數學流體力學之理論與計算
 Homework Assignment 5

Due date：Prob．1－3 on Dec． 142012
Prob． 4 on Jan． 042013

Part I：Theoretical assignments

Problem 1．Find an orthonormal basis of $L^{2}\left(\mathbb{T}^{\mathrm{n}}\right)$ which is also an orthogonal basis of $H^{1}\left(\mathbb{T}^{\mathrm{n}}\right)$ by looking at the eigenfunctions of $(1-\Delta)$ ．In other words，define $T: L^{2}\left(\mathbb{T}^{\mathrm{n}}\right) \rightarrow$ $L^{2}\left(\mathbb{T}^{\mathrm{n}}\right)$ by $T f=u$ if

$$
u-\Delta u=f \quad \text { in } \quad \mathbb{T}^{\mathrm{n}}
$$

Show that T is compact，thus by Theorem 4.7 of the Lecture Note one can construct an orthonormal basis of $L^{2}\left(\mathbb{T}^{\mathrm{n}}\right)$ by looking at the eigenvectors of T ．State a thoerem similar to Theorem 4.8 of the Lecture Note based on what you see．

Problem 2．Prove Theorem 5.4 of the Lecture Note．
Problem 3．Let $\mathrm{Q}: L^{2}\left(\mathbb{T}^{\mathrm{n}}\right) / \mathbb{R} \rightarrow H^{1}\left(\mathbb{T}^{\mathrm{n}}\right)$ be defined as in the proof of the Lagrange Multiplier Lemma．Show that Range（Q）is closed．This problem completes the proof of the Lagrange Multiplier Lemma．

Part II：Computational assignments

Problem 4．Consider the Stokes equations on \mathbb{T}^{2} ：

$$
\begin{aligned}
u_{t}-\Delta u+\nabla p=f & \text { in } \quad \mathbb{T}^{2} \times(0,1] \\
\operatorname{div} u=0 & \text { in } \quad \mathbb{T}^{2} \times(0,1] \\
u=u_{0} & \text { on } \quad \mathbb{T}^{2} \times\{t=0\},
\end{aligned}
$$

where the initial velocity u_{0} and the external forcing f are given by

$$
\begin{aligned}
u_{0}(x, y) & =(0,0), \\
f(x, y, t) & =\left(|y-\pi| \sin \frac{x}{2},|x-\pi| \cos \frac{y}{2}\right) .
\end{aligned}
$$

Let N be the number of partitions on each side，and $\Delta t=0.01$ be the time－step．
1．Use the projection method with non－staggered grid to solve the Stokes equations above numerically，with $N=25,50,100$ ．Let $\left(u_{N}, p_{N}\right)$ denote the solution at time $t=1$ ． Plot u_{N} and p_{N} ．

2．Use the penalty method to solve the Stokes equations above numerically，with $N=$ $25,50,100$ and $\theta=10^{-4}, 10^{-6}$ and 10^{-8} ．Let u_{N}^{θ} denote the solution at $t=1$ ．Plot u_{N}^{θ} and $p_{N}^{\theta}=-\frac{1}{\theta} \operatorname{div} u_{N}^{\theta}$ ．
3. With the same N, check if the solution u_{N}^{θ} converges to u_{N} as $\theta \rightarrow 0$.

Note that you can use the mesh generator of the periodic domain in this problem by rescaling. You might need the command sparse to make the matrix computations more efficient.

