Exercise Problem Sets 6

Jun. 122020
(due Jun. 17 2020)

Problem 1. Consider solving the initial value problem

$$
x^{\prime}=f(t, x) \equiv t^{-2}\left(t x-x^{2}\right), \quad x(1)=2
$$

using numerical method. Note that the exact solution to the IVP above is $x(t)=\left(\frac{1}{2}+\ln t\right)^{-1} t$. Complete the following.
(1) Use the second order Runge-Kutta method

$$
\begin{aligned}
k_{1} & =f\left(t_{n}, x_{n}\right), \\
k_{2} & =f\left(t_{n}+h, x_{n}+h k_{1}\right), \\
x_{n+1} & =x_{n}+\frac{h}{2}\left(k_{1}+k_{2}\right),
\end{aligned}
$$

with $h=1 / 128,1 / 256$ and $1 / 512$ to compute approximated values of $x(3)$. Plot the numerical solution versus the exact solution.
(2) Find the global truncation error at $t=3$ and maximal local truncation errors for each h. Examine numerically that the second order Runge-Kutta method is an order one method.
(3) Use the fourth order Runge-Kutta method

$$
\begin{aligned}
k_{1} & =f\left(t_{n}, x_{n}\right), \\
k_{2} & =f\left(t_{n}+\frac{h}{2}, x_{n}+\frac{h}{2} k_{1}\right), \\
k_{3} & =f\left(t_{n}+\frac{h}{2}, x_{n}+\frac{h}{2} k_{2}\right), \\
k_{4} & =f\left(t_{n}+h, x_{n}+h k_{3}\right), \\
x_{n+1} & =x_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right),
\end{aligned}
$$

with $h=1 / 128,1 / 256$ and $1 / 512$ to compute approximated values of $x(3)$. Plot the numerical solution versus the exact solution.
(4) Find the global truncation error at $t=3$ and maximal local truncation errors for each h. Examine numerically that the fourth order Runge-Kutta method is an order one method.

