Exercise Problem 1

Problem 1. Consider the spring-mass system shown in the figure on the right-hand side, where the Hooke constant of the three springs and the mass of two masses are given in the figure. Let $x_{1}(t)$ and $x_{2}(t)$ denote the position of masses m_{1} and m_{2} away form the equilibrium. Assuming the presence of the gravity, suppose that the ODEs that x_{1} and x_{2} obey are

$$
\begin{aligned}
& \frac{d^{2} x_{1}}{d t^{2}}=a x_{1}+b x_{2}+F_{1}(t), \\
& \frac{d^{2} x_{2}}{d t^{2}}=c x_{1}+d x_{2}+F_{2}(t),
\end{aligned}
$$

Find a, b, c, d and F_{1}, F_{2}.

Solution. Let L_{1}, L_{2}, L_{3} be the length of the unconstraint springs with Hooke's constant k_{1}, k_{2}, k_{3}, respectively, and $\ell_{1}, \ell_{2}, \ell_{3}$ be the increment of the springs with Hooke's constant k_{1}, k_{2}, k_{3}, respectively. Then

$$
k_{1} \ell_{1}=k_{2} \ell_{2}+m_{1} g \quad \text { and } \quad k_{2} \ell_{2}=k_{3} \ell_{3}+m_{2} g
$$

Let $x(t), y(t)$ denote the distance, measured from the top wall, of the objects with mass m_{1} and m_{2}, respectively. By Newton's second law of motion, we find that

$$
\begin{aligned}
m_{1} \frac{d^{2} x}{d t^{2}} & =-k_{1}\left(x-L_{1}\right)+k_{2}\left(y-x-L_{2}\right)+m_{1} g, \\
m_{2} \frac{d^{2} y}{d t^{2}} & =-k_{2}\left(y-x-L_{2}\right)+k_{3}\left(L_{1}+\ell_{1}+L_{2}+\ell_{2}+L_{3}+\ell_{3}-y-L_{3}\right)+m_{2} g \\
& =-k_{2}\left(y-x-L_{2}\right)+k_{3}\left(L_{1}+\ell_{1}+L_{2}+\ell_{2}+\ell_{3}-y\right)+m_{2} g .
\end{aligned}
$$

Let x_{1} and x_{2} denote the position of masses m_{1} and m_{2} away from the equilibrium. Then

$$
x_{1}=x-L_{1}-\ell_{1} \quad \text { and } \quad x_{2}=y-L_{1}-\ell_{1}-L_{2}-\ell_{2}
$$

so we have

$$
\begin{aligned}
m_{1} \frac{d^{2} x_{1}}{d t^{2}}= & -k_{1}\left(x-L_{1}-\ell_{1}+\ell_{1}\right)+k_{2}\left[\left(x_{2}+L_{1}+\ell_{1}+L_{2}+\ell_{2}\right)-\left(x_{1}+L_{1}+\ell_{1}\right)-L_{2}\right]+m_{1} g \\
= & -k_{1} x_{1}-k_{1} \ell_{1}+k_{2}\left(x_{2}+\ell_{2}-x_{1}\right)+m_{2} g=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right)-k_{1} \ell_{1}+k_{2} \ell_{2}+m_{1} g, \\
m_{2} \frac{d^{2} x_{2}}{d t^{2}}= & -k_{2}\left(y-x-L_{2}\right)+k_{3}\left(L_{1}+\ell_{1}+L_{2}+\ell_{2}+\ell_{3}-y\right)+m_{2} g \\
= & -k_{2}\left[\left(x_{2}+L_{1}+\ell_{1}+L_{2}+\ell_{2}\right)-\left(x_{1}+L_{1}+\ell_{1}\right)-L_{2}\right] \\
& +k_{3}\left[L_{1}+\ell_{1}+L_{2}+\ell_{2}+\ell_{3}-\left(x_{2}+L_{1}+\ell_{1}+L_{2}+\ell_{2}\right)\right]+m_{2} g \\
= & -k_{2}\left(x_{2}-x_{1}+\ell_{2}\right)+k_{3}\left(\ell_{3}-x_{2}\right)+m_{2} g=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}-k_{2} \ell_{2}+k_{3} \ell_{3}+m_{2} g .
\end{aligned}
$$

Using (\star), we conclude that x_{1} and x_{2} satisfy

$$
\begin{aligned}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2}, \\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}=k_{2} x_{1}-\left(k_{2}+k_{3}\right) x_{2}
\end{aligned}
$$

Therefore, $a=-\frac{k_{1}+k_{2}}{m_{1}}, b=\frac{k_{2}}{m_{1}}, c=\frac{k_{2}}{m_{2}}, d=-\frac{k_{2}+k_{3}}{m_{2}}$, and $F_{1}(t)=F_{2}(t)=0$.
Problem 2. Remove the bottom spring and floor, while x_{1} and x_{2} still denote the position of masses m_{1} and m_{2} away from the equilibrium. What are the ODEs that x_{1} and x_{2} satisfy.

Solution. Removing the bottom spring is the same as setting $k_{3}=0$ (as well as $L_{3}=\ell_{3}=0$ in the derivation) in Problem 1. Therefore, x_{1} and x_{2} satisfy

$$
\begin{aligned}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2} \\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}=k_{2} x_{1}-k_{2} x_{2}
\end{aligned}
$$

