_{k j}\right|$ ．
（2）Let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ ．If $\|\boldsymbol{x}\|_{\infty}=1$ ，then $\left|x_{j}\right| \leqslant 1$ for all $1 \leqslant j \leqslant$ n ；thus

$$
\left|a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}\right| \leqslant \sum_{j=1}^{n}\left|a_{i j}\right| \leqslant \sum_{j=1}^{n}\left|a_{k j}\right| .
$$

By the definition of matrix norms，（1）implies that $\|A\|_{\infty} \geqslant \sum_{j=1}^{n}\left|a_{k j}\right|$ while（2）implies that $\|A\|_{\infty} \leqslant \sum_{j=1}^{n}\left|a_{k j}\right|$ ．Therefore，

$$
\|A\|_{\infty}=\max \left\{\sum_{j=1}^{n}\left|a_{1 j}\right|, \sum_{j=1}^{n}\left|a_{2 j}\right|, \cdots, \sum_{j=1}^{n}\left|a_{n j}\right|\right\} ;
$$

that is，$\|A\|_{\infty}$ is the largest sum of the absolute value of row entries．

§5．3 Norms on Vectors and Matrices

Theorem

For each $\boldsymbol{x} \in \mathbb{R}^{n}$ ，

$$
\|\boldsymbol{x}\|_{1}=\max \left\{\boldsymbol{y}^{\top} \boldsymbol{x}:\|\boldsymbol{y}\|_{\infty}=1\right\},\|\boldsymbol{x}\|_{\infty}=\max \left\{\boldsymbol{y}^{\top} \boldsymbol{x}:\|\boldsymbol{y}\|_{1}=1\right\} .
$$

Example $\left(\|A\|_{1}\right)$
By the theorem above，

$$
\begin{aligned}
\|A\|_{1} & =\max _{\|\boldsymbol{x}\|_{1}=1}\|A \boldsymbol{x}\|_{1}=\max _{\|\boldsymbol{x}\|_{1}=1} \max _{\|\boldsymbol{y}\|_{\infty}=1} \boldsymbol{y}^{\top} A \boldsymbol{x} \\
& =\max _{\|\boldsymbol{y}\|_{\infty}=1} \max _{\|\boldsymbol{x}\|_{1}=1} \boldsymbol{y}^{\top} A \boldsymbol{x}=\max _{\|\boldsymbol{y}\|_{\infty}=1} \max _{\|\boldsymbol{x}\|_{1}=1} \boldsymbol{x}^{\top} A^{\top} \boldsymbol{y} \\
& =\max _{\|\boldsymbol{y}\|_{\infty}=1}\left\|A^{\top} \boldsymbol{y}\right\|_{\infty}=\left\|A^{\top}\right\|_{\infty}
\end{aligned}
$$

thus

$$
\|A\|_{1}=\max \left\{\sum_{i=1}^{m}\left|a_{i 1}\right|, \sum_{i=1}^{m}\left|a_{i 2}\right|, \cdots, \sum_{i=1}^{m}\left|a_{i n}\right|\right\} ;
$$

that is，$\|A\|_{1}$ is the largest sum of the absolute value of column entries．

§5．3 Norms on Vectors and Matrices

Example $\left(\|A\|_{2}\right)$

Let A be an $m \times n$ matrix．Then by the definition of the 2－norm，

$$
\|A\|_{2}^{2}=\max \left\{\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}:\|\boldsymbol{x}\|_{2}=1\right\}=\max \left\{\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{x}:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Since $A^{\top} A$ is an $n \times n$ symmetric matrix，$A^{\top} A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding orthogonal unit eigenvec－ tors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ ．Then each $\boldsymbol{x} \in \mathbb{R}^{n}$ can be expressed as and the condition $\|\boldsymbol{x}\|_{2}=1$ is translated into

whose maximum，under the constraint $\sum_{i}^{n} x_{i}^{2}=1$ ，is λ_{n} ．Therefore， $A^{\prime}{ }_{2}=$ the square root of the maximum eigenvalue of $A^{\top} A$ ．

§5．3 Norms on Vectors and Matrices

Example $\left(\|A\|_{2}\right)$

Let A be an $m \times n$ matrix．Then by the definition of the 2 －norm，

$$
\|A\|_{2}^{2}=\max \left\{\|A \boldsymbol{x}\|_{2}^{2}:\|\boldsymbol{x}\|_{2}=1\right\}=\max \left\{\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{x}:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Since $A^{\top} A$ is an $n \times n$ symmetric matrix，$A^{\top} A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding orthogonal unit eigenvec－ tors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ ．Then each $x \in \mathbb{R}^{n}$ can be expressed as
and the condition $\|\boldsymbol{x}\|_{2}=1$ is translated into

whose maximum，under the constraint $\sum^{n} x_{i}^{2}=1$ ，is λ_{n} ．Therefore， $A^{\prime \prime}{ }_{2}$＝the square root of the maximum eigenvalue of $A^{\top} A$

§5．3 Norms on Vectors and Matrices

Example（\｜A $\|_{2}$ ）

Let A be an $m \times n$ matrix．Then by the definition of the 2－norm，

$$
\|A\|_{2}^{2}=\max \left\{\|A \boldsymbol{x}\|_{2}^{2}:\|\boldsymbol{x}\|_{2}=1\right\}=\max \left\{\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{x}:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Since $A^{\top} A$ is an $n \times n$ symmetric matrix，$A^{\top} A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding orthogonal unit eigenvec－ tors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ ．Then each $\boldsymbol{x} \in \mathbb{R}^{n}$ can be expressed as

$$
\begin{equation*}
\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots x_{n} \boldsymbol{v}_{n} \tag{*}
\end{equation*}
$$

and the condition $\|\boldsymbol{x}\|_{2}=1$ is translated into $\sum_{i=1}^{n} x_{i}^{2}=1$ ．
whose maximum，under the constraint

§5．3 Norms on Vectors and Matrices

Example（\｜A $\|_{2}$ ）

Let A be an $m \times n$ matrix．Then by the definition of the 2－norm，

$$
\|A\|_{2}^{2}=\max \left\{\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}:\|\boldsymbol{x}\|_{2}=1\right\}=\max \left\{\boldsymbol{x}^{\top} A^{\top} \boldsymbol{A} \boldsymbol{x}:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Since $A^{\top} A$ is an $n \times n$ symmetric matrix，$A^{\top} A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding orthogonal unit eigenvec－ tors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ ．Then each $\boldsymbol{x} \in \mathbb{R}^{n}$ can be expressed as

$$
\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots x_{n} \boldsymbol{v}_{n}
$$

and the condition $\|\boldsymbol{x}\|_{2}=1$ is translated into $\sum_{i=1}^{n} x_{i}^{2}=1$ ．Using (\star) ，

$$
\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}
$$

whose maximum，under the constraint $\sum_{i=1}^{n} x_{i}^{2}=1$ ，is λ_{n} ．

§5．3 Norms on Vectors and Matrices

Example（ $\mid A \|_{2}$ ）

Let A be an $m \times n$ matrix．Then by the definition of the 2－norm，

$$
\|A\|_{2}^{2}=\max \left\{\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}:\|\boldsymbol{x}\|_{2}=1\right\}=\max \left\{\boldsymbol{x}^{\top} A^{\top} \boldsymbol{A} \boldsymbol{x}:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Since $A^{\top} A$ is an $n \times n$ symmetric matrix，$A^{\top} A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding orthogonal unit eigenvec－ tors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ ．Then each $\boldsymbol{x} \in \mathbb{R}^{n}$ can be expressed as

$$
\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots x_{n} \boldsymbol{v}_{n}
$$

and the condition $\|\boldsymbol{x}\|_{2}=1$ is translated into $\sum_{i=1}^{n} x_{i}^{2}=1$ ．Using (\star) ，

$$
\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}
$$

whose maximum，under the constraint $\sum_{i=1}^{n} x_{i}^{2}=1$ ，is λ_{n} ．Therefore， $\|A\|_{2}=$ the square root of the maximum eigenvalue of $A^{\top} A$ ．

§5．3 Norms on Vectors and Matrices

Example

Consider the matrix $A=\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2\end{array}\right]$ ．Then

$$
A^{\top} A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
3 & 2 & -1 \\
2 & 6 & 4 \\
-1 & 4 & 5
\end{array}\right]
$$

which implies that the characteristic equation of $A^{\top} A$ is
$\operatorname{det}\left(A^{\top} A-\lambda I\right)=\left|\begin{array}{ccc}3-\lambda & 2 & -1 \\ 2 & 6-\lambda & 4 \\ -1 & 4 & 5-\lambda\end{array}\right|=-\lambda\left(\lambda^{2}-14 \lambda+42\right)=0$.
Therefore，the eigenvalues of $A^{\top} A$ are $\lambda=0,7+\sqrt{7}, 7-\sqrt{7}$ ；thus

$$
\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}=\sqrt{7+\sqrt{7}} \approx 3.106
$$

§5．3 Norms on Vectors and Matrices

Example（Frobenius Norm）

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$（called the natural norm）．For example，the Frobenius norm，sometimes also called the Euclidean norm（a term unfor－ tunately also used for the vector ℓ^{2}－norm），is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements；that is，

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space $\mathbb{R}^{m n}$ with ℓ^{2}－norm．The Frobenius norm can also be computed by

\square

§5．3 Norms on Vectors and Matrices

Example（Frobenius Norm）

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$（called the natural norm）．For example，the Frobenius norm，sometimes also called the Euclidean norm（a term unfor－ tunately also used for the vector ℓ^{2}－norm），is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements；that is，

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} .
$$

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space $\mathbb{R}^{m n}$ with ℓ^{2}－norm．The Frobenius norm can also be computed by

where $\operatorname{Tr}(M)$ is the trace of（a square matrix）M ．

§5．3 Norms on Vectors and Matrices

Example（Frobenius Norm）

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^{n}, \mathbb{R}^{m}}$（called the natural norm）．For example，the Frobenius norm，sometimes also called the Euclidean norm（a term unfor－ tunately also used for the vector ℓ^{2}－norm），is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements；that is，

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} .
$$

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space $\mathbb{R}^{m n}$ with ℓ^{2}－norm．The Frobenius norm can also be computed by

$$
\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A A^{\top}\right)}
$$

where $\operatorname{Tr}(M)$ is the trace of（a square matrix）M ．

§5．3 Norms on Vectors and Matrices

Definition

The spectral radius of a square matrix is the largest absolute value of its eigenvalues．The spectral radius of A is denoted by $\rho(A)$ ．

Theorem

Let A be an $m \times n$ real matrix．Then $\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}$ ．
Remark：The ℓ^{2}－matrix norm is also called the spectral norm．

Corollary

If A is a real symmetric matrix，then $\|A\|_{2}=\rho(A)$ ．

Theorem

$$
\rho(A) \leqslant\|A\| \text { for any real square matrix } A \text { and natural norm }\|\cdot\| \text {. }
$$

§5．3 Norms on Vectors and Matrices

Theorem

Let A be a real square matrix．Then for every $\varepsilon>0$ there exists a （subordinate）matrix norm $\|\cdot\|$ such that $\|A\| \leqslant \rho(A)+\varepsilon$ ．

Proof．

Let A be an $n \times n$ real matrix．The Jordan canonical form of A is

$$
A=S\left[\begin{array}{cccc}
J_{n_{1}}\left(\lambda_{1}\right) & 0 & \cdots & 0 \\
0 & J_{n_{2}}\left(\lambda_{2}\right) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{n_{k}}\left(\lambda_{k}\right)
\end{array}\right] S^{-1}
$$

where S is an invertible matrix，$\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ are（complex）eigen－ values of $A, n_{1}+n_{2}+\cdots+n_{k}=n$ ，and $J_{n_{j}}\left(\lambda_{j}\right)$ are Jordan blocks of size $n_{j} \times n_{j}$ ．

§5．3 Norms on Vectors and Matrices

Proof（cont＇d）．

For each $m \in \mathbb{N}$ and $\eta>0$ ，define

$$
D(\eta)=\left[\begin{array}{cccc}
D_{n_{1}}(\eta) & 0 & \cdots & 0 \\
0 & D_{n_{2}}(\eta) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & D_{n_{k}}(\eta)
\end{array}\right], \text { where } D_{m}(\eta)=\left[\begin{array}{cccc}
\eta & 0 & \cdots & 0 \\
0 & \eta^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \eta^{m}
\end{array}\right]
$$

Then the norm defined by

$$
\|M\| \equiv\left\|D\left(\frac{1}{\varepsilon}\right) S^{-1} M S D(\varepsilon)\right\|_{1}
$$

has the property that $\|A\| \leqslant \rho(A)+\varepsilon$ ．Define a norm on \mathbb{R}^{n} by
\square

which implies that $\|\cdot\| \cdot \|$ is an subordinate norm．

§5．3 Norms on Vectors and Matrices

Proof（cont＇d）．

For each $m \in \mathbb{N}$ and $\eta>0$ ，define

$$
D(\eta)=\left[\begin{array}{cccc}
D_{n_{1}}(\eta) & 0 & \cdots & 0 \\
0 & D_{n_{2}}(\eta) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & D_{n_{k}}(\eta)
\end{array}\right] \text {, where } D_{m}(\eta)=\left[\begin{array}{cccc}
\eta & 0 & \cdots & 0 \\
0 & \eta^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \eta^{m}
\end{array}\right] .
$$

Then the norm defined by

$$
\|M\| \equiv\left\|D\left(\frac{1}{\varepsilon}\right) S^{-1} M S D(\varepsilon)\right\|_{1}
$$

has the property that $\|A\| \| \rho(A)+\varepsilon$ ．Define a norm on \mathbb{R}^{n} by

$$
\begin{aligned}
& \|\boldsymbol{x}\|_{\mathbb{R}^{n}}=\left\|D\left(\frac{1}{\varepsilon}\right) S^{-1} \boldsymbol{x}\right\|_{1} . \text { Then } \\
& \qquad M \boldsymbol{x}\left\|_{\mathbb{R}^{n}}=\right\| D\left(\frac{1}{\varepsilon}\right) S^{-1} M \boldsymbol{x}\left\|_{1}=\right\| D\left(\frac{1}{\varepsilon}\right) S^{-1} M S D(\varepsilon) D\left(\frac{1}{\varepsilon}\right) S^{-1} \boldsymbol{x} \|_{1} \\
& \\
& \quad \leqslant\left\|D\left(\frac{1}{\varepsilon}\right) S^{-1} M S D(\varepsilon)\right\|_{1}\left\|D\left(\frac{1}{\varepsilon}\right) S^{-1} \boldsymbol{x}\right\|_{1}=\|M\|\|\boldsymbol{x}\|_{\mathbb{R}^{n}}
\end{aligned}
$$

which implies that $\||\cdot|\|$ is an subordinate norm．

§5．3 Norms on Vectors and Matrices

Definition

A square matrix A is said to be convergent（to zero matrix）if for all $1 \leqslant i, j \leqslant n$ the (i, j)－entry of A^{n} converges to 0 as $n \rightarrow \infty$ ．

Example

$$
A=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right] \Rightarrow A^{3}=\left[\begin{array}{cc}
\frac{1}{8} & 0 \\
\frac{3}{16} & \frac{1}{8}
\end{array}\right] \Rightarrow \cdots
$$

By induction，one can show that

$$
A^{k}=\left[\begin{array}{cc}
\left(\frac{1}{2}\right)^{k} & 0 \\
\frac{k}{2^{k+1}} & \left(\frac{1}{2}\right)^{k}
\end{array}\right]
$$

Since $\lim _{k \rightarrow \infty}\left(\frac{1}{2}\right)^{k}=0$ and $\lim _{k \rightarrow \infty} \frac{k}{2^{k+1}}=0, A$ is a convergent matrix．

§5．3 Norms on Vectors and Matrices

Theorem

The following statements are equivalent：
（1）A is a convergent matrix；
（2） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for some matrix norm；
（3） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for all matrix norms；
（9）$\rho(A)<1$ ；
（5） $\lim _{n \rightarrow \infty} A^{n} \boldsymbol{x}=0$ for all \boldsymbol{x} ．

Remark：

－（2）\Leftrightarrow（3）because all norms on a finite dimensional real vector space are equivalent．
－（1）$\Leftrightarrow(4) \Leftrightarrow(5)$ by writing A into Jordan canonical form．
－（1）\Leftrightarrow（2）by using the Frobenius norm．

§5．3 Norms on Vectors and Matrices

Lemma

Let A be a square matrix．If $\rho(A)<1$ ，then $(I-A)^{-1}$ exists and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots\left(:=\sum_{n=0}^{\infty} A^{n}\right) .
$$

Proof．

Since $\rho(A)<1,1$ is not an eigenvalue of A ；thus $(I-A) \boldsymbol{x}=\mathbf{0}$ has only trivial solution．Moreover，if A is $m \times m$ ，the for all $x \in \mathbb{R}^{m}$

§5．3 Norms on Vectors and Matrices

Lemma

Let A be a square matrix．If $\rho(A)<1$ ，then $(I-A)^{-1}$ exists and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots\left(:=\sum_{n=0}^{\infty} A^{n}\right) .
$$

Proof．

Since $\rho(A)<1,1$ is not an eigenvalue of A ；thus $(I-A) \boldsymbol{x}=\mathbf{0}$ has only trivial solution．Moreover，if A is $m \times m$ ，the for all $\boldsymbol{x} \in \mathbb{R}^{m}$ ，

$$
\begin{aligned}
(I-A) \sum_{n=0}^{\infty} A^{n} \boldsymbol{x} & =(I-A) \lim _{N \rightarrow \infty} \sum_{n=0}^{N} A^{n} \boldsymbol{x}=\lim _{N \rightarrow \infty}(I-A) \sum_{n=0}^{N} A^{n} \boldsymbol{x} \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N} A^{n} \boldsymbol{x}-\sum_{n=0}^{N} A^{n+1} \boldsymbol{x}\right) \\
& =\lim _{N \rightarrow \infty}\left(\boldsymbol{x}-A^{N+1} \boldsymbol{x}\right)=\boldsymbol{x}
\end{aligned}
$$

thus $(I-A)^{-1} \boldsymbol{x}=\sum_{n=0}^{\infty} A^{n} \boldsymbol{x}$ ．

§5．3 Norms on Vectors and Matrices

Lemma

Let A be a square matrix．If $\rho(A)<1$ ，then $(I-A)^{-1}$ exists and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots\left(:=\sum_{n=0}^{\infty} A^{n}\right) .
$$

Proof．

Since $\rho(A)<1,1$ is not an eigenvalue of A ；thus $(I-A) \boldsymbol{x}=\mathbf{0}$ has only trivial solution．Moreover，if A is $m \times m$ ，the for all $\boldsymbol{x} \in \mathbb{R}^{m}$ ，

$$
\begin{aligned}
(I-A) \sum_{n=0}^{\infty} A^{n} \boldsymbol{x} & =(I-A) \lim _{N \rightarrow \infty} \sum_{n=0}^{N} A^{n} \boldsymbol{x}=\lim _{N \rightarrow \infty}(I-A) \sum_{n=0}^{N} A^{n} \boldsymbol{x} \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N} A^{n} \boldsymbol{x}-\sum_{n=0}^{N} A^{n+1} \boldsymbol{x}\right) \\
& =\lim _{N \rightarrow \infty}\left(\boldsymbol{x}-A^{N+1} \boldsymbol{x}\right)=\boldsymbol{x}
\end{aligned}
$$

thus $(I-A)^{-1} \boldsymbol{x}=\sum_{n=0}^{\infty} A^{n} \boldsymbol{x}$ ．（Does $\sum_{n=0}^{\infty} A^{n} \boldsymbol{x}$ converges for all \boldsymbol{x} ？）

§5．4 Iterative Methods

Recall that in Chapter 3 to solve a nonlinear equation $f(x)=0$ we introduce iterative method

$$
x^{(k+1)}=g\left(x^{(k)}\right) \quad \text { for } k \in \mathbb{N} \cup\{0\} \text { with } x^{(0)} \text { given }
$$

where $f(x)=0 \Leftrightarrow x=g(x)$ ，and the fixed－point of g is a solution of f ．

The idea of solving $A \boldsymbol{x}=\boldsymbol{b}$ using the iterative method is based on the same concept：
（1）$A \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow \boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ for some fixed matrix T and vector c ．
（2）Given $\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(k+1)}:=\boldsymbol{T} \boldsymbol{x}^{(k)}+\boldsymbol{c}$ for $k=0,1,2, \cdots$

§5．4 Iterative Methods

Let $A \boldsymbol{x}=\boldsymbol{b}$ be a linear system of n equations，where $A=\left[a_{i j}\right]_{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ ．Then A can be decomposed into a diagonal component D ，a lower triangular part L and an upper triangular part U ：

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
a_{11} & 0 & \cdots \\
0 & 0 \\
0 & a_{22} & \ddots
\end{array} 0\right. \\
\vdots \\
\ddots
\end{array}\right] .
$$

（1）Jacobi method：$A x=\boldsymbol{b} \Leftrightarrow D x=-(L+U) x+\boldsymbol{b}$ ．
（2）Gauss－Seidel method：$A \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow(D+L) \boldsymbol{x}=-U \boldsymbol{x}+\boldsymbol{b}$ ．

§5．4 Iterative Methods

Let $A \boldsymbol{x}=\boldsymbol{b}$ be a linear system of n equations，where $A=\left[a_{i j}\right]_{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ ．Then A can be decomposed into a diagonal component D ，a lower triangular part L and an upper triangular part U ：

$$
\left.\begin{array}{ll}
A=\left[\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
a_{11} & 0 & \cdots \\
0 & a_{22} & \ddots
\end{array}\right) 0 \\
\vdots & \ddots \\
\ddots & 0 \\
0 & \cdots \\
0 & a_{n n}
\end{array}\right] .
$$

（1）Jacobi method：$A \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow D \boldsymbol{x}=-(L+U) \boldsymbol{x}+\boldsymbol{b}$ ．
（2）Gauss－Seidel method：$A \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow(D+L) \boldsymbol{x}=-U \boldsymbol{x}+\boldsymbol{b}$ ．

§5．4 Iterative Methods

（1）The Jacobi method of solving $A \boldsymbol{x}=\boldsymbol{b}$ is the iterative method

$$
\boldsymbol{x}^{(k+1)}=D^{-1}\left[\boldsymbol{b}-(L+U) \boldsymbol{x}^{(k)}\right]=-D^{-1}(L+U) \boldsymbol{x}^{(k)}+D^{-1} \boldsymbol{b}
$$

and the element－based formula is thus

$$
x_{i}^{(k+1)}=\frac{-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}+b_{i}}{a_{i i}} \quad \forall k \in \mathbb{N} \cup\{0\}
$$

（2）The Gauss－Seidel method of solving $A \boldsymbol{x}=\boldsymbol{b}$ is the iterative method
and the element－based formula is thus

§5．4 Iterative Methods

（1）The Jacobi method of solving $A \boldsymbol{x}=\boldsymbol{b}$ is the iterative method

$$
\boldsymbol{x}^{(k+1)}=D^{-1}\left[\boldsymbol{b}-(L+U) \boldsymbol{x}^{(k)}\right]=-D^{-1}(L+U) \boldsymbol{x}^{(k)}+D^{-1} \boldsymbol{b}
$$

and the element－based formula is thus

$$
x_{i}^{(k+1)}=\frac{-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}+b_{i}}{a_{i i}} \quad \forall k \in \mathbb{N} \cup\{0\} .
$$

（2）The Gauss－Seidel method of solving $A \boldsymbol{x}=\boldsymbol{b}$ is the iterative method

$$
\boldsymbol{x}^{(k+1)}=(D+L)^{-1}\left[\boldsymbol{b}-U \boldsymbol{x}^{(k)}\right]=-(D+L)^{-1} U \boldsymbol{x}^{(k)}+(D+L)^{-1} \boldsymbol{b}
$$

and the element－based formula is thus

$$
x_{i}^{(k+1)}=\frac{-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}+b_{i}}{a_{i i}} \quad \forall k \in \mathbb{N} \cup\{0\}
$$

§5．4 Iterative Methods

Example（Solving $A \boldsymbol{x}=\boldsymbol{b}$ using Jacobi and Gauss－Seidel methods）

Consider a linear system：

$$
\left\{\begin{aligned}
10 x_{1}-1 x_{2}+2 x_{3}+0 x_{4} & =6 \\
-x_{1}+11 x_{2}-1 x_{3}+3 x_{4} & =25 \\
2 x_{1}-1 x_{2}+10 x_{3}-1 x_{4} & =-11 \\
0 x_{1}+3 x_{2}-1 x_{3}+8 x_{4} & =15
\end{aligned}\right.
$$

or equivalently，

$$
\left[\begin{array}{cccc}
10 & -1 & 2 & 0 \\
-1 & 11 & -1 & 3 \\
2 & -1 & 10 & -1 \\
0 & 3 & -1 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
25 \\
-11 \\
15
\end{array}\right]
$$

Exact unique solution： $\boldsymbol{x}=(1,2,-1,1)^{\top}$ ．

§5．4 Iterative Methods

Example（cont＇d）

We first rewrite the linear system as

$$
\begin{aligned}
& x_{1}=0+\frac{1}{10} x_{2}-\frac{2}{10} x_{3}+0+\frac{6}{10} \\
& x_{2}=\frac{1}{11} x_{1}+0+\frac{1}{11} x_{3}-\frac{3}{11} x_{4}+\frac{25}{11} \\
& x_{3}=-\frac{2}{10} x_{1}+\frac{1}{10} x_{2}+0+\frac{1}{10} x_{4}-\frac{11}{10} \\
& x_{4}=0-\frac{3}{8} x_{2}+\frac{1}{8} x_{3}+0+\frac{15}{8}
\end{aligned}
$$

which，written in matrix form，is
$\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=T \boldsymbol{x}+\boldsymbol{c} \equiv\left[\begin{array}{rrrr}0 & \frac{1}{10} & -\frac{2}{10} & 0 \\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11} \\ -\frac{2}{10} & \frac{1}{10} & 0 & \frac{1}{10} \\ 0 & -\frac{3}{8} & \frac{1}{8} & 0\end{array}\right] \boldsymbol{x}+\left[\begin{array}{r}\frac{6}{10} \\ \frac{25}{11} \\ -\frac{11}{10} \\ \frac{15}{8}\end{array}\right]$

§5．4 Iterative Methods

Example（cont＇d）

If $\boldsymbol{x}^{(0)}=(0,0,0,0)^{\top}$ ，then the Jacobi method provides

$$
\boldsymbol{x}^{(1)}=\boldsymbol{x}^{(0)}+\boldsymbol{c}=\left[\begin{array}{r}
\frac{6}{10} \\
\frac{25}{11} \\
-\frac{11}{10} \\
\frac{15}{8}
\end{array}\right]=\left[\begin{array}{r}
0.6000 \\
2.2727 \\
-1.1000 \\
1.8750
\end{array}\right]
$$

$$
\Rightarrow \boldsymbol{x}^{(2)}=T \boldsymbol{x}^{(1)}+\boldsymbol{c} \Rightarrow \cdots
$$

$\Rightarrow \frac{\left\|\boldsymbol{x}^{(10)}-\boldsymbol{x}^{(9)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(10)}\right\|_{\infty}} \approx \frac{8.0 \times 10^{-4}}{1.9998}<10^{-3}$ stop！（Stopping criteria）
$\Rightarrow \boldsymbol{x} \approx \boldsymbol{x}^{(10)} \approx\left[\begin{array}{r}1.00011860 \\ 1.99976795 \\ -0.99982814 \\ 0.99978598\end{array}\right]$

§5．4 Iterative Methods

Example（cont＇d）

For the Gauss－Seidel method，we let $x^{(0)}=(0,0,0,0)^{\top}$ and for $k=0,1,2, \cdots$ define

$$
\begin{aligned}
& x_{1}^{(k+1)}=0+\frac{1}{10} x_{2}^{(k)}-\frac{2}{10} x_{3}^{(k)}+0+\frac{6}{10} \\
& x_{2}^{(k+1)}=\frac{1}{11} x_{1}^{(k+1)}+0+\frac{1}{11} x_{3}^{(k)}-\frac{3}{11} x_{4}^{(k)}+\frac{25}{11} \\
& x_{3}^{(k+1)}=-\frac{2}{10} x_{1}^{(k+1)}+\frac{1}{10} x_{2}^{(k+1)}+0+\frac{1}{10} x_{4}^{(k)}-\frac{11}{10} \\
& x_{4}^{(k+1)}=0-\frac{3}{8} x_{2}^{(k+1)}+\frac{1}{8} x_{3}^{(k+1)}+0+\frac{15}{8}
\end{aligned}
$$

－Need to proceed from the top line to the bottom line：
Solving for $x_{1}^{(k+1)}$ from the first equation，and then use this solution to solve $x_{2}^{(k+1)}$ from the second equation，and so on．
$\Rightarrow \frac{\left\|\boldsymbol{x}^{(5)}-\boldsymbol{x}^{(4)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(5)}\right\|_{\infty}}=4.0 \times 10^{-4}<10^{-3} \quad$ stop！ $\boldsymbol{x} \approx \boldsymbol{x}^{(5)}$ ．

§5．4 Iterative Methods

Theorem

Let T be an $n \times n$ real matrix．For any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$
\boldsymbol{x}^{(k+1)}:=T \boldsymbol{x}^{(k)}+\boldsymbol{c}, \quad k \in \mathbb{N} \cup\{0\},
$$

converges to the unique solution of $\boldsymbol{x}=\boldsymbol{x}+\boldsymbol{c}$ if and only if $\rho(T)<1$ ．
Proof
Since $\rho(T)<1,(I-T)^{-1}$ exists；thus $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ has a unique
solution．Moreover，there exists a subordinate matrix norm
and a norm $\|$ ．$\|$ on \mathbb{R}^{n} such that $\|T\|<1$ and $\|T x\| \leqslant\|T\|\|x\|$
for all $x \in \mathbb{R}^{n}$ ．Therefore，the mapping $\boldsymbol{x} \mapsto T \boldsymbol{x}+\boldsymbol{c}$ is a
contraction mapping，and the contraction manping principle implies that the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by $\boldsymbol{x}^{(k+1)}=T \boldsymbol{x}^{(k)}+$ \boldsymbol{c} converges（to the solution of $\boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}+\boldsymbol{c}$ ）．

§5．4 Iterative Methods

Theorem

Let T be an $n \times n$ real matrix．For any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$
\boldsymbol{x}^{(k+1)}:=T \boldsymbol{x}^{(k)}+\boldsymbol{c}, \quad k \in \mathbb{N} \cup\{0\},
$$

converges to the unique solution of $\boldsymbol{x}=\boldsymbol{x}+\boldsymbol{c}$ if and only if $\rho(T)<1$ ．

Proof．

(\Leftarrow) Since $\rho(T)<1,(I-T)^{-1}$ exists；thus $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ has a unique solution．Moreover，there exists a subordinate matrix norm \｜｜｜ $\mid \|$ and a norm $\|\cdot\|$ on \mathbb{R}^{n} such that $\|T\|<1$ and $\|T \boldsymbol{x}\| \leqslant\|T\|\| \| x \|$ for all $x \in \mathbb{R}^{n}$ ．Therefore，the mapping $x \mapsto$
contraction mapping，and the contraction mapping principle implies that the sequence defined by $\boldsymbol{x}^{(k}$ c converges（to the solution of $x=T_{X}+c$ ）

§5．4 Iterative Methods

Theorem

Let T be an $n \times n$ real matrix．For any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$
\boldsymbol{x}^{(k+1)}:=T \boldsymbol{x}^{(k)}+\boldsymbol{c}, \quad k \in \mathbb{N} \cup\{0\},
$$

converges to the unique solution of $\boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}+\boldsymbol{c}$ if and only if $\rho(T)<1$ ．

Proof．

(\Leftarrow) Since $\rho(T)<1,(I-T)^{-1}$ exists；thus $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ has a unique solution．Moreover，there exists a subordinate matrix norm \｜｜｜ $\mid \|$ and a norm $\|\cdot\|$ on \mathbb{R}^{n} such that $\|T\|<1$ and $\|T \boldsymbol{x}\| \leqslant\|T\|\| \| x \|$ for all $x \in \mathbb{R}^{n}$ ．Therefore，the mapping $\boldsymbol{x} \mapsto T \boldsymbol{x}+\boldsymbol{c}$ is a contraction mapping，and the contraction mapping principle implies that the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by $\boldsymbol{x}^{(k+1)}=T \boldsymbol{x}^{(k)}+$ \boldsymbol{c} converges（to the solution of $\boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}+\boldsymbol{c}$ ）．

§5．4 Iterative Methods

Theorem

Let T be an $n \times n$ real matrix．For any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$
\boldsymbol{x}^{(k+1)}:=T \boldsymbol{x}^{(k)}+\boldsymbol{c}, \quad k \in \mathbb{N} \cup\{0\},
$$

converges to the unique solution of $\boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}+\boldsymbol{c}$ if and only if $\rho(T)<1$ ．

Proof．

(\Rightarrow) Let $\boldsymbol{z} \in \mathbb{R}^{n}$ be given，and \boldsymbol{x} be the unique solution to $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ ． Define $\boldsymbol{x}^{(0)}=\boldsymbol{x}-\boldsymbol{z}$ ．Then

$$
\boldsymbol{x}^{(1)}=\boldsymbol{T x}^{(0)}+\boldsymbol{c}=T \boldsymbol{x}-T \boldsymbol{z}+\boldsymbol{c}=\boldsymbol{x}-\boldsymbol{T}_{\boldsymbol{z}}
$$

which further implies

$$
\boldsymbol{x}^{(2)}=\boldsymbol{x}^{(1)}+\boldsymbol{c}=T \boldsymbol{x}-T^{2} \boldsymbol{z}+\boldsymbol{c}=\boldsymbol{x}-T^{2} \boldsymbol{z}
$$

By induction， $\boldsymbol{x}^{(k)}=\boldsymbol{x}-T^{k} \boldsymbol{z}$ ．Since $\lim _{k \rightarrow \infty} \boldsymbol{x}^{(k)}=\boldsymbol{x}$ ，we have $\lim T^{k} \boldsymbol{z}=\mathbf{0}$ ．Then $\rho(T)<1$ due to the previous theorem． $k \rightarrow \infty$

§5．4 Iterative Methods

Corollary

（1）Let $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，and $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ be a sequence defined by $\boldsymbol{x}^{(k+1)}:=$ $\boldsymbol{T x}^{(k)}+\boldsymbol{c}, k \geqslant 0$ ．If $\|T\|<1$ for some natural matrix norm， then $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ converges to the unique solution of $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$ and

$$
\begin{aligned}
& \text { - }\left\|x-x^{(k)}\right\| \leqslant\|T\|^{k}\left\|x-x^{(0)}\right\| . \\
& \text { - }\left\|x-x^{(k)}\right\| \leqslant \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

（2）If A is strictly diagonally dominant，then for any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ ，both the Jacobi and Gauss－Seidel methods give sequences $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ that converge to the unique solution of $A \boldsymbol{x}=\boldsymbol{b}$ ．

§5．4 Iterative Methods

Successive Over Relaxation（SOR）：
（1）The Gauss－Seidel method：

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}\right] .
$$

（2）Successive over－relaxation：for $\omega>0$ ，

$$
\begin{aligned}
& x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}\right] . \\
\Leftrightarrow & a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i} \\
\Leftrightarrow & (D+\omega L) \boldsymbol{x}^{(k)}=[(1-\omega) D-\omega U] \boldsymbol{x}^{(k-1)}+\omega \boldsymbol{b} \\
\Leftrightarrow & \boldsymbol{x}^{(k)}=(D+\omega L)^{-1}[(1-\omega) D-\omega U] \boldsymbol{x}^{(k-1)}+\omega(D+\omega L)^{-1} \boldsymbol{b} \\
\Leftrightarrow & \boldsymbol{x}^{(k)}=T_{\omega} \boldsymbol{x}^{(k-1)}+\boldsymbol{c}_{\omega}
\end{aligned}
$$

§5．4 Iterative Methods

Gauss－Seidel：

$$
\boldsymbol{x}^{(k+1)}=-(D+L)^{-1} U \boldsymbol{x}^{(k)}+(D+L)^{-1} \boldsymbol{b} .
$$

SOR：

$$
\boldsymbol{x}^{(k)}=(D+\omega L)^{-1}[(1-\omega) D-\omega U] \boldsymbol{x}^{(k-1)}+\omega(D+\omega L)^{-1} \boldsymbol{b} .
$$

Different parameter ω can be chosen according to the need．In general，
－$\omega=1$ ：the Gauss－Seidel method．
－ $0<\omega<1$ ：when Gauss－Seidel diverges．
－$\omega>1$ ：when Gauss－Seidel converges．

§5．4 Iterative Methods

Example

Consider a linear system

$$
\left\{\begin{array}{r}
4 x_{1}+3 x_{2}+0=24 \\
3 x_{1}+4 x_{2}-x_{3}=30 \\
0-x_{2}+4 x_{3}=-24
\end{array}\right.
$$

Exact unique solution：$x=(3,4,-5)^{\top}$ ．
（1）Let $x^{(0)}=(1,1,1)^{\top}$ ．The Gauss－Seidel method：

$$
\left\{\begin{array}{l}
x_{1}^{(k)}=-0.75 x_{2}^{(k-1)}+6 \\
x_{2}^{(k)}=-0.75 x_{1}^{(k)}+0.25 x_{3}^{(k-1)}+7.5 \\
x_{3}^{(k)}=0.25 x_{2}^{(k)}-6
\end{array}\right.
$$

（2）Let $x^{(0)}=(1,1,1)^{\top}$ ．The SOR with $\omega=1.25$ ：

$$
\left\{\begin{array}{l}
x_{1}^{(k)}=-0.25 x_{1}^{(k-1)}-0.9375 x_{2}^{(k-1)}+7.5 \\
x_{2}^{(k)}=-0.9375 x_{1}^{(k)}-0.25 x_{2}^{(k-1)}+0.3125 x_{3}^{(k-1)}+9.375 \\
x_{3}^{(k)}=0.3125 x_{2}^{(k)}-0.25 x_{3}^{(k-1)}-7.5
\end{array}\right.
$$

§5．4 Iterative Methods

Theorem

（1）If $a_{i i} \neq 0$ for all $i=1,2, \cdots, n$ ，then $\rho\left(T_{\omega}\right) \geqslant|\omega-1|$ ．This implies the SOR method can converge only if $0<\omega<2$ ．
（2）If A is symmetric positive definite and $0<\omega<2$ ，then the SOR method converges for any $\boldsymbol{x}^{(0)}$ ．

§5．5 Absolute Error，Relative Error and Condition Number

（1）Suppose that we want to solve the linear system $A \boldsymbol{x}=\boldsymbol{b}$ ，but \boldsymbol{b} is somehow perturbed to $\widetilde{\boldsymbol{b}}$（this may happen when we convert a real \boldsymbol{b} to a floating－point b ）．
（2）Then actual solution would satisfy a slightly different linear system

$$
A \widetilde{\boldsymbol{x}}=\widetilde{\boldsymbol{b}}
$$

（3）Question：Is $\widetilde{\boldsymbol{x}}$ very different from the desired solution \boldsymbol{x} of the original system？
（1）Of course，the answer should depend on how good the matrix A is．
（5）Let $\|\cdot\|$ be a vector norm，we consider two types of errors：
－absolute error：$\|x-\tilde{x}\|$
－relative error：$\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\| /\|\boldsymbol{x}\|$

§5．5 Absolute Error，Relative Error and Condition Number

－For the absolute error，we have

$$
\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\|=\left\|A^{-1} \boldsymbol{b}-A^{-1} \widetilde{\boldsymbol{b}}\right\|=\left\|A^{-1}(\boldsymbol{b}-\widetilde{\boldsymbol{b}})\right\| \leqslant\left\|A^{-1}\right\|\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\| .
$$

Therefore，the absolute error of \boldsymbol{x} depends on two factors：the absolute error of \boldsymbol{b} and the matrix norm of A^{-1} ．
－For the relative error，we have
that is

Therefore，the relative error of \boldsymbol{x} depends on two factors：the
relative error of \boldsymbol{b} and

§5．5 Absolute Error，Relative Error and Condition Number

－For the absolute error，we have

$$
\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\|=\left\|A^{-1} \boldsymbol{b}-A^{-1} \widetilde{\boldsymbol{b}}\right\|=\left\|A^{-1}(\boldsymbol{b}-\widetilde{\boldsymbol{b}})\right\| \leqslant\left\|A^{-1}\right\|\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\| .
$$

Therefore，the absolute error of \boldsymbol{x} depends on two factors：the absolute error of \boldsymbol{b} and the matrix norm of A^{-1} ．
－For the relative error，we have

$$
\begin{aligned}
\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\| & =\left\|A^{-1} \boldsymbol{b}-A^{-1} \widetilde{\boldsymbol{b}}\right\|=\left\|A^{-1}(\boldsymbol{b}-\widetilde{\boldsymbol{b}})\right\| \\
& \leqslant\left\|A^{-1}\right\|\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|=\left\|A^{-1}\right\|\|A \boldsymbol{x}\| \frac{\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} \\
& \leqslant\left\|A^{-1}\right\|\|A\|\|\boldsymbol{x}\| \frac{\|\boldsymbol{b}-\widetilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} ;
\end{aligned}
$$

that is

$$
\frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leqslant\left\|A^{-1}\right\|\|A\| \frac{\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} .
$$

Therefore，the relative error of \boldsymbol{x} depends on two factors：the relative error of \boldsymbol{b} and $\|A\|\left\|A^{-1}\right\|$ ．

§5．5 Absolute Error，Relative Error and Condition Number

Definition

For a given subordinate matrix norm $\|\cdot\|$ ，the condition number of the matrix A is the number

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\| .
$$

$\kappa(A)$ measures how good the matrix A is．

Example

Let $\varepsilon>0$ and

$$
A=\left[\begin{array}{cc}
1 & 1+\varepsilon \\
1-\varepsilon & 1
\end{array}\right] \Rightarrow A^{-1}=\varepsilon^{-2}\left[\begin{array}{cc}
1 & -1-\varepsilon \\
-1+\varepsilon & 1
\end{array}\right]
$$

Then $\|A\|_{\infty}=2+\varepsilon,\left\|A^{-1}\right\|_{\infty}=\varepsilon^{-2}(2+\varepsilon)$ ，and

$$
\kappa(A)=\left(\frac{2+\varepsilon}{\varepsilon}\right)^{2} \geqslant \frac{4}{\varepsilon^{2}}
$$

§5．5 Absolute Error，Relative Error and Condition Number

（1）For example，if $\varepsilon=0.01$ ，then $\kappa(A) \geqslant 40000$ ．
（2）What does this mean？
It means that the relative error in \boldsymbol{x} can be 40000 times greater than the relative error in b ．
（3）If $\kappa(A)$ is large，we say that A is ill－conditioned，otherwise A is well－conditioned．
（9）In the ill－conditioned case，the solution is very sensitive to the small changes in the right－hand vector b（higher precision in b may be needed）．

§5．5 Absolute Error，Relative Error and Condition Number

Consider the linear system $A \boldsymbol{x}=\boldsymbol{b}$ ．Let $\widetilde{\boldsymbol{x}}$ be a computed solution （which is an approximation to \boldsymbol{x} ）．We define
（1）Residual vector： $\boldsymbol{r}=\boldsymbol{b}-A \widetilde{\boldsymbol{x}}$ ．
（2）Error vector： $\boldsymbol{e}=\boldsymbol{x}-\widetilde{\boldsymbol{x}}$ ．
Then $A \boldsymbol{e}=A \boldsymbol{x}-A \widetilde{\boldsymbol{x}}=\boldsymbol{b}-A \widetilde{\boldsymbol{x}}=\boldsymbol{r}$.

Theorem（bounds involving condition number）

Let A be a square matrix， \boldsymbol{x} be the solution of $A \boldsymbol{x}=\boldsymbol{b}$ ，and $\boldsymbol{r}, \boldsymbol{e}$ are the residual vector and the error vector associated with a computed solution $\widetilde{\boldsymbol{x}}$ ，respectively．Then

$$
\frac{1}{\kappa(A)} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leqslant \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leqslant \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} .
$$

§5．5 Absolute Error，Relative Error and Condition Number

Theorem（bounds involving condition number）

Let A be a square matrix， \boldsymbol{x} be the solution of $A \boldsymbol{x}=\boldsymbol{b}$ ，and $\boldsymbol{r}, \boldsymbol{e}$ are the residual vector and the error vector associated with a computed solution $\widetilde{\boldsymbol{x}}$ ，respectively．Then

$$
\frac{1}{\kappa(A)} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leqslant \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leqslant \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} .
$$

Proof．

Since $A \boldsymbol{e}=\boldsymbol{r}, \boldsymbol{e}=A^{-1} \boldsymbol{r}$ ；thus

$$
\|\boldsymbol{e}\|\|\boldsymbol{b}\|=\left\|A^{-1} \boldsymbol{r}\right\|\|A \boldsymbol{x}\| \leqslant\left\|A^{-1}\right\|\|\boldsymbol{r}\|\|A\|\|\boldsymbol{x}\|=\kappa(A)\|\boldsymbol{r}\|\|\boldsymbol{x}\|
$$

which further implies that $\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leqslant \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}$ ．
On the other hand，we have

which shows that

§5．5 Absolute Error，Relative Error and Condition Number

Theorem（bounds involving condition number）

Let A be a square matrix， \boldsymbol{x} be the solution of $A \boldsymbol{x}=\boldsymbol{b}$ ，and $\boldsymbol{r}, \boldsymbol{e}$ are the residual vector and the error vector associated with a computed solution $\widetilde{\mathbf{x}}$ ，respectively．Then

$$
\frac{1}{\kappa(A)} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leqslant \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leqslant \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} .
$$

Proof．

Since $A \boldsymbol{e}=\boldsymbol{r}, \boldsymbol{e}=A^{-1} \boldsymbol{r}$ ；thus

$$
\|\boldsymbol{e}\|\|\boldsymbol{b}\|=\left\|A^{-1} \boldsymbol{r}\right\|\|A \boldsymbol{x}\| \leqslant\left\|A^{-1}\right\|\|\boldsymbol{r}\|\|A\|\|\boldsymbol{x}\|=\kappa(A)\|\boldsymbol{r}\|\|\boldsymbol{x}\|
$$

which further implies that $\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \leqslant \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}$ ．
On the other hand，we have

$$
\|\boldsymbol{r}\|\|\boldsymbol{x}\|=\|A \boldsymbol{e}\|\left\|A^{-1} \boldsymbol{b}\right\| \leqslant\|A\|\|\boldsymbol{e}\|\left\|A^{-1}\right\|\|\boldsymbol{b}\|=\kappa(A)\|\boldsymbol{e}\|\|\boldsymbol{b}\|
$$

which shows that $\frac{1}{\kappa(\boldsymbol{A})} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \leqslant \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|}$ ．

