數學流體力學之理論與計算

Homework Assignment 5

Due date: Prob.1-3 on Dec. 14 2012 Prob.4 on Jan. 04 2013

Part I: Theoretical assignments

Problem 1. Find an orthonormal basis of $L^2(\mathbb{T}^n)$ which is also an orthogonal basis of $H^1(\mathbb{T}^n)$ by looking at the eigenfunctions of $(1 - \Delta)$. In other words, define $T : L^2(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$ by Tf = u if

 $u - \Delta u = f$ in \mathbb{T}^n .

Show that T is compact, thus by Theorem 4.7 of the Lecture Note one can construct an orthonormal basis of $L^2(\mathbb{T}^n)$ by looking at the eigenvectors of T. State a theorem similar to Theorem 4.8 of the Lecture Note based on what you see.

Problem 2. Prove Theorem 5.4 of the Lecture Note.

Problem 3. Let $Q : L^2(\mathbb{T}^n)/\mathbb{R} \to H^1(\mathbb{T}^n)$ be defined as in the proof of the Lagrange Multiplier Lemma. Show that Range(Q) is closed. This problem completes the proof of the Lagrange Multiplier Lemma.

Part II: Computational assignments

Problem 4. Consider the Stokes equations on \mathbb{T}^2 :

$$u_t - \Delta u + \nabla p = f \quad \text{in} \quad \mathbb{T}^2 \times (0, 1],$$
$$\operatorname{div} u = 0 \quad \text{in} \quad \mathbb{T}^2 \times (0, 1],$$
$$u = u_0 \quad \text{on} \quad \mathbb{T}^2 \times \{t = 0\}$$

where the initial velocity u_0 and the external forcing f are given by

$$u_0(x, y) = (0, 0),$$

$$f(x, y, t) = \left(|y - \pi| \sin \frac{x}{2}, |x - \pi| \cos \frac{y}{2}\right).$$

Let N be the number of partitions on each side, and $\Delta t = 0.01$ be the time-step.

- 1. Use the projection method with non-staggered grid to solve the Stokes equations above numerically, with N = 25, 50, 100. Let (u_N, p_N) denote the solution at time t = 1. Plot u_N and p_N .
- 2. Use the penalty method to solve the Stokes equations above numerically, with N = 25, 50, 100 and $\theta = 10^{-4}, 10^{-6}$ and 10^{-8} . Let u_N^{θ} denote the solution at t = 1. Plot u_N^{θ} and $p_N^{\theta} = -\frac{1}{\theta} \text{div} u_N^{\theta}$.

3. With the same N, check if the solution u_N^{θ} converges to u_N as $\theta \to 0$.

Note that you can use the mesh generator of the periodic domain in this problem by rescaling. You might need the command **sparse** to make the matrix computations more efficient.