數學建模 MA3067－＊

Chapter A．Vector Calculus（向量微積分）

§A． 1 Vector Fields

§A． 2 The Line Integrals
§A． 3 The Green Theorem
§A． 4 The Surface Integrals
§A． 5 The Flux Integrals
§A． 6 The Divergence Theorem

§A． 1 Vector Fields

Definition（Vector Fields－向量場）

A（two－dimensional）vector field over a plane region R is a vector－ valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y) \in \mathbb{R}^{2}$ to each point (x, y) in R ．A（three－dimensional）vector field over a solid region Q is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y, z) \in \mathbb{R}^{3}$ to each point (x, y, z) in Q ．

In gencral，an n dimensional vector field over a region $D \subseteq \mathbb{R}^{n}$ is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ to each point $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in D ．

§A． 1 Vector Fields

Definition（Vector Fields－向量場）

A（two－dimensional）vector field over a plane region R is a vector－ valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y) \in \mathbb{R}^{2}$ to each point (x, y) in R ．A（three－dimensional）vector field over a solid region Q is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y, z) \in \mathbb{R}^{3}$ to each point (x, y, z) in Q ．

In general，an n－dimensional vector field over a region $D \subseteq \mathbb{R}^{n}$ is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}\left(x_{1}, x_{2}\right.$ to each point $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in D ．

§A． 1 Vector Fields

Definition（Vector Fields－向量場）

A（two－dimensional）vector field over a plane region R is a vector－ valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y) \in \mathbb{R}^{2}$ to each point (x, y) in R ．A（three－dimensional）vector field over a solid region Q is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}(x, y, z) \in \mathbb{R}^{3}$ to each point (x, y, z) in Q ．

In general，an n－dimensional vector field over a region $D \subseteq \mathbb{R}^{n}$ is a vector－valued function \boldsymbol{F} that assigns a vector $\boldsymbol{F}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ to each point $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in D ．

§A． 1 Vector Fields

Definition（Vorticity－旋度）

Let Q be an open region in space，and $\boldsymbol{F}: Q \rightarrow \mathbb{R}^{3}$ be a vector field given by $\boldsymbol{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．The curl of \boldsymbol{F} ，also called the vorticity of \boldsymbol{F} ，is a vector field given by

$$
\operatorname{cur} \mathbf{l} \boldsymbol{F}=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k} .
$$

If $\operatorname{curl} \boldsymbol{F}=\mathbf{0}$ ，then \boldsymbol{F} is said to be irrotational．
Symbolically，the curl of F is given by

§A． 1 Vector Fields

Definition（Vorticity－旋度）

Let Q be an open region in space，and $\boldsymbol{F}: Q \rightarrow \mathbb{R}^{3}$ be a vector field given by $\boldsymbol{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．The curl of \boldsymbol{F} ，also called the vorticity of \boldsymbol{F} ，is a vector field given by

$$
\operatorname{cur} \mathbf{F}=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k} .
$$

If $\operatorname{curl} \boldsymbol{F}=\mathbf{0}$ ，then \boldsymbol{F} is said to be irrotational．
Symbolically，the curl of \boldsymbol{F} is given by

$$
\operatorname{curl} \boldsymbol{F}=\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right| .
$$

§A． 1 Vector Fields

Remark：Let \boldsymbol{F} be a two dimensional vector field given by $\boldsymbol{F}(x, y)=$ $M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．We can also define the curl of \boldsymbol{F} by treating \boldsymbol{F} as a three－dimensional vector field

$$
\tilde{\boldsymbol{F}}(x, y, z)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}+0 \mathbf{k}
$$

（which is a three－dimensional vector field independent of z ）and define curl \boldsymbol{F} as the third component of $\operatorname{curl} \widetilde{\boldsymbol{F}}$（for the first two com－ ponents of curl $\widetilde{\boldsymbol{F}}$ are zero）．
vector field $F=M \mathrm{i}+\mathrm{Nj}$ is a scalar function given by

Moreover，by defining the differential operator ∇
plane we have the symbolic representation

§A． 1 Vector Fields

Remark：Let \boldsymbol{F} be a two dimensional vector field given by $\boldsymbol{F}(x, y)=$ $M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．We can also define the curl of \boldsymbol{F} by treating \boldsymbol{F} as a three－dimensional vector field

$$
\tilde{\boldsymbol{F}}(x, y, z)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}+0 \mathbf{k}
$$

（which is a three－dimensional vector field independent of z ）and define curl \boldsymbol{F} as the third component of $\operatorname{curl} \widetilde{\boldsymbol{F}}$（for the first two com－ ponents of curl $\widetilde{\boldsymbol{F}}$ are zero）．Therefore，the curl of a two dimensional vector field $\boldsymbol{F}=\mathbf{M i}+N \mathbf{j}$ is a scalar function given by

$$
\operatorname{curl} \boldsymbol{F}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} .
$$

Moreover，by defining the differential operator $\nabla-$
plane we have the symbolic representation

§A． 1 Vector Fields

Remark：Let \boldsymbol{F} be a two dimensional vector field given by $\boldsymbol{F}(x, y)=$ $M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．We can also define the curl of \boldsymbol{F} by treating \boldsymbol{F} as a three－dimensional vector field

$$
\tilde{\boldsymbol{F}}(x, y, z)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}+0 \mathbf{k}
$$

（which is a three－dimensional vector field independent of z ）and define curl \boldsymbol{F} as the third component of $\operatorname{curl} \widetilde{\boldsymbol{F}}$（for the first two com－ ponents of curl $\widetilde{\boldsymbol{F}}$ are zero）．Therefore，the curl of a two dimensional vector field $\boldsymbol{F}=\mathbf{M i}+N \mathbf{j}$ is a scalar function given by

$$
\operatorname{curl} \boldsymbol{F}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} .
$$

Moreover，by defining the differential operator $\nabla^{\perp}=\left(-\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right)$ on plane we have the symbolic representation

$$
\operatorname{curl} \boldsymbol{F}=\nabla^{\perp} \cdot \boldsymbol{F} .
$$

§A． 1 Vector Fields

Definition（Divergence－散度）

Let R be an open region in the plane，and $\boldsymbol{F}: R \rightarrow \mathbb{R}^{2}$ be a vector field given by $\boldsymbol{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．The divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

Let Q be an open region in space，and $F: Q \rightarrow \mathbb{R}^{3}$ be a vector field given by F
divergence of \boldsymbol{F} is a scalar function given by

The symbolic representation of the divergence is

§A． 1 Vector Fields

Definition（Divergence－散度）

Let R be an open region in the plane，and $\boldsymbol{F}: R \rightarrow \mathbb{R}^{2}$ be a vector field given by $\boldsymbol{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．The divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

Let Q be an open region in space，and $\boldsymbol{F}: Q \rightarrow \mathbb{R}^{3}$ be a vector field given by $\boldsymbol{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．The divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
$$

The symbolic representation of the divergence is
$\operatorname{div} F=\nabla \cdot F$.

§A． 1 Vector Fields

Definition（Divergence－散度）

Let R be an open region in the plane，and $\boldsymbol{F}: R \rightarrow \mathbb{R}^{2}$ be a vector field given by $\boldsymbol{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ ．The divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

Let Q be an open region in space，and $\boldsymbol{F}: Q \rightarrow \mathbb{R}^{3}$ be a vector field given by $\boldsymbol{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．The divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z} .
$$

The symbolic representation of the divergence is

$$
\operatorname{div} \boldsymbol{F}=\nabla \cdot \boldsymbol{F}
$$

§A． 1 Vector Fields

Remark：In general，if D is an open region in \mathbb{R}^{n} and $\boldsymbol{F}: D \rightarrow \mathbb{R}^{n}$ be a vector field given by $\boldsymbol{F}(\boldsymbol{x})=\left(F_{1}(\boldsymbol{x}), F_{2}(\boldsymbol{x}), \cdots, F_{n}(\boldsymbol{x})\right)$ ，where $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ ，the divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{i}}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}} .
$$

Theorem

Let \boldsymbol{F} be a three－dimensional vector field given by $F(x, y, z)$ $M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．If M, N, P have continuous sec－ ond partial derivatives，then $\operatorname{div}(\operatorname{ctarl} F)=0$

§A． 1 Vector Fields

Remark：In general，if D is an open region in \mathbb{R}^{n} and $\boldsymbol{F}: D \rightarrow \mathbb{R}^{n}$ be a vector field given by $\boldsymbol{F}(\boldsymbol{x})=\left(F_{1}(\boldsymbol{x}), F_{2}(\boldsymbol{x}), \cdots, F_{n}(\boldsymbol{x})\right)$ ，where $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ ，the divergence of \boldsymbol{F} is a scalar function given by

$$
\operatorname{div} \boldsymbol{F}=\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{i}}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}
$$

Theorem

Let \boldsymbol{F} be a three－dimensional vector field given by $\boldsymbol{F}(x, y, z)=$ $M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ ．If M, N, P have continuous sec－ ond partial derivatives，then

$$
\operatorname{div}(\operatorname{curl} \boldsymbol{F})=0
$$

§A． 2 Line Integrals

§A．2．1 Curves and parametric equations

Definition

A subset C in the plane（or space）is called a curve if C is the image of an interval $I \subseteq \mathbb{R}$ under a continuous vector－valued function r ． The continuous function $r: I \rightarrow \mathbb{R}^{2}$（or \mathbb{R}^{3} ）is called a parametriza－ tion of the curve，and the equation

$$
(x, y)=\boldsymbol{r}(t), t \in I \quad(\text { or }(x, y, z)=\boldsymbol{r}(t), \quad t \in I)
$$

is called a parametric equation of the curve．
A curve C is called a plane curve if it is a subset in the plane．

§A． 2 Line Integrals

Definition

A curve C is called simple if it has an injective parametrization；that is，there exists $\boldsymbol{r}: I \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}(I)=C$ and $\boldsymbol{r}(x)=\boldsymbol{r}(y)$ implies that $x=y$ ．A curve C with parametrization $r: l \rightarrow \mathbb{R}^{3}$ is called closed if $I=[a, b]$ for some closed interval $[a, b] \subseteq \mathbb{R}$ and $r(a)=$ $r(b)$ ．A simple closed curve C is a closed curve with parametrization $r:[a, b] \rightarrow \mathbb{R}^{3}$ such that r is one－to－one on $[a, b)$ ．A smooth curve C is a curve with continuously differentiable parametrization $r: I \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}^{\prime}(t) \neq 0$ for all $t \in I$ ．

§A． 2 Line Integrals

Definition

A curve C is called simple if it has an injective parametrization；that is，there exists $\boldsymbol{r}: \boldsymbol{I} \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}(I)=C$ and $\boldsymbol{r}(x)=\boldsymbol{r}(y)$ implies that $x=y$ ．A curve C with parametrization $r: I \rightarrow \mathbb{R}^{3}$ is called closed if $I=[a, b]$ for some closed interval $[a, b] \subseteq \mathbb{R}$ and $\boldsymbol{r}(a)=$ $\boldsymbol{r}(b)$ ．A simple closed curve C is a closed curve with parametrization $r:[a, b] \rightarrow \mathbb{R}^{3}$ such that r is one－to－one on $[a, b)$ ．A smooth curve C is a curve with continuously differentiable parametrization $r: I \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}^{\prime}(t) \neq 0$ for all $t \in I$ ．

§A． 2 Line Integrals

Definition

A curve C is called simple if it has an injective parametrization；that is，there exists $\boldsymbol{r}: I \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}(I)=C$ and $\boldsymbol{r}(x)=\boldsymbol{r}(y)$ implies that $x=y$ ．A curve C with parametrization $r: I \rightarrow \mathbb{R}^{3}$ is called closed if $I=[a, b]$ for some closed interval $[a, b] \subseteq \mathbb{R}$ and $\boldsymbol{r}(a)=$ $\boldsymbol{r}(b)$ ．A simple closed curve C is a closed curve with parametrization $\boldsymbol{r}:[a, b] \rightarrow \mathbb{R}^{3}$ such that \boldsymbol{r} is one－to－one on $[a, b)$ ． A smooth curve C is a curve with continuously differentiable parametrization r

§A． 2 Line Integrals

Definition

A curve C is called simple if it has an injective parametrization；that is，there exists $\boldsymbol{r}: \boldsymbol{I} \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}(I)=C$ and $\boldsymbol{r}(x)=\boldsymbol{r}(y)$ implies that $x=y$ ．A curve C with parametrization $r: I \rightarrow \mathbb{R}^{3}$ is called closed if $I=[a, b]$ for some closed interval $[a, b] \subseteq \mathbb{R}$ and $\boldsymbol{r}(a)=$ $\boldsymbol{r}(b)$ ．A simple closed curve C is a closed curve with parametrization $\boldsymbol{r}:[a, b] \rightarrow \mathbb{R}^{3}$ such that \boldsymbol{r} is one－to－one on $[a, b)$ ．A smooth curve C is a curve with continuously differentiable parametrization $r: I \rightarrow \mathbb{R}^{3}$ such that $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$ ．

§A． 2 Line Integrals

When a parametrization $r: I \rightarrow \mathbb{R}^{3}$ of curves C is mentioned，we always assume that＂there is no overlap＂；that is，there are no inter－ vals $[a, b],[c, d] \subseteq I$ satisfying that $\boldsymbol{r}([a, b])=\boldsymbol{r}([c, d])$ ．If in addition
（1）C is a simple curve，then r is injective，or
（2）C is closed，then $I=[a, b]$ and $\boldsymbol{r}(a)=\boldsymbol{r}(b)$ ，or
（3）C is simple closed，then $I=[a, b]$ and \boldsymbol{r} is injective on $[a, b)$ and $r(a)=r(b)$
（0）C is smooth，then \boldsymbol{r} is continuously differentiable and $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$ ．

Theorem

Let C be a smooth curve parameterized by $r:[a, b] \rightarrow \mathbb{R}^{3}$ ．Then

§A． 2 Line Integrals

When a parametrization $r: I \rightarrow \mathbb{R}^{3}$ of curves C is mentioned，we always assume that＂there is no overlap＂；that is，there are no inter－ vals $[a, b],[c, d] \subseteq I$ satisfying that $\boldsymbol{r}([a, b])=\boldsymbol{r}([c, d])$ ．If in addition
（1）C is a simple curve，then \boldsymbol{r} is injective，or
（2）C is closed，then $I=[a, b]$ and $\boldsymbol{r}(a)=\boldsymbol{r}(b)$ ，or
（3）C is simple closed，then $I=[a, b]$ and r is injective on $[a, b)$ and $\boldsymbol{r}(a)=\boldsymbol{r}(b)$ ．
（9）C is smooth，then \boldsymbol{r} is continuously differentiable and $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$ ．

Theorem

Let C be a smooth curve parameterized by $r:[a, b] \rightarrow \mathbb{R}^{3}$ ．Then

§A． 2 Line Integrals

When a parametrization $r: I \rightarrow \mathbb{R}^{3}$ of curves C is mentioned，we always assume that＂there is no overlap＂；that is，there are no inter－ vals $[a, b],[c, d] \subseteq I$ satisfying that $\boldsymbol{r}([a, b])=\boldsymbol{r}([c, d])$ ．If in addition
（1）C is a simple curve，then \boldsymbol{r} is injective，or
（2）C is closed，then $I=[a, b]$ and $\boldsymbol{r}(a)=\boldsymbol{r}(b)$ ，or
（3）C is simple closed，then $I=[a, b]$ and r is injective on $[a, b)$ and $\boldsymbol{r}(a)=\boldsymbol{r}(b)$ ．
（9）C is smooth，then \boldsymbol{r} is continuously differentiable and $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$ ．

Theorem

Let C be a smooth curve parameterized by $\boldsymbol{r}:[a, b] \rightarrow \mathbb{R}^{3}$ ．Then

$$
\ell(C) \equiv \text { the length of } C=\int_{a}^{b}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

§A． 2 Line Integrals

§A．2．2 Line integrals of scalar functions

In this section，we are concerned with the＂integral＂of a real－valued function f defined on a curve C ．

Definition（Partition of curves）

Let C be a curve in space．A partition of C is a collection of curves $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ satisfying
（1）$C=\bigcup_{i=1}^{n} C_{i}$（so that $C_{i} \subseteq C$ ）；
（2）If $i \neq j$ ，then $C_{i} \cap C_{j}$ contains at most two points．

§A． 2 Line Integrals

§A．2．2 Line integrals of scalar functions

In this section，we are concerned with the＂integral＂of a real－valued function f defined on a curve C ．

Definition（Partition of curves）

Let C be a curve in space．A partition of C is a collection of curves $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ satisfying
（1）$C=\bigcup_{i=1}^{n} C_{i}$（so that $C_{i} \subseteq C$ ）；
（2）If $i \neq j$ ，then $C_{i} \cap C_{j}$ contains at most two points．
Let $\mathcal{P}=\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ be a partition of C ．The norm of \mathcal{P} ， denoted by $\|\mathcal{P}\|$ ，is the number

$$
\|\mathcal{P}\|=\max \left\{\ell\left(C_{1}\right), \ell\left(C_{2}\right), \cdots, \ell\left(C_{n}\right)\right\}
$$

where $\ell\left(C_{j}\right)$ denotes the length of curve C_{j} ．

§A． 2 Line Integrals

Definition（Riemann sum）

Let C be a curve in space，and $f: C \rightarrow \mathbb{R}$ is a real－valued function defined on C．A Riemann sum of f for partition \mathcal{P} is a sum of the form

$$
\sum_{i=1}^{n} f\left(q_{i}\right) \ell\left(C_{i}\right)
$$

where $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$ is a collection of points on C satisfying $q_{j} \in C_{j}$ for all $1 \leqslant j \leqslant n$ ．

We note that in order to define the norm of partitions，it is required that every sub－curve C_{j} of C has length．This kind of curves is called rectifiable curves，and we can only consider line integrals along rectifiable curves．In particular，a piecewise continu－ ously differentiable curve is rectifiable．

§A． 2 Line Integrals

Definition（Riemann sum）

Let C be a curve in space，and $f: C \rightarrow \mathbb{R}$ is a real－valued function defined on C．A Riemann sum of f for partition \mathcal{P} is a sum of the form

$$
\sum_{i=1}^{n} f\left(q_{i}\right) \ell\left(C_{i}\right)
$$

where $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$ is a collection of points on C satisfying $q_{j} \in C_{j}$ for all $1 \leqslant j \leqslant n$ ．

We note that in order to define the norm of partitions，it is required that every sub－curve C_{j} of C has length．This kind of curves is called rectifiable curves，and we can only consider line integrals along rectifiable curves．In particular，a piecewise continu－ ously differentiable curve is rectifiable．

§A． 2 Line Integrals

The line integral of f along C is the limit of Riemann sums

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=1}^{n} f\left(q_{j}\right) \ell\left(C_{j}\right)
$$

if the limit indeed exists． The precise definition is given below

Definition

Let C be a rectifiable curve，and $f: C \rightarrow \mathbb{R}$ be a scalar function The line integral of f along C is a real number L such that for every $\varepsilon>0$ there exists $\delta>0$ such that if $\mathcal{P}=\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ is a partition of C satisfying $\|\mathcal{P}\|<\delta$ ，then any Riemann sum of f for \mathcal{P} belongs to the interval（ $L-\varepsilon, L+\varepsilon$ ）．
Whenever such an L exists，it must be unique，and the number L is denoted by $\int_{C} f d s$（and when C is a closed curve，we use $\oint_{C} f d s$ to emphasize that the curve is closed）

§A． 2 Line Integrals

The line integral of f along C is the limit of Riemann sums

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=1}^{n} f\left(q_{j}\right) \ell\left(C_{j}\right)
$$

if the limit indeed exists．The precise definition is given below．

Definition

Let C be a rectifiable curve，and $f: C \rightarrow \mathbb{R}$ be a scalar function． The line integral of f along C is a real number L such that for every $\varepsilon>0$ there exists $\delta>0$ such that if $\mathcal{P}=\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ is a partition of C satisfying $\|\mathcal{P}\|<\delta$ ，then any Riemann sum of f for \mathcal{P} belongs to the interval（ $L-\varepsilon, L+\varepsilon$ ）．
Whenever such an L exists，it must be unique，and the number L is denoted by $\int f d s$（and when C is a closed curve，we use

§A． 2 Line Integrals

The line integral of f along C is the limit of Riemann sums

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=1}^{n} f\left(q_{j}\right) \ell\left(C_{j}\right)
$$

if the limit indeed exists．The precise definition is given below．

Definition

Let C be a rectifiable curve，and $f: C \rightarrow \mathbb{R}$ be a scalar function． The line integral of f along C is a real number L such that for every $\varepsilon>0$ there exists $\delta>0$ such that if $\mathcal{P}=\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ is a partition of C satisfying $\|\mathcal{P}\|<\delta$ ，then any Riemann sum of f for \mathcal{P} belongs to the interval（ $L-\varepsilon, L+\varepsilon$ ）．
Whenever such an L exists，it must be unique，and the number L is denoted by $\int_{C} f d s$（and when C is a closed curve，we use $\oint_{C} f d s$ to emphasize that the curve is closed）．

§A． 2 Line Integrals

Theorem

Let C be a（piecewise）smooth curve with（piecewise）continuously differentiable injective parametrization $\boldsymbol{r}:[a, b] \rightarrow \mathbb{R}^{3}$ ，and $f: C \rightarrow$ \mathbb{R} be a continuous function．Then the line integral of f along C exists and is given by

$$
\int_{C} f d s=\int_{a}^{b}(f \circ \boldsymbol{r})(t)\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

where $\left\|\boldsymbol{r}^{\prime}(t)\right\|$ is the length of the vector $\boldsymbol{r}^{\prime}(t)$ ．

§A． 2 Line Integrals

Example

Evaluate $\int_{C}\left(x^{2}-y+3 z\right) d s$ ，where C is the line segment connecting the points $(0,0,0)$ and $(1,2,1)$ ．

First we note that the line segment can be parameterized by $\boldsymbol{r}(t)=(1-t)(0,0,0)+t(1,2,1)=t \mathbf{i}+2 t \mathbf{j}+t \mathbf{k}$

Therefore，the desired line integral is given by

§A． 2 Line Integrals

Example

Evaluate $\int_{C}\left(x^{2}-y+3 z\right) d s$ ，where C is the line segment connecting the points $(0,0,0)$ and $(1,2,1)$ ．

First we note that the line segment can be parameterized by

$$
\boldsymbol{r}(t)=(1-t)(0,0,0)+t(1,2,1)=t \mathbf{i}+2 t \mathbf{j}+t \mathbf{k} \quad t \in[0,1]
$$

Therefore，the desired line integral is given by

§A． 2 Line Integrals

Example

Evaluate $\int_{C}\left(x^{2}-y+3 z\right) d s$ ，where C is the line segment connecting the points $(0,0,0)$ and $(1,2,1)$ ．

First we note that the line segment can be parameterized by

$$
\boldsymbol{r}(t)=(1-t)(0,0,0)+t(1,2,1)=t \mathbf{i}+2 t \mathbf{j}+t \mathbf{k} \quad t \in[0,1] .
$$

Therefore，the desired line integral is given by

$$
\begin{aligned}
\int_{C}\left(x^{2}-y+3 z\right) d s & =\int_{0}^{1}\left(t^{2}-2 t+3 t\right)\|\mathbf{i}+2 \mathbf{j}+\mathbf{k}\| d t \\
& =\sqrt{6} \int_{0}^{1}\left(t^{2}+t\right) d t=\frac{5 \sqrt{6}}{6} .
\end{aligned}
$$

§A． 2 Line Integrals

Example

Evaluate $\int_{C} x d s$ ，where C is the curve starting from $(0,0)$ to $(1,1)$ along $y=x^{2}$ then from $(1,1)$ to $(0,0)$ along $y=x$ ．

Let C_{1} be the piece of the curve connecting $(0,0)$ and $(1,1)$ along $y=x^{2}$ ，and C_{2} be the piece of the curve connecting $(1,1)$ and $(0,0)$ along $y=x$ ．Then C_{1} and C_{2} can be parameterized by respectively．Since $C=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}$ has only two points，

§A． 2 Line Integrals

Example

Evaluate $\int_{C} x d s$ ，where C is the curve starting from $(0,0)$ to $(1,1)$ along $y=x^{2}$ then from $(1,1)$ to $(0,0)$ along $y=x$ ．

Let C_{1} be the piece of the curve connecting $(0,0)$ and $(1,1)$ along $y=x^{2}$ ，and C_{2} be the piece of the curve connecting $(1,1)$ and $(0,0)$ along $y=x$ ．Then C_{1} and C_{2} can be parameterized by

$$
\boldsymbol{r}_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j} \quad t \in[0,1] \quad \text { and } \quad \boldsymbol{r}_{2}(t)=t \mathbf{i}+t \mathbf{j} \quad t \in[0,1],
$$

respectively．Since $C=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}$ has only two points，

§A． 2 Line Integrals

Example

Evaluate $\int_{C} x d s$ ，where C is the curve starting from $(0,0)$ to $(1,1)$ along $y=x^{2}$ then from $(1,1)$ to $(0,0)$ along $y=x$ ．

Let C_{1} be the piece of the curve connecting $(0,0)$ and $(1,1)$ along $y=x^{2}$ ，and C_{2} be the piece of the curve connecting $(1,1)$ and $(0,0)$ along $y=x$ ．Then C_{1} and C_{2} can be parameterized by

$$
\boldsymbol{r}_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j} \quad t \in[0,1] \quad \text { and } \quad \boldsymbol{r}_{2}(t)=t \mathbf{i}+t \mathbf{j} \quad t \in[0,1],
$$

respectively．Since $C=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}$ has only two points，

$$
\begin{aligned}
\int_{C} x d s & =\int_{C_{1}} x d s+\int_{C_{2}} x d s=\int_{0}^{1} t\|\mathbf{i}+2 t \mathbf{j}\| d t+\int_{0}^{1} t\|\mathbf{i}+\mathbf{j}\| d t \\
& =\int_{0}^{1}\left[t \sqrt{1+4 t^{2}}+\sqrt{2} t\right] d t=\frac{1}{12}(5 \sqrt{5}-1)+\frac{\sqrt{2}}{2}
\end{aligned}
$$

§A． 2 Line Integrals

Example

Let C be the upper half part of the circle centered at the origin with radius $R>0$ in the $x y$－plane．Evaluate the line integral $\int_{C} y d s$ ．
First，we parameterize C by

$$
\boldsymbol{r}(t)=R \cos t \mathbf{i}+R \sin t \mathbf{j} \quad t \in[0, \pi] .
$$

Then

$$
\begin{aligned}
\int_{C} y d s & =\int_{0}^{\pi} R \sin t\|-R \sin t \mathbf{i}+R \cos t \mathbf{j}\| d t \\
& =\int_{0}^{\pi} R^{2} \sin t d t=2 R^{2}
\end{aligned}
$$

§A． 2 Line Integrals

Example

Find the mass of a wire lying along the first octant part of the curve of intersection of the elliptic paraboloid $z=2-x^{2}-2 y^{2}$ and the parabolic cylinder $z=x^{2}$ between $(0,1,0)$ and $(1,0,1)$ if the density of the wire at position (x, y, z) is $\varrho(x, y, z)=x y$ ．

Note that we can parameterize the curve C by

$$
\boldsymbol{r}(t)=t \mathbf{i}+\sqrt{1-t^{2}} \mathbf{j}+t^{2} \mathbf{k} \quad t \in[0,1]
$$

Therefore，the mass of the curve can be computed by

§A． 2 Line Integrals

Example

Find the mass of a wire lying along the first octant part of the curve of intersection of the elliptic paraboloid $z=2-x^{2}-2 y^{2}$ and the parabolic cylinder $z=x^{2}$ between $(0,1,0)$ and $(1,0,1)$ if the density of the wire at position (x, y, z) is $\varrho(x, y, z)=x y$ ．

Note that we can parameterize the curve C by

$$
\boldsymbol{r}(t)=t \mathbf{i}+\sqrt{1-t^{2}} \mathbf{j}+t^{2} \mathbf{k} \quad t \in[0,1] .
$$

Therefore，the mass of the curve can be computed by

§A． 2 Line Integrals

Example

Find the mass of a wire lying along the first octant part of the curve of intersection of the elliptic paraboloid $z=2-x^{2}-2 y^{2}$ and the parabolic cylinder $z=x^{2}$ between $(0,1,0)$ and $(1,0,1)$ if the density of the wire at position (x, y, z) is $\varrho(x, y, z)=x y$ ．

Note that we can parameterize the curve C by

$$
\boldsymbol{r}(t)=t \mathbf{i}+\sqrt{1-t^{2}} \mathbf{j}+t^{2} \mathbf{k} \quad t \in[0,1]
$$

Therefore，the mass of the curve can be computed by

$$
\begin{aligned}
\int_{C} \varrho d s & =\int_{0}^{1} t \sqrt{1-t^{2}}\left\|\mathbf{i}+\frac{-t}{\sqrt{1-t^{2}}} \mathbf{j}+2 t \mathbf{k}\right\| d t \\
& =\int_{0}^{1} t \sqrt{2-\left(1-2 t^{2}\right)^{2}} d t=\frac{\pi}{8}+\frac{1}{4}
\end{aligned}
$$

§A． 2 Line Integrals

§A．2．3 Line integrals of vector fields

Definition
An oriented curve is a curve on which a consistent tangent direction \mathbf{T} is defined．In other words，an oriented curve is a（piecewise） smooth curve with a given parametrization $r: l \rightarrow \mathbb{R}^{3}$ so that $\mathrm{T} \circ \boldsymbol{r}=\frac{\boldsymbol{r}^{\prime}}{\left\|\boldsymbol{r}^{\prime}\right\|}$ is defined（almost everywhere） Definition Let F be a continuous vector field defined on a smooth oriented curve C parameterized by $\boldsymbol{r}(t)$ for $t \in[a, b]$ ．The line integral of F along C is given by

§A． 2 Line Integrals

§A．2．3 Line integrals of vector fields

Definition

An oriented curve is a curve on which a consistent tangent direction \mathbf{T} is defined．In other words，an oriented curve is a（piecewise） smooth curve with a given parametrization $r: I \rightarrow \mathbb{R}^{3}$ so that $\mathbf{T} \circ \boldsymbol{r}=\frac{\boldsymbol{r}^{\prime}}{\left\|\boldsymbol{r}^{\prime}\right\|}$ is defined（almost everywhere）．

Definition

Let \boldsymbol{F} be a continuous vector field defined on a smooth oriented curve C parameterized by $\boldsymbol{r}(t)$ for $t \in[a, b]$ ．The line integral of F along C is given by

§A． 2 Line Integrals

§A．2．3 Line integrals of vector fields

Definition

An oriented curve is a curve on which a consistent tangent direction \mathbf{T} is defined．In other words，an oriented curve is a（piecewise） smooth curve with a given parametrization $r: I \rightarrow \mathbb{R}^{3}$ so that $\mathbf{T} \circ \boldsymbol{r}=\frac{\boldsymbol{r}^{\prime}}{\left\|\boldsymbol{r}^{\prime}\right\|}$ is defined（almost everywhere）．

Definition

Let \boldsymbol{F} be a continuous vector field defined on a smooth oriented curve C parameterized by $\boldsymbol{r}(t)$ for $t \in[a, b]$ ．The line integral of F along C is given by

$$
\int_{C} \boldsymbol{F} \cdot \mathbf{T} d s
$$

§A． 2 Line Integrals

Remark：

（1）Since $\mathbf{T} \circ \boldsymbol{r}=\frac{\boldsymbol{r}^{\prime}}{\left\|\boldsymbol{r}^{\prime}\right\|}$ ，for a curve C parameterized by $\boldsymbol{r}:[a, b] \rightarrow$ \mathbb{R}^{3} ，

$$
\int_{C} \boldsymbol{F} \cdot \mathbf{T} d s=\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t=\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t
$$

Since $\boldsymbol{r}^{\prime}(t) d t=d \boldsymbol{r}(t)$ ，sometimes we also use $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ to denote the line integral of \boldsymbol{F} along the oriented curve C parameterized by \boldsymbol{r} ．
（2）Given an oriented curve C and $F: C \rightarrow \mathbb{R}^{3}$ ，we sometimes use $\boldsymbol{F} \cdot d \boldsymbol{r}$ to denote the line integral $\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s$ ，where $-\mathbf{T}$ is the tangent direction opposite to the orientation of C ．

§A． 2 Line Integrals

Remark：

（1）Since $\mathbf{T} \circ \boldsymbol{r}=\frac{\boldsymbol{r}^{\prime}}{\left\|\boldsymbol{r}^{\prime}\right\|}$ ，for a curve C parameterized by $\boldsymbol{r}:[a, b] \rightarrow$ \mathbb{R}^{3} ，

$$
\int_{C} \boldsymbol{F} \cdot \mathbf{T} d s=\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t=\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t .
$$

Since $\boldsymbol{r}^{\prime}(t) d t=d \boldsymbol{r}(t)$ ，sometimes we also use $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ to denote the line integral of \boldsymbol{F} along the oriented curve C parameterized by \boldsymbol{r} ．
（2）Given an oriented curve C and $\boldsymbol{F}: C \rightarrow \mathbb{R}^{3}$ ，we sometimes use $\int_{-C} \boldsymbol{F} \cdot d \boldsymbol{r}$ to denote the line integral $\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s$ ，where $-\mathbf{T}$ is the tangent direction opposite to the orientation of C ．

§A． 2 Line Integrals

（3）Let C be a smooth oriented curve parameterized by $\boldsymbol{r}:[a, b] \rightarrow$ \mathbb{R}^{3} and $\boldsymbol{F}: C \rightarrow \mathbb{R}^{3}$ ．Then $-C$ ，the oriented curve with opposite orientation w．r．t．C ，can be parameterized by $\boldsymbol{r}_{1}:[-b,-a] \rightarrow$ \mathbb{R}^{3} given by $\boldsymbol{r}_{1}(t)=\boldsymbol{r}(-t)$ so that

§A． 2 Line Integrals

（3）Let C be a smooth oriented curve parameterized by $r:[a, b] \rightarrow$ \mathbb{R}^{3} and $\boldsymbol{F}: C \rightarrow \mathbb{R}^{3}$ ．Then $-C$ ，the oriented curve with opposite orientation w．r．t．C ，can be parameterized by $\boldsymbol{r}_{1}:[-b,-a] \rightarrow$ \mathbb{R}^{3} given by $\boldsymbol{r}_{1}(t)=\boldsymbol{r}(-t)$ so that

$$
\begin{aligned}
\int_{-c} \boldsymbol{F} \cdot d \boldsymbol{r} & =\int_{-b}^{-a}\left(\boldsymbol{F} \circ \boldsymbol{r}_{1}\right)(t) \cdot \boldsymbol{r}_{1}^{\prime}(t) d t \\
& =\int_{-b}^{-a}(\boldsymbol{F} \circ \boldsymbol{r})(-t) \cdot\left(-\boldsymbol{r}^{\prime}\right)(-t) d t \\
& =\int_{b}^{a}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =-\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t=\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s .
\end{aligned}
$$

This explains $\int_{-C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s$ ．

§A． 2 Line Integrals

（3）Let C be a smooth oriented curve parameterized by $\boldsymbol{r}:[a, b] \rightarrow$ \mathbb{R}^{3} and $\boldsymbol{F}: C \rightarrow \mathbb{R}^{3}$ ．Then $-C$ ，the oriented curve with opposite orientation w．r．t．C ，can be parameterized by $\boldsymbol{r}_{1}:[-b,-a] \rightarrow$ \mathbb{R}^{3} given by $\boldsymbol{r}_{1}(t)=\boldsymbol{r}(-t)$ so that

$$
\begin{aligned}
\int_{-C} \boldsymbol{F} \cdot d \boldsymbol{r} & =\int_{-b}^{-a}\left(\boldsymbol{F} \circ \boldsymbol{r}_{1}\right)(t) \cdot \boldsymbol{r}_{1}^{\prime}(t) d t \\
& =\int_{-b}^{-a}(\boldsymbol{F} \circ \boldsymbol{r})(-t) \cdot\left(-\boldsymbol{r}^{\prime}\right)(-t) d t \\
& =\int_{b}^{a}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =-\int_{a}^{b}(\boldsymbol{F} \circ \boldsymbol{r})(t) \cdot \boldsymbol{r}^{\prime}(t) d t=\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s
\end{aligned}
$$

This explains $\int_{-C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C} \boldsymbol{F} \cdot(-\mathbf{T}) d s$ ．

§A． 2 Line Integrals

Example

Find the work done by the force field

$$
\boldsymbol{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}
$$

on a particle as it moves along the helix parameterized by

$$
\boldsymbol{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}
$$

from the point $(1,0,0)$ to the point $(-1,0,3 \pi)$ ．Note that such a helix is parameterized by $\boldsymbol{r}(t)$ with $t \in[0,3 \pi]$ ．Therefore，

$$
\begin{aligned}
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r} & =\int_{0}^{3 \pi}\left(-\frac{1}{2} \cos t \mathbf{i}-\frac{1}{2} \sin t \mathbf{j}+\frac{1}{4} \mathbf{k}\right) \cdot(-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}) d t \\
& =\int_{0}^{3 \pi}\left(\frac{1}{2} \sin t \cos t-\frac{1}{2} \sin t \cos t+\frac{1}{4}\right) d t=\frac{3 \pi}{4}
\end{aligned}
$$

§A． 2 Line Integrals

Example

Let $\boldsymbol{F}(x, y)=y^{2} \mathbf{i}+2 x y \mathbf{j}$ ．Evaluate the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ from $(0,0)$ to $(1,1)$ along
（1）the straight line $y=x$ ，
（2）the curve $y=x^{2}$ ，and
（3）the piecewise smooth path consisting of the straight line seg－ ments from $(0,0)$ to $(0,1)$ and from $(0,1)$ to $(1,1)$ ．
For the straight line case，we parameterize the path by $r(t)=(t, t)$ for $t \in[0,1]$ ．Then

§A． 2 Line Integrals

Example

Let $\boldsymbol{F}(x, y)=y^{2} \mathbf{i}+2 x y \mathbf{j}$ ．Evaluate the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ from $(0,0)$ to $(1,1)$ along
（1）the straight line $y=x$ ，
（2）the curve $y=x^{2}$ ，and
（3）the piecewise smooth path consisting of the straight line seg－ ments from $(0,0)$ to $(0,1)$ and from $(0,1)$ to $(1,1)$ ．
For the straight line case，we parameterize the path by $\boldsymbol{r}(t)=(t, t)$ for $t \in[0,1]$ ．Then

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1}\left(t^{2} \mathbf{i}+2 t^{2} \mathbf{j}\right) \cdot(\mathbf{i}+\mathbf{j}) d t=\int_{0}^{1} 3 t^{2} d t=1
$$

§A． 2 Line Integrals

Example（cont．）

For the case of parabola，we parameterize the path by $\boldsymbol{r}(t)=\left(t, t^{2}\right)$ for $t \in[0,1]$ ．Then

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1}\left(t^{4} \mathbf{i}+2 t^{3} \mathbf{j}\right) \cdot(\mathbf{i}+2 t \mathbf{j}) d t=\int_{0}^{1} 5 t^{4} d t=1
$$

For the piecewise linear case，we let C_{1} denote the line segment joining $(0,0)$ and $(0,1)$ ，and let C_{2} denote the line segment joining $(0,1)$ and $(1,1)$ ．Note that we can parameterize C_{1} and C_{2} by $r_{1}(t)=t \mathbf{j} \quad t \in[0,1] \quad$ and $\quad r_{2}(t)=t \mathbf{i}+\mathbf{j} \quad t \in[0,1]$
respectively．Therefore，

§A． 2 Line Integrals

Example（cont．）

For the case of parabola，we parameterize the path by $\boldsymbol{r}(t)=\left(t, t^{2}\right)$ for $t \in[0,1]$ ．Then

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1}\left(t^{4} \mathbf{i}+2 t^{3} \mathbf{j}\right) \cdot(\mathbf{i}+2 t \mathbf{j}) d t=\int_{0}^{1} 5 t^{4} d t=1
$$

For the piecewise linear case，we let C_{1} denote the line segment joining $(0,0)$ and $(0,1)$ ，and let C_{2} denote the line segment joining $(0,1)$ and $(1,1)$ ．Note that we can parameterize C_{1} and C_{2} by

$$
\boldsymbol{r}_{1}(t)=t \mathbf{j} \quad t \in[0,1] \quad \text { and } \quad \boldsymbol{r}_{2}(t)=t \mathbf{i}+\mathbf{j} \quad t \in[0,1],
$$

respectively．Therefore，

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C_{1}} \boldsymbol{F} \cdot d \boldsymbol{r}+\int_{C_{2}} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1} t^{2} \mathbf{i} \cdot \mathbf{j} d t+\int_{0}^{1}(\mathbf{i}+2 t \mathbf{j}) \cdot \mathbf{i} d t=1
$$

§A． 2 Line Integrals

Example

Let $\boldsymbol{F}(x, y)=y \mathbf{i}-x \mathbf{j}$ ．Evaluate the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ from $(1,0)$ to $(0,-1)$ along
（1）the straight line segment joining these points，and
（2）three－quarters of the circle of unit radius centered at the origin and traversed counter－clockwise．
For the first case，we parameterize the path by $\boldsymbol{r}(t)=(1-t,-t)$ for $t \in[0,1]$ ．Then

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1}[-t \mathbf{i}+(t-1) \mathbf{j}] \cdot(-\mathbf{i}-\mathbf{j}) d t=1
$$

For the second case，we parameterize the path by $\boldsymbol{r}(t)=\cos t \mathbf{i}+$ $\sin t \mathbf{j}$ for $t \in\left[0, \frac{3 \pi}{2}\right]$ ．Then

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{\frac{3 \pi}{2}}(\sin t \mathbf{i}-\cos t \mathbf{j}) \cdot(-\sin t \mathbf{i}+\cos t \mathbf{j}) d t=-\frac{3 \pi}{2}
$$

§A． 3 Green＇s Theorem

Let $R \subseteq \mathbb{R}^{2}$ be a region enclosed by a simply closed curve C and $\boldsymbol{F}=\mathrm{Mi}+N \mathbf{j}$ be a vector fields on（an open set containing）R ，where C is oriented counterclockwise so that
C is traversed once so that the region R always lies to the left．
The line integral of \boldsymbol{F} along an oriented curve C sometimes is written as

$$
\oint_{C} M d x+N d y
$$

since symbolically we have $d \boldsymbol{r}=d x \mathbf{i}+d y \mathbf{j}$ so that

$$
\boldsymbol{F} \cdot d \boldsymbol{r}=(M \mathbf{i}+N \mathbf{j}) \cdot(d x \mathbf{i}+d y \mathbf{j})=M d x+N d y .
$$

The right－hand side of the identity above is called a differential form．

§A． 3 Green＇s Theorem

Theorem（Green＇s Theorem）

Let R be a plane region enclosed by a closed curve C oriented coun－ terclockwise；that is，C is traversed once so that the region R always lies to the left．If M and N have continuous first partial derivatives in an open region containing R ，then

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)(x, y) d A .
$$

Remark：If \mathcal{F} is a two－dimensional vector field given by $F=M i+N \mathbf{j}$ ， then under the assumption of Green＇s Theorem，

$$
\oint_{C} F \cdot \mathbf{T} d s=\iint_{R}(\operatorname{curl} F)(x, y) d A
$$

This is sometimes called Green＇s Theorem in Tangential Form．

§A． 3 Green＇s Theorem

Theorem（Green＇s Theorem）

Let R be a plane region enclosed by a closed curve C oriented coun－ terclockwise；that is，C is traversed once so that the region R always lies to the left．If M and N have continuous first partial derivatives in an open region containing R ，then

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)(x, y) d A .
$$

Remark：If \boldsymbol{F} is a two－dimensional vector field given by $\boldsymbol{F}=M \mathbf{i}+N \mathbf{j}$ ， then under the assumption of Green＇s Theorem，

$$
\oint_{C} \boldsymbol{F} \cdot \mathbf{T} d s=\iint_{R}(\operatorname{curl} \boldsymbol{F})(x, y) d A .
$$

This is sometimes called Green＇s Theorem in Tangential Form．

§A． 3 Green＇s Theorem

Remark：Let R be a region enclosed by a smooth simply closed curve C with outward－pointing unit normal \mathbf{N} on C ，and \boldsymbol{F} be a smooth vector field defined on an open region containing R ．We are interested in $\oint_{C} \boldsymbol{F} \cdot \mathbf{N} d s$ ，the line integral of $\boldsymbol{F} \cdot \mathbf{N}$ along C ．

Suppose that $\boldsymbol{F}=\mathbf{M i}+N \mathbf{j}$ ，and C is parameterized by $\boldsymbol{r}(t)=$ $x(t) \mathbf{i}+y(t) \mathbf{j}, t \in[a, b]$ ，so that C is oriented counterclockwise．Define $\boldsymbol{G}=-\mathbf{N i}+\mathbf{M} \mathbf{j}$ ．Then Green＇s Theorem（in tangential form）implies that

$$
\begin{aligned}
\oint_{C}-N d x+M d y & =\oint_{C} \boldsymbol{G} \cdot d \boldsymbol{r}=\iint_{R} \operatorname{curl} \boldsymbol{G} d A=\iint_{R}\left(M_{x}+N_{y}\right) d A \\
& =\iint_{R} \operatorname{div} \boldsymbol{F} d A .
\end{aligned}
$$

§A． 3 Green＇s Theorem

On the other hand，if \boldsymbol{r} is a counterclockwise parametrization of C ， then

$$
\mathbf{N}(\boldsymbol{r}(t))=\frac{y^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{i}-\frac{x^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{j} \quad \forall t \in[a, b] ;
$$

thus

Therefore，

This is sometimes called Green＇s Theorem in Normal Form．

§A． 3 Green＇s Theorem

On the other hand，if r is a counterclockwise parametrization of C ， then

$$
\mathbf{N}(\boldsymbol{r}(t))=\frac{y^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{i}-\frac{x^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{j} \quad \forall t \in[a, b] ;
$$

thus

$$
\begin{aligned}
& \oint_{C} \boldsymbol{F} \cdot \mathbf{N} d s=\int_{a}^{b}(\boldsymbol{F} \cdot \mathbf{N})(\boldsymbol{r}(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \mathbf{N}(\boldsymbol{r}(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t \\
& \quad=\int_{a}^{b}\left[M(x(t), y(t)) y^{\prime}(t)-N(x(t), y(t)) x^{\prime}(t)\right] d t \\
& \quad=\oint_{C}-N d x+M d y=\oint_{C} \boldsymbol{G} \cdot d \boldsymbol{r}=\iint_{R} \operatorname{div} \boldsymbol{F} d A
\end{aligned}
$$

Therefore，

This is sometimes called Green＇s Theorem in Normal Form．

§A． 3 Green＇s Theorem

On the other hand，if r is a counterclockwise parametrization of C ， then

$$
\mathbf{N}(\boldsymbol{r}(t))=\frac{y^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{i}-\frac{x^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} \mathbf{j} \quad \forall t \in[a, b] ;
$$

thus

$$
\begin{aligned}
& \oint_{C} \boldsymbol{F} \cdot \mathbf{N} d s=\int_{a}^{b}(\boldsymbol{F} \cdot \mathbf{N})(\boldsymbol{r}(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \mathbf{N}(\boldsymbol{r}(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t \\
& \quad=\int_{a}^{b}\left[M(x(t), y(t)) y^{\prime}(t)-N(x(t), y(t)) x^{\prime}(t)\right] d t \\
& \quad=\oint_{C}-N d x+M d y=\oint_{C} \boldsymbol{G} \cdot d \boldsymbol{r}=\iint_{R} \operatorname{div} \boldsymbol{F} d A .
\end{aligned}
$$

Therefore，

$$
\oint_{C} \boldsymbol{F} \cdot \mathbf{N} d s=\iint_{R} \operatorname{div} \boldsymbol{F} d A .
$$

This is sometimes called Green＇s Theorem in Normal Form．

§A． 3 Green＇s Theorem

Example

Use Green＇s Theorem to evaluate the line integral

$$
\oint_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y
$$

where C is the path from $(0,0)$ to $(1,1)$ along the graph of $y=x^{3}$ and from $(1,1)$ to $(0,0)$ along the graph of $y=x$ ．

Let $R=\left\{(x, y) \mid 0 \leqslant x \leqslant 1, x^{3} \leqslant y \leqslant x\right\}$ ．Then Green＇s Theorem implies that

$$
\begin{gathered}
\oint_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y=\iint_{R}\left[\frac{\partial}{\partial x}\left(x^{3}+3 x y^{2}\right)-\frac{\partial}{\partial y} y^{3}\right] d A \\
=\iint_{R} 3 x^{2} d A=\int_{0}^{1}\left(\int_{x^{3}}^{x} 3 x^{2} d y\right) d x=\frac{1}{4} .
\end{gathered}
$$

§A． 3 Green＇s Theorem

Example

Let $\mathcal{D} \subseteq \mathbb{R}^{2}$ be the annular region $\mathcal{D}=\left\{(x, y) \mid 1<x^{2}+y^{2}<\right.$ 4\}, $\boldsymbol{F}(x, y)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}$ ，and $C \subseteq \mathcal{D}$ be a simple closed curve oriented counterclockwise so that the origin is inside the region enclosed by C ．Find $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ ．
Choose $r>1$ so that the circle centered at the origin with radius r lies in the intersection of \mathcal{D} and the finite region enclosed by C ． Let C_{r} denote this circle with clockwise orientation，and pick a line segment B connecting C and C_{r}（with starting point on C and end－ point on C_{r} ）．Define Γ as the oriented curve $B \cup C_{r} \cup(-B) \cup C_{,}$ where $-B$ denotes oriented curve B with opposite orientation，and let R be the region enclosed by Γ ．Then $R \subseteq \mathcal{D}$ and R is the region lies to the left of Γ

§A． 3 Green＇s Theorem

Example

Let $\mathcal{D} \subseteq \mathbb{R}^{2}$ be the annular region $\mathcal{D}=\left\{(x, y) \mid 1<x^{2}+y^{2}<\right.$ $4\}, \boldsymbol{F}(x, y)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}$ ，and $C \subseteq \mathcal{D}$ be a simple closed curve oriented counterclockwise so that the origin is inside the region enclosed by C ．Find $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ ．
Choose $r>1$ so that the circle centered at the origin with radius r lies in the intersection of \mathcal{D} and the finite region enclosed by C ． Let C_{r} denote this circle with clockwise orientation，and pick a line segment B connecting C and C_{r}（with starting point on C and end－ point on C_{r} ）．Define Γ as the oriented curve $B \cup C_{r} \cup(-B) \cup C_{\text {，}}$ where $-B$ denotes oriented curve B with opposite orientation，and let R be the region enclosed by Γ ．Then $R \subseteq \mathcal{D}$ and R is the region lies to the left of Γ ．

§A． 3 Green＇s Theorem

Example

Let $\mathcal{D} \subseteq \mathbb{R}^{2}$ be the annular region $\mathcal{D}=\left\{(x, y) \mid 1<x^{2}+y^{2}<\right.$ 4\}, $\boldsymbol{F}(x, y)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}$ ，and $C \subseteq \mathcal{D}$ be a simple closed curve oriented counterclockwise so that the origin is inside the region enclosed by C ．Find $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ ．
Choose $r>1$ so that the circle centered at the origin with radius r lies in the intersection of \mathcal{D} and the finite region enclosed by C ． Let C_{r} denote this circle with clockwise orientation，and pick a line segment B connecting C and C_{r}（with starting point on C and end－ point on C_{r} ）．Define Γ as the oriented curve $B \cup C_{r} \cup(-B) \cup C$ ， where $-B$ denotes oriented curve B with opposite orientation，and let R be the region enclosed by Γ ．Then $R \subseteq \mathcal{D}$ and R is the region lies to the left of Γ ．

§A． 3 Green＇s Theorem

Example（cont．）

Therefore，Green＇s Theorem implies that

$$
\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=\iint_{R} \operatorname{curl} \boldsymbol{F} d A=0 .
$$

On the other hand，

$$
\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{B} \boldsymbol{F} \cdot d \boldsymbol{r}+\int_{C_{r}} \boldsymbol{F} \cdot d \boldsymbol{r}+\int_{-B} \boldsymbol{F} \cdot d \boldsymbol{r}+\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r} ;
$$

thus by the fact that $\int_{-B} \boldsymbol{F} \cdot d \boldsymbol{r}=-\int_{B} \boldsymbol{F} \cdot d \boldsymbol{r}$ ，we conclude that

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}+\int_{C_{r}} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=0
$$

or equivalently，

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=-\int_{C_{r}} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C_{C}} \boldsymbol{F} \cdot d \boldsymbol{r} .
$$

§A． 3 Green＇s Theorem

Example（cont．）

In other words，the line integral of \boldsymbol{F} along C is the same as the line integral of \boldsymbol{F} along the circle C_{r} with counterclockwise orientation．
Since $-C_{r}$ can be parameterized by

$$
\boldsymbol{r}(t)=r \cos t \mathbf{i}+r \sin t \mathbf{j} \quad t \in[0,2 \pi]
$$

we find that

$$
\begin{aligned}
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r} & =\int_{0}^{2 \pi}\left(\frac{r \sin t}{r^{2}} \mathbf{i}-\frac{r \cos t}{r^{2}} \mathbf{j}\right) \cdot(-r \sin t \mathbf{i}+r \cos t \mathbf{j}) d t \\
& =\int_{0}^{2 \pi}(-1) d t=-2 \pi
\end{aligned}
$$

§A． 4 The Surface Integrals

§A．4．1 Parametric surfaces

Definition（Parametric Surfaces）

Let X, Y and Z be functions of u and v that are continuous on a domain D in the $u v$－plane．The collection of points
$\Sigma \equiv\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}\right.$ for some $\left.(u, v) \in D\right\}$
is called a parametric surface．The equations $x=X(u, v), y=$ $Y(u, v)$ ，and $z=Z(u, v)$ are the parametric equations for the surface， and $\boldsymbol{r}: D \rightarrow \mathbb{R}^{3}$ given by $\boldsymbol{r}(u, v)=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}$ is called a parametrization of Σ ．

§A． 4 The Surface Integrals

Definition（Regular Surfaces）

A parametric surface
$\Sigma \equiv\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}\right.$ for some $\left.(u, v) \in D\right\}$
is said to be regular if X, Y, Z are continuously differentiable func－ tions and

$$
\boldsymbol{r}_{u}(u, v) \times \boldsymbol{r}_{v}(u, v) \neq \mathbf{0} \quad \forall(u, v) \in D
$$

where

$$
\begin{aligned}
\boldsymbol{r}_{u}(u, v) & \equiv X_{u}(u, v) \mathbf{i}+Y_{u}(u, v) \mathbf{j}+Z_{u}(u, v) \mathbf{k} \\
\boldsymbol{r}_{v}(u, v) & \equiv X_{v}(u, v) \mathbf{i}+Y_{v}(u, v) \mathbf{j}+Z_{v}(u, v) \mathbf{k}
\end{aligned}
$$

§A． 4 The Surface Integrals

Example

Let R be an open region in the plane，and $f: R \rightarrow \mathbb{R}$ be a continuous function．Then the graph of f is a parametric surface．In fact， the graph of $f=\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}\right)$ for some $\left.(x, y) \in R\right\}$ ． Therefore，a parametric surface can be viewed as a generalization of surfaces being graphs of functions．

§A． 4 The Surface Integrals

Example

Let R be an open region in the plane，and $f: R \rightarrow \mathbb{R}$ be a continuous function．Then the graph of f is a parametric surface．In fact， the graph of $f=\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}\right)$ for some $\left.(x, y) \in R\right\}$ ． Therefore，a parametric surface can be viewed as a generalization of surfaces being graphs of functions．

Example

Let $\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{3} ．Consider

$$
\boldsymbol{r}(\theta, \phi)=\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k}
$$

where $(\theta, \phi) \in D=[0,2 \pi) \times[0, \pi)$ ．Then $\boldsymbol{r}: D \rightarrow \mathbb{S}^{2}$ is a continuous bijection；thus \mathbb{S}^{2} is a parametric surface．

§A． 4 The Surface Integrals

Example

Consider the torus shown below

Figure 1：Torus with parametrization $\boldsymbol{r}(u, v)$ ．（temporary picture）

§A． 4 The Surface Integrals

Example（cont．）

Note that the torus has a parametrization

$$
\boldsymbol{r}(u, v)=(a+b \cos v) \cos u \mathbf{i}+(a+b \cos v) \sin u \mathbf{j}+b \sin v \mathbf{k},
$$

where $(u, v) \in[0,2 \pi) \times[0,2 \pi)$ ．Therefore，the torus is a parametric surface．

§A． 4 The Surface Integrals

§A．4．2 Surface area of parametric surfaces

Theorem

Let D be an open region in the plane，and
$\Sigma \equiv\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}\right.$ for some $\left.(u, v) \in D\right\}$
be a regular parametric surface so that r is continuously differen－ tiable；that is，$X_{u}, X_{v}, Y_{u}, Y_{v}, Z_{u}, Z_{v}$ are continuous．Then the surface area of $\Sigma=\iint_{D}\left\|\boldsymbol{r}_{u}(u, v) \times \boldsymbol{r}_{v}(u, v)\right\| d(u, v)$ ．

§A． 4 The Surface Integrals

Example

The theorem above provides one specific way of evaluating the sur－ face integrals：if the surface Σ is in fact a subset of the graph of a function $f: R \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ ；that is，$\left.\Sigma \subseteq\{x, y, f(x, y)) \mid(x, y) \in R\right\}$ ， then Σ has a parametrization

$$
\boldsymbol{r}(x, y)=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}, \quad(x, y) \in R
$$

Then

$$
\left\|\boldsymbol{r}_{x}(x, y) \times \boldsymbol{r}_{y}(x, y)\right\|_{\mathbb{R}^{3}}^{2}=1+\left|\frac{\partial f}{\partial x}(x, y)\right|^{2}+\left|\frac{\partial f}{\partial y}(x, y)\right|^{2}
$$

thus

$$
\text { the surface area of } \Sigma=\iint_{R} \sqrt{1+\left|\frac{\partial f}{\partial x}(x, y)\right|^{2}+\left|\frac{\partial f}{\partial y}(x, y)\right|^{2}} d A \text {. }
$$

§A． 4 The Surface Integrals

Example

Given the parametrization of the unit sphere \mathbb{S}^{2}
$\boldsymbol{r}(\theta, \phi)=\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k},(\theta, \phi) \in[0,2 \pi] \times[0, \pi]$, we find that

$$
\begin{aligned}
& \boldsymbol{r}_{\theta}(\theta, \phi)=-\sin \theta \sin \phi \mathbf{i}+\cos \theta \sin \phi \mathbf{j} \\
& \boldsymbol{r}_{\phi}(\theta, \phi)=\cos \theta \cos \phi \mathbf{i}+\sin \theta \cos \phi \mathbf{j}-\sin \phi \mathbf{k}
\end{aligned}
$$

so that

$$
\begin{aligned}
\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi) & =-\cos \theta \sin ^{2} \phi \mathbf{i}-\sin \theta \sin ^{2} \phi \mathbf{j}-\sin \phi \cos \phi \mathbf{k} \\
& =-\sin \phi(\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k}) .
\end{aligned}
$$

Therefore，the surface area of \mathbb{S}^{2} is

$$
\iint_{[0,2 \pi] \times[0, \pi]}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi)=\int_{0}^{\pi}\left(\int_{0}^{2 \pi} \sin \phi d \theta\right) d \phi=4 \pi
$$

§A． 4 The Surface Integrals

Example

Given the parametrization of the torus given in previous example by

$$
\boldsymbol{r}(u, v)=(a+b \cos v) \cos u \mathbf{i}+(a+b \cos v) \sin u \mathbf{j}+b \sin v \mathbf{k}
$$

where $(u, v) \in[0,2 \pi) \times[0,2 \pi)$ ，we find that

$$
\begin{aligned}
& \boldsymbol{r}_{u}(u, v)=-(a+b \cos v) \sin u \mathbf{i}+(a+b \cos v) \cos u \mathbf{j} \\
& \boldsymbol{r}_{v}(u, v)=-b \sin v \cos u \mathbf{i}-b \sin v \sin u \mathbf{j}+b \cos v \mathbf{k}
\end{aligned}
$$

thus
$\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right)(u, v)=b(a+b \cos v)(\cos u \cos v \mathbf{i}+\sin u \cos v \mathbf{j}+\sin v \mathbf{k})$.
Therefore，the surface area of the torus is

$$
\begin{aligned}
\iint_{[0,2 \pi] \times[0,2 \pi]} b(a+b \cos v) d(u, v) & =\int_{0}^{2 \pi}\left(\int_{0}^{2 \pi}\left(a b+b^{2} \cos v\right) d u\right) d v \\
& =4 \pi^{2} a b
\end{aligned}
$$

§A． 4 The Surface Integrals

Example

Let C be a smooth curve parameterized by

$$
\boldsymbol{r}(t)=(\cos t \sin t, \sin t \sin t, \cos t), \quad t \in I=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Then clearly C is on the unit sphere \mathbb{S}^{2} since $\|\boldsymbol{r}(t)\|_{\mathbb{R}^{3}}=1$ for all $t \in I$ ．Since C is a closed curve，C divides \mathbb{S}^{2} into two parts．Find the surface area of the part Σ＂enclosed＂by C ．

§A． 4 The Surface Integrals

Example（cont．）

To compute the surface area of Σ ，we need to find a way to param－ eterize Σ ．Naturally we try to parameterize Σ using the spherical coordinate．In other words，let $\mathrm{R}=(0,2 \pi) \times(0, \pi)$ and $\psi: \mathrm{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\boldsymbol{\psi}(\theta, \phi)=\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k}
$$

and we would like to find a region $D \subseteq \mathrm{R}$ such that $\psi(D)=\Sigma$ ． Suppose that $\gamma(t)=(\theta(t), \phi(t)), t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ，is a curve in R such that $(\boldsymbol{\psi} \circ \gamma)(t)=\boldsymbol{r}(t)$ ．Then for $t \in\left[0, \frac{\pi}{2}\right]$ ，the identity $\cos t=\cos \phi(t)$ implies that $\phi(t)=t$ ；thus the identities $\cos t \sin t=$ $\cos \theta(t) \sin \phi(t)$ and $\sin t \sin t=\sin \theta(t) \sin \phi(t)$ further imply that $\theta(t)=t$ ．

§A． 4 The Surface Integrals

Example（cont．）

On the other hand，for $t \in\left[-\frac{\pi}{2}, 0\right]$ ，the identity $\cos t=\cos \phi(t)$ ， where $\phi(t) \in(0, \pi)$ ，implies that $\phi(t)=-t$ ；thus the identities $\cos t \sin t=\cos \theta(t) \sin \phi(t)$ and $\sin t \sin t=\sin \theta(t) \sin \phi(t)$ further imply that $\theta(t)=\pi+t$ ．

§A． 4 The Surface Integrals

Example（cont．）

Since

$$
\begin{aligned}
& \boldsymbol{\psi}_{\theta}(\theta, \phi)=-\sin \theta \sin \phi \mathbf{i}+\cos \theta \sin \phi \mathbf{j} \\
& \boldsymbol{\psi}_{\phi}(\theta, \phi)=\cos \theta \cos \phi \mathbf{i}+\sin \theta \cos \phi \mathbf{j}-\sin \phi \mathbf{k}
\end{aligned}
$$

we find that

$$
\begin{aligned}
& \left\|\left(\boldsymbol{\psi}_{\theta} \times \boldsymbol{\psi}_{\phi}\right)(\theta, \phi)\right\|^{2} \\
& \quad=\left\|-\cos \theta \sin ^{2} \phi \mathbf{i}-\sin \theta \sin ^{2} \phi \mathbf{j}-\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \sin \phi \cos \phi \mathbf{k}\right\|^{2} \\
& =\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \sin ^{4} \phi+\sin ^{2} \phi \cos ^{2} \phi=\sin ^{2} \phi,
\end{aligned}
$$

the area of the desired surface can be computed by

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \int_{\phi}^{\pi-\phi} \sin \phi d \theta d \phi=\int_{0}^{\frac{\pi}{2}}(\pi-2 \phi) \sin \phi d \phi \\
& \quad=\left.(-\pi \cos \phi+2 \phi \cos \phi-2 \sin \phi)\right|_{\phi=0} ^{\phi=\frac{\pi}{2}}=\pi-2 .
\end{aligned}
$$

§A． 4 The Surface Integrals

Example（cont．）

Another way to parameterize Σ is to view Σ as the graph of func－ tion $z=\sqrt{1-x^{2}-y^{2}}$ over D ，where D is the projection of Σ along z－axis onto $x y$－plane．We note that the boundary of D can be pa－ rameterized by

$$
\tilde{\boldsymbol{r}}(t)=\cos t \sin t \mathbf{i}+\sin t \sin t \mathbf{j}, \quad t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Let $(x, y) \in \partial D$ ．Then $x^{2}+y^{2}=y$ ；thus Σ can also be parameterized by $\psi: D \rightarrow \mathbb{R}^{3}$ ，where
$\psi(x, y)=x \mathbf{i}+y \mathbf{j}+\sqrt{1-x^{2}-y^{2}} \mathbf{k}$ and $D=\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$.

§A． 4 The Surface Integrals

Example（cont．）

Therefore，with f denoting the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$ ，the surface area of Σ is

$$
\begin{aligned}
& \int_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A=\int_{0}^{1} \int_{-\sqrt{y-y^{2}}}^{\sqrt{y-y^{2}}} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d x d y \\
& \quad=\left.\int_{0}^{1} \arcsin \frac{x}{\sqrt{1-y^{2}}}\right|_{x=-\sqrt{y-y^{2}}} ^{x=\sqrt{y-y^{2}}} d y=2 \int_{0}^{1} \arcsin \frac{\sqrt{y}}{\sqrt{1+y}} d y
\end{aligned}
$$

thus making a change of variable $y=\tan ^{2} \theta$ we conclude that the surface area of Σ is

$$
\begin{aligned}
& 2 \int_{0}^{\frac{\pi}{4}} \arcsin \frac{\tan \theta}{\sec \theta} d\left(\tan ^{2} \theta\right)=2 \int_{0}^{\frac{\pi}{4}} \theta d\left(\tan ^{2} \theta\right) \\
& \quad=2\left[\left.\theta \tan ^{2} \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan ^{2} \theta d \theta\right]=\pi-2 .
\end{aligned}
$$

§A． 4 The Surface Integrals

§A．4．3 Surface integrals of scalar functions
Let $\Sigma \subseteq \mathbb{R}^{3}$ be a regular surface and $f: \Sigma \rightarrow \mathbb{R}$ be a real－valued function．We partition Σ into small pieces $\Sigma_{1}, \Sigma_{2}, \cdots, \Sigma_{n}$ so that $\Sigma_{i} \cap \Sigma_{j}$ has zero area if $i \neq j$ and $\Sigma=\bigcup_{k=1}^{n} \Sigma_{k}$ ．A Riemann sum of f for partition $\left\{\Sigma_{1}, \cdots, \Sigma_{n}\right\}$（of Σ ）takes the form

$$
\sum_{k=1}^{n} f\left(p_{k}\right) \sigma\left(\Sigma_{k}\right)
$$

where p_{1}, \cdots, p_{n} are points on Σ satisfying $p_{k} \in \Sigma_{k}$ ，and $\sigma\left(\Sigma_{k}\right)$ denotes the surface area of Σ_{k} ．The limit of Riemann sums as $\max \left\{\operatorname{diam}\left(\Sigma_{1}\right), \operatorname{diam}\left(\Sigma_{2}\right), \cdots, \operatorname{diam}\left(\Sigma_{n}\right)\right\}$ approaches zero，if ex－ ists，is called the surface integral of f on Σ ，and is denoted by $\int_{\Sigma} f d S$ ．

§A． 4 The Surface Integrals

Theorem

Let D be an open region in the plane，and
$\Sigma \equiv\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}\right.$ for some $\left.(u, v) \in D\right\}$ be a regular parametric surface so that \boldsymbol{r} is continuously differen－ tiable，and $f: \Sigma \rightarrow \mathbb{R}$ be a continuous function．Then the surface integral of f on Σ exists and is given by

$$
\iint_{D}(f \circ \boldsymbol{r})(u, v)\left\|\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right)(u, v)\right\| d(u, v)
$$

Remark：If the surface Σ is the graph of a function $f: R \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ ， then for a continuous function $g: \Sigma \rightarrow \mathbb{R}$ ，we have
$\int_{\Sigma} g d S=\iint_{R} g(x, y, f(x, y)) \sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d A$

§A． 4 The Surface Integrals

Theorem

Let D be an open region in the plane，and
$\Sigma \equiv\left\{\boldsymbol{r} \in \mathbb{R}^{3} \mid \boldsymbol{r}=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}\right.$ for some $\left.(u, v) \in D\right\}$
be a regular parametric surface so that \boldsymbol{r} is continuously differen－ tiable，and $f: \Sigma \rightarrow \mathbb{R}$ be a continuous function．Then the surface integral of f on Σ exists and is given by

$$
\iint_{D}(f \circ \boldsymbol{r})(u, v)\left\|\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right)(u, v)\right\| d(u, v)
$$

Remark：If the surface Σ is the graph of a function $f: R \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ ， then for a continuous function $g: \Sigma \rightarrow \mathbb{R}$ ，we have

$$
\int_{\Sigma} g d S=\iint_{R} g(x, y, f(x, y)) \sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d A
$$

§A． 4 The Surface Integrals

Example

Evaluate the surface integral $\int_{\Sigma}\left(y^{2}+2 y z\right) d S$ ，where Σ is the first－ octant portion of the plane $2 x+y+2 z=6$ ．

First，we note that Σ can be parameterized by

$$
\Sigma=\left\{\left.x \mathbf{i}+y \mathbf{j}+\frac{6-2 x-y}{2} \mathbf{k} \right\rvert\,(x, y) \in R\right\}
$$

where R is the triangle $\{(x, y) \mid x \in[0,3], 0 \leqslant y \leqslant 6-2 x\}$ ．Therefore，

$$
\begin{aligned}
& \int_{\Sigma}\left(y^{2}+2 y z\right) d S \\
&=\iint_{R}\left(y^{2}+2 y \cdot \frac{6-2 x-y}{2}\right) \sqrt{1+(-1)^{2}+\left(-\frac{1}{2}\right)^{2}} d A \\
&=\int_{0}^{3}\left(\int_{0}^{6-2 x} 3\right. \\
&\left.\frac{2}{2}(6 y-2 x y) d y\right) d x=\cdots=\frac{243}{2} .
\end{aligned}
$$

§A． 4 The Surface Integrals

Example

Evaluate the surface integral $\int_{\Sigma} \sqrt{x(1+2 z)} d S$ ，where Σ is the por－ tion of the cylinder $z=\frac{y^{2}}{2}$ over the triangular region

$$
R \equiv\{(x, y) \mid x \geqslant 0, y \geqslant 0, x+y \leqslant 1\}
$$

in the xy－plane．Similar to the previous example，we have

$$
\begin{aligned}
\int_{\Sigma} & \sqrt{x(1+2 z)} d S=\iint_{R} \sqrt{x\left(1+y^{2}\right)} \sqrt{1+0^{2}+y^{2}} d A \\
& =\int_{0}^{1}\left(\int_{0}^{1-x} \sqrt{x}\left(1+y^{2}\right) d y\right) d x=\left.\int_{0}^{1} \sqrt{x}\left(y+\frac{y^{3}}{3}\right)\right|_{y=0} ^{y=1-x} d x \\
& =\int_{0}^{1} \sqrt{x}\left(1-x+\frac{(1-x)^{3}}{3}\right) d x=\frac{284}{945}
\end{aligned}
$$

§A． 4 The Surface Integrals

Example

Evaluate the surface integral $\int_{\Sigma} z d S$ ，where Σ is the surface given in one of previous examples

which can be parameterized by

$$
\begin{aligned}
& \Sigma=\{\boldsymbol{r}(\theta, \phi)=\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k} \mid \\
&\left.0 \leqslant \phi \leqslant \frac{\pi}{2}, \phi \leqslant \theta \leqslant \pi-\phi\right\} .
\end{aligned}
$$

§A． 4 The Surface Integrals

Example（cont．）

Therefore，

$$
\begin{aligned}
\int_{\Sigma} z d S & =\int_{0}^{\frac{\pi}{2}}\left(\int_{\phi}^{\pi-\phi} \cos \phi\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d \theta\right) d \phi \\
& =\int_{0}^{\frac{\pi}{2}}\left(\int_{\phi}^{\pi-\phi} \cos \phi \sin \phi d \theta\right) d \phi \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(\pi-2 \phi) \sin (2 \phi) d \phi \\
& =\frac{1}{2}\left[\left.(\pi-2 \phi) \frac{-\cos (2 \phi)}{2}\right|_{\phi=0} ^{\phi=\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{\cos (2 \phi)}{2} d \phi\right] \\
& =\frac{1}{2}\left(\frac{\pi}{2}-\left.\frac{\sin (2 \phi)}{4}\right|_{\phi=0} ^{\phi=\frac{\pi}{2}}\right)=\frac{\pi}{4}
\end{aligned}
$$

§A． 5 The Flux Integrals

Let $\Sigma \subseteq \mathbb{R}^{3}$ be a regular parametric surface with a continuous normal vector field $\mathbf{n}: \Sigma \rightarrow \mathbb{R}^{3}$（sometimes this is called＂Σ is oriented by $\mathbf{n "}$ ）．For a bounded continuous vector－valued function $F: \Sigma \rightarrow \mathbb{R}^{3}$ ， the flux integral of \boldsymbol{F} across Σ（in direction \mathbf{n} ）is the surface integral of $\boldsymbol{F} \cdot \mathbf{n}$ on Σ ；that is，
the flux integral of F across $\Sigma($ in direction $n)=\int_{\Sigma} F \cdot \mathbf{n} d S$

§A． 5 The Flux Integrals

Let $\Sigma \subseteq \mathbb{R}^{3}$ be a regular parametric surface with a continuous normal vector field $\mathbf{n}: \Sigma \rightarrow \mathbb{R}^{3}$（sometimes this is called＂Σ is oriented by $\mathbf{n}^{\prime \prime}$ ）．For a bounded continuous vector－valued function $\boldsymbol{F}: \Sigma \rightarrow \mathbb{R}^{3}$ ， the flux integral of \boldsymbol{F} across Σ（in direction \mathbf{n} ）is the surface integral of $\boldsymbol{F} \cdot \mathbf{n}$ on Σ ；that is，
the flux integral of \boldsymbol{F} across $\Sigma($ in direction $\mathbf{n})=\int_{\Sigma} \boldsymbol{F} \cdot \mathbf{n} d S$ ．

§A． 5 The Flux Integrals

§A．5．1 Physical Interpretation

Let $\Omega \subseteq \mathbb{R}^{3}$ be an open set which stands for a fluid container and fully contains some liquid such as water，and $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{3}$ be a vector－field which stands for the fluid velocity；that is， $\boldsymbol{u}(x)$ is the fluid velocity at point $x \in \Omega$ ．Furthermore，let $\Sigma \subseteq \Omega$ be a surface immersed in the fluid with given orientation \mathbf{n} ，and $c: \Omega \rightarrow \mathbb{R}$ be the concentration of certain material dissolving in the liquid．
amount of the material carried across the surface in the direction \mathbf{n} by the fluid in a time period of Δt is

Therefore， $c u \cdot n d S$ is the rate of the amount of the material
\square

§A． 5 The Flux Integrals

§A．5．1 Physical Interpretation

Let $\Omega \subseteq \mathbb{R}^{3}$ be an open set which stands for a fluid container and fully contains some liquid such as water，and $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{3}$ be a vector－field which stands for the fluid velocity；that is， $\boldsymbol{u}(x)$ is the fluid velocity at point $x \in \Omega$ ．Furthermore，let $\Sigma \subseteq \Omega$ be a surface immersed in the fluid with given orientation \mathbf{n} ，and $c: \Omega \rightarrow \mathbb{R}$ be the concentration of certain material dissolving in the liquid．Then the amount of the material carried across the surface in the direction \mathbf{n} by the fluid in a time period of Δt is

$$
\Delta t \cdot \int_{\Sigma} c \mathbf{u} \cdot \mathbf{n} d S
$$

Therefore， $\int_{\Sigma} c \boldsymbol{u} \cdot \mathbf{n} d S$ is the rate of the amount of the material carried across the surface in the direction \mathbf{n} by the fluid．

§A． 5 The Flux Integrals

Example

Find the flux integral of the vector field $\boldsymbol{F}(x, y, z)=\left(x, y^{2}, z\right)$ upward through the first octant part Σ of the cylindrical surface $x^{2}+z^{2}=$ $a^{2}, 0<y<b$ ．

Figure 2：The surface Σ

§A． 5 The Flux Integrals

Example（cont．）

First，we parameterize Σ by

$$
\boldsymbol{r}(u, v)=u \mathbf{i}+v \mathbf{j}+\sqrt{a^{2}-u^{2}} \mathbf{k}, \quad(u, v) \in D=(0, a) \times(0, b)
$$

so that $\left\|\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right)(u, v)\right\|_{\mathbb{R}^{3}}^{2}=\frac{a^{2}}{a^{2}-u^{2}}$ ，and the upward－pointing unit normal is $\mathbf{N}(x, y, z)=\left(\frac{x}{a}, 0, \frac{z}{a}\right)$ ．

§A． 5 The Flux Integrals

Example（cont．）

First，we parameterize Σ by

$$
\boldsymbol{r}(u, v)=u \mathbf{i}+v \mathbf{j}+\sqrt{a^{2}-u^{2}} \mathbf{k}, \quad(u, v) \in D=(0, a) \times(0, b)
$$

so that $\left\|\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right)(u, v)\right\|_{\mathbb{R}^{3}}^{2}=\frac{a^{2}}{a^{2}-u^{2}}$ ，and the upward－pointing unit normal is $\mathbf{N}(x, y, z)=\left(\frac{x}{a}, 0, \frac{z}{a}\right)$ ．Therefore，

$$
\begin{aligned}
\int_{\Sigma} \boldsymbol{F} \cdot \mathbf{N} d S & =\iint_{D} \frac{1}{a}\left(u^{2}+a^{2}-u^{2}\right) \frac{a}{\sqrt{a^{2}-u^{2}}} d(u, v) \\
& =a^{2} \iint_{D} \frac{1}{\sqrt{a^{2}-u^{2}}} d(u, v) \\
& =a^{2} \int_{0}^{b} \int_{0}^{a} \frac{1}{\sqrt{a^{2}-u^{2}}} d u d v=\left.a^{2} b \arcsin \frac{u}{a}\right|_{u=0} ^{u=a}=\frac{\pi a^{2} b}{2} .
\end{aligned}
$$

§A． 5 The Flux Integrals

§A．5．2 Measurements of the flux－the divergence operator Let $\Omega \subseteq \mathbb{R}^{3}$ be an open set，and $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right): \Omega \rightarrow \mathbb{R}^{3}$ be a continuously differentiable vector field．Suppose that \mathcal{O} is a bounded open set whose boundary is piecewise smooth so that an outward－ pointing unit normal vector field $\mathbf{N}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}\right)$ can be defined on $\partial \mathcal{O}$ except on some curves．Then the flux integral of \boldsymbol{u} on $\partial \mathcal{O}$ in the direction \mathbf{N} is

$$
\int_{\partial \mathcal{O}} \boldsymbol{u} \cdot \mathbf{N} d S
$$

Consider a special case that $\mathcal{O}=(a$ open cube so that $\partial \mathcal{O}=\left\{a_{1}, a_{2}\right\} \times \Sigma_{1} \cup\left\{b_{1}, b_{2}\right\}$ Then

§A． 5 The Flux Integrals

§A．5．2 Measurements of the flux－the divergence operator Let $\Omega \subseteq \mathbb{R}^{3}$ be an open set，and $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right): \Omega \rightarrow \mathbb{R}^{3}$ be a continuously differentiable vector field．Suppose that \mathcal{O} is a bounded open set whose boundary is piecewise smooth so that an outward－ pointing unit normal vector field $\mathbf{N}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}\right)$ can be defined on $\partial \mathcal{O}$ except on some curves．Then the flux integral of \boldsymbol{u} on $\partial \mathcal{O}$ in the direction \mathbf{N} is

$$
\int_{\partial \mathcal{O}} \boldsymbol{u} \cdot \mathbf{N} d S
$$

Consider a special case that $\mathcal{O}=\left(a_{1}, a_{2}\right) \times\left(b_{1}, b_{2}\right) \times\left(c_{1}, c_{2}\right)$ be an open cube so that $\partial \mathcal{O}=\left\{a_{1}, a_{2}\right\} \times \Sigma_{1} \cup\left\{b_{1}, b_{2}\right\} \times \Sigma_{2} \cup\left\{c_{1}, c_{3}\right\} \times \Sigma_{3}$ ．
Then

$$
\int_{\partial \mathcal{O}} \boldsymbol{u} \cdot \mathbf{N} d S=\sum_{k=1}^{3} \int_{\Sigma_{k}} \boldsymbol{u} \cdot \mathbf{N} d S
$$

§A． 5 The Flux Integrals

Since on Σ_{3} the outward－pointing normal \mathbf{N} is given by

$$
\mathbf{N}(x, y, z)=\left\{\begin{array}{cl}
-\mathbf{k} & \text { if }(x, y, z) \in\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}\right\} \\
\mathbf{k} & \text { if }(x, y, z) \in\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{2}\right\}
\end{array}\right.
$$

we find that

$$
\begin{aligned}
\int_{\Sigma_{3}} \boldsymbol{u} & \cdot \mathbf{N} d S \\
& =\iint_{\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]} u_{3}\left(x, y, c_{2}\right) d A-\iint_{\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]} u_{3}\left(x, y, c_{1}\right) d A \\
& =\left.\iint_{\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]} u_{3}(x, y, z)\right|_{x=c_{1}} ^{x=c_{2}} d A \\
& =\iint_{\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]}\left(\int_{\left[c_{1}, c_{2}\right]} \frac{\partial u_{3}}{\partial z}(x, y, z) d z\right) d A=\iiint_{\mathcal{O}} \frac{\partial u_{3}}{\partial z} d V
\end{aligned}
$$

where the last equality is established by Fubini＇s Theorem．

§A． 5 The Flux Integrals

Similarly，

$$
\int_{\Sigma_{1}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}} \frac{\partial u_{1}}{\partial x} d V \text { and } \int_{\Sigma_{2}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}} \frac{\partial u_{2}}{\partial y} d V
$$

thus

$$
\begin{equation*}
\int_{\partial \mathcal{O}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}}\left(\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z}\right) d V=\iiint_{\mathcal{O}} \operatorname{div} \boldsymbol{u} d V . \tag{1}
\end{equation*}
$$

Remark：Let $\mathcal{O}(a, r)$ denote a cube centered at $a \in \Omega$ with side length r ．Using（1），

In other words， $\operatorname{div} \boldsymbol{u}$ at a point \boldsymbol{x} is the instantaneous amount（per volume）of material（with concentration 1）carried outside an in－ finitesimal cube centered at x ．

§A． 5 The Flux Integrals

Similarly，

$$
\int_{\Sigma_{1}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}} \frac{\partial u_{1}}{\partial x} d V \text { and } \int_{\Sigma_{2}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}} \frac{\partial u_{2}}{\partial y} d V
$$

thus

$$
\begin{equation*}
\int_{\partial \mathcal{O}} \boldsymbol{u} \cdot \mathbf{N} d S=\iiint_{\mathcal{O}}\left(\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z}\right) d V=\iiint_{\mathcal{O}} \operatorname{div} \boldsymbol{u} d V \tag{1}
\end{equation*}
$$

Remark：Let $\mathcal{O}(\boldsymbol{a}, r)$ denote a cube centered at $\boldsymbol{a} \in \Omega$ with side length r ．Using（1），

$$
\lim _{r \rightarrow 0} \frac{1}{|\mathcal{O}(\mathbf{a}, r)|} \int_{\partial \mathcal{O}(\mathbf{a}, r)} \boldsymbol{u} \cdot \mathbf{N} d S=(\operatorname{div} \boldsymbol{u})(\boldsymbol{a}) \quad \forall \boldsymbol{a} \in \Omega
$$

In other words， $\operatorname{div} \boldsymbol{u}$ at a point \boldsymbol{x} is the instantaneous amount（per volume）of material（with concentration 1）carried outside an in－ finitesimal cube centered at \boldsymbol{x} ．

§A． 6 The Divergence Theorem

Equation（1）from the previous page in fact holds for more general domain \mathcal{O} ，and we have the following

Theorem（The Divergence Theorem）

Let $\Omega \subseteq R^{3}$ be a bounded domain such that $\partial \Omega$ is piecewise smooth with outward pointing normal \mathbf{N} ，and $\boldsymbol{w}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ be continuously differentiable vector field．Then

$$
\int_{\partial \Omega} \boldsymbol{w} \cdot \mathbf{N} d S=\iiint_{\Omega} \operatorname{div} \boldsymbol{w} d V
$$

Green＇s Theorem in Normal／Divergence Form： $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field．Then

$$
\int_{\partial R} F \cdot N d s=\iint_{R} \operatorname{div} F d A
$$

> where \mathbf{N} is the outward－pointing unit normal on ∂R ．

§A． 6 The Divergence Theorem

Equation（1）from the previous page in fact holds for more general domain \mathcal{O} ，and we have the following

Theorem（The Divergence Theorem）

Let $\Omega \subseteq R^{3}$ be a bounded domain such that $\partial \Omega$ is piecewise smooth with outward pointing normal \mathbf{N} ，and $\boldsymbol{w}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ be continuously differentiable vector field．Then

$$
\int_{\partial \Omega} \boldsymbol{w} \cdot \mathbf{N} d S=\iiint_{\Omega} \operatorname{div} \boldsymbol{w} d V
$$

Green＇s Theorem in Normal／Divergence Form：Let $\boldsymbol{F}: \bar{R} \subseteq$ $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field．Then

$$
\oint_{\partial R} \boldsymbol{F} \cdot \mathbf{N} d s=\iint_{R} \operatorname{div} \boldsymbol{F} d A
$$

where \mathbf{N} is the outward－pointing unit normal on ∂R ．

§A． 6 The Divergence Theorem

Remark：Similar to Green＇s Theorem in Divergence Form，the Di－ vergence Theorem states that＂一向量場在一區域的邊界上的某種有方向性的和（積分）等於該向量場某種微分的樣子（即散度）在該區域上的和（積分）＂：

Comparison：The fundamental theorem of calculus

§A． 6 The Divergence Theorem

Remark：Similar to Green＇s Theorem in Divergence Form，the Di－ vergence Theorem states that＂一向量場在一區域的邊界上的某種有方向性的和（積分）等於該向量場某種微分的様子（即散度）在該區域上的和（積分）＂：
一向量場在一區域的邊界上的某種具方向性的和 $=\int_{\partial \Omega} \boldsymbol{w} \cdot \mathbf{N} d S$ ．
該向量場某種微分的様子在該區域上的和 $=\iiint_{\Omega} \operatorname{div} \boldsymbol{w} d V$ ．
Comparison：The fundamental theorem of calculus

§A． 6 The Divergence Theorem

Remark：Similar to Green＇s Theorem in Divergence Form，the Di－ vergence Theorem states that＂一向量場在一區域的邊界上的某種有方向性的和（積分）等於該向量場某種微分的様子（即散度）在該區域上的和（積分）＂：
一向量場在一區域的邊界上的某種具方向性的和 $=\int_{\partial \Omega} \boldsymbol{w} \cdot \mathbf{N} d S$ ．
該向量場某種微分的樣子在該區域上的和 $=\iiint_{\Omega} \operatorname{div} \boldsymbol{w} d V$ ．
Comparison：The fundamental theorem of calculus

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) "=" \int_{\partial[a, b]} f
$$

§A． 6 The Divergence Theorem

Letting \boldsymbol{w} be the product of a scalar function φ and a vector field \boldsymbol{v} in the Divergence Theorem，using the identity

$$
\operatorname{div}(\varphi \mathbf{v})=\varphi \operatorname{div} \boldsymbol{v}+\nabla \varphi \cdot \mathbf{v}
$$

we conclude the following

Corollary

Let $\Omega \subseteq \mathbb{R}^{3}$ be a bounded domain such that $\partial \Omega$ is piecewise smooth with outward－pointing unit normal $\mathbf{N}, \boldsymbol{v}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ be a continuously differentiable vector field，and $\varphi: \bar{\Omega} \rightarrow \mathbb{R}$ be continuously differen－ tiable．Then

$$
\iiint_{\Omega} \varphi \operatorname{div} \mathbf{v} d V=\int_{\partial \Omega}(\boldsymbol{v} \cdot \mathbf{N}) \varphi d S-\iiint_{\Omega} \boldsymbol{v} \cdot \nabla \varphi d V
$$

§A． 6 The Divergence Theorem

Letting $\boldsymbol{v}=f \mathbf{e}_{i}$ for some continuously differentiable function $f: \bar{\Omega} \rightarrow$ \mathbb{R} in the previous corollary，we obtain the following

Corollary

Let $\Omega \subseteq \mathbb{R}^{3}$ be a bounded domain such that $\partial \Omega$ is piecewise smooth with outward－pointing normal $\mathbf{N}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}\right)$ ，and $f, \varphi: \bar{\Omega} \rightarrow \mathbb{R}$ be continuously differentiable functions．Then

$$
\iiint_{\Omega} \varphi \frac{\partial f}{\partial x_{i}} d V=\int_{\partial \Omega} f \varphi \mathrm{~N}_{i} d S-\iiint_{\Omega} f \frac{\partial \varphi}{\partial x_{i}} d V
$$

§A． 6 The Divergence Theorem

Example

Let Ω be the the first octant part bounded by the cylindrical surface $x^{2}+z^{2}=a^{2}$ and the plane $y=b$ ，and $\boldsymbol{F}: \Omega \rightarrow \mathbb{R}^{3}$ be a vector－ valued function defined by $\boldsymbol{F}(x, y, z)=\left(x, y^{2}, z\right)$ ．

Figure 3：The domain Ω and its five pieces of boundaries

§A． 6 The Divergence Theorem

Example（cont．）

With \mathbf{N} denoting the outward－pointing unit normal of $\partial \Omega$ ，

$$
\begin{aligned}
\iiint_{\Omega} \operatorname{div} \boldsymbol{F} d V & =\int_{0}^{a} \int_{0}^{b} \int_{0}^{\sqrt{a^{2}-x^{2}}}(2+2 y) d z d y d x \\
& =\left(b^{2}+2 b\right) \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d z d x=\frac{\pi a^{2}\left(b^{2}+2 b\right)}{4}
\end{aligned}
$$

On the other hand，we note that the boundary of Ω has five parts：
（1）Σ as given in previous example，
（2．two rectangles $\mathrm{R}_{1}=\{x=0\} \times[0, b] \times[0, a], \mathrm{R}_{2}=[0, a$
\square
（3）two quarter disc $\mathrm{D}_{1}=\left\{(x, 0, z) \in \mathbb{R}^{3} \mid x^{2}+z^{2} \leqslant a^{2}, x, z \geqslant 0\right\}$

§A． 6 The Divergence Theorem

Example（cont．）

With \mathbf{N} denoting the outward－pointing unit normal of $\partial \Omega$ ，

$$
\begin{aligned}
\iiint_{\Omega} \operatorname{div} \boldsymbol{F} d V & =\int_{0}^{a} \int_{0}^{b} \int_{0}^{\sqrt{a^{2}-x^{2}}}(2+2 y) d z d y d x \\
& =\left(b^{2}+2 b\right) \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d z d x=\frac{\pi a^{2}\left(b^{2}+2 b\right)}{4}
\end{aligned}
$$

On the other hand，we note that the boundary of Ω has five parts：
（1）Σ as given in previous example，
（2）two rectangles $\mathrm{R}_{1}=\{x=0\} \times[0, b] \times[0, a], \mathrm{R}_{2}=[0, a] \times$ $[0, b] \times\{z=0\}$ ，and
（3）two quarter disc $\mathrm{D}_{1}=\left\{(x, 0, z) \in \mathbb{R}^{3} \mid x^{2}+z^{2} \leqslant a^{2}, x, z \geqslant 0\right\}$ and $\mathrm{D}_{2}=\left\{(x, b, z) \in \mathbb{R}^{3} \mid x^{2}+z^{2} \leqslant a^{2}, x, z \geqslant 0\right\}$ ．

§A． 6 The Divergence Theorem

Example（cont．）

Therefore，

$$
\begin{aligned}
& \int_{\mathrm{R}_{1}} \boldsymbol{F} \cdot \mathbf{N} d S=\int_{0}^{a} \int_{0}^{b}\left(0, y^{2}, z\right) \cdot(-1,0,0) d y d z=0 \\
& \int_{\mathrm{R}_{2}} \boldsymbol{F} \cdot \mathbf{N} d S=\int_{0}^{a} \int_{0}^{b}\left(x, y^{2}, 0\right) \cdot(0,0,-1) d y d x=0 \\
& \int_{\mathrm{D}_{1}} \boldsymbol{F} \cdot \mathbf{N} d S=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}(x, 0, z) \cdot(0,-1,0) d z d x=0
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\mathrm{D}_{1}} \boldsymbol{F} \cdot \mathbf{N} d S & =\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x, b^{2}, z\right) \cdot(0,1,0) d z d x \\
& =b^{2} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d z d x=\frac{\pi a^{2} b^{2}}{4}
\end{aligned}
$$

§A． 6 The Divergence Theorem

Example（cont．）

Together with the result in previous example，we find that

$$
\begin{aligned}
\int_{\partial \Omega} & \boldsymbol{F} \cdot \mathbf{N} d S \\
& =\left(\int_{\Sigma}+\int_{\mathrm{R}_{1}}+\int_{\mathrm{R}_{2}}+\int_{\mathrm{D}_{1}}+\int_{\mathrm{D}_{2}}\right) \boldsymbol{F} \cdot \mathbf{N} d S \\
& =\frac{\pi a^{2} b^{2}}{4}+\frac{\pi a^{2} b}{2}=\frac{\pi a^{2}\left(b^{2}+2 b\right)}{4} \\
& =\iiint_{\Omega} \operatorname{div} \boldsymbol{F} d V
\end{aligned}
$$

