以下以兩個與課堂(影片)上不同的方式證明 Taylor 定理。我們首先將 Taylor 定理以如下方 式重述:

若 f: (a,b) → ℝ 為 (n+1) 次可微,則對所有 (a,b) 中相異兩點 c 和 x,存在一個界於
 c 和 x 間的點 ξ 使得

$$\frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k}}{(x-c)^{n+1}} = \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

與之前相同,我們定義餘項 $R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k.$

Proof 1: In this proof we prove (\star) by induction.

(i) **Case** n = 0: In this case f : (a, b) is differentiable. Therefore, the mean value theorem shows that there exists ξ between c and x such that

$$\frac{f(x) - f(c)}{x - c} = f'(\xi)$$

which shows that (\star) holds for n = 0.

- (ii) Case n = m 1: Assume that (\star) holds for the case n = m 1 for some $m \in \mathbb{N}$.
- (iii) **Case** n = m: Suppose that $f : (a, b) \to \mathbb{R}$ is (m + 1)-times differentiable. Then f' is m-times differentiable on (a, b); thus (ii) implies that

for all
$$c, x \in (a, b)$$
 satisfying $c \neq x$ there exists ξ such that

$$\frac{f'(x) - \sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!} (x-c)^k}{(x-c)^{n+1}} = \frac{f^{(m+1)}(\xi)}{m!}.$$
(**)

Let $F(x) = f(x) - \sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!} (x-c)^k$ and $G(x) = (x-c)^{m+1}$. By Cauchy MVT, there exists x_1 between c and x such that

$$\frac{F(x) - F(c)}{G(x) - G(c)} = \frac{F'(x_1)}{G'(x_1)}.$$
(0.1)

Since

$$F'(x) = f'(x) - \sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!} k(x-c)^{k-1} = f'(x) - \sum_{k=1}^{m} \frac{f^{(k)}(c)}{(k-1)!} (x-c)^{k-1}$$
$$= f'(x) - \sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!} (x-c)^{k},$$

by $(\star\star)$ there exists ξ between c and x_1 such that

$$\frac{F'(x_1)}{G'(x_1)} = \frac{f'(x_1) - \sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!} (x_1 - c)^k}{(m+1)(x_1 - c)^m} = \frac{f^{(m+1)}(\xi)}{(m+1)!}.$$
 (0.2)

Combining (0.1) and (0.2), we conclude that (\star) holds for n = m.

By induction, (\star) holds for all $n \in \mathbb{N} \cup \{0\}$.

Proof 2: In this proof we establish (\star) by treating c as a variable but viewing x is a fixed number. Define

$$F(z) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!} (x-z)^{k}$$
 and $G(z) = (x-z)^{n+1}$

Then

$$F'(z) = -\sum_{k=0}^{n} \frac{d}{dz} \left[\frac{f^{(k)}(z)}{k!} (x-z)^{k} \right] = -\sum_{k=0}^{n} \left[\frac{f^{(k+1)}(z)}{k!} (x-z)^{k} + \frac{f^{(k)}(z)}{k!} k(x-z)^{k-1} (-1) \right]$$
$$= -\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!} (x-z)^{k} + \sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!} k(x-z)^{k-1}$$
$$= -\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!} (x-z)^{k} + \sum_{k=1}^{n} \frac{f^{(k)}(z)}{(k-1)!} (x-z)^{k-1}$$
$$= -\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!} (x-z)^{k} + \sum_{k=0}^{n-1} \frac{f^{(k+1)}(z)}{k!} (x-z)^{k} = -\frac{f^{(n+1)}(z)}{n!} (x-z)^{n}$$

and

$$G'(z) = -(n+1)(x-z)^n$$

Let $I = (\min\{c, x\}, \max\{c, x\})$ and $\overline{I} = [\min\{c, x\}, \max\{c, x\}]$. Then $F, G : \overline{I} \to \mathbb{R}$ are continuous and $F, G : I \to \mathbb{R}$ are differentiable. Moreover, $G'(z) \neq 0$ for all $z \in I$. Therefore, the Cauchy MVT implies that there exists ξ between c and x such that

$$\frac{F(x) - F(c)}{G(x) - G(c)} = \frac{F'(\xi)}{G'(\xi)} = \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

We then conclude (\star) from the fact that F(x) = G(x) = 0 and $F(c) = R_n(x)$.

以下為我們在課堂上展示的 matalb code。

大家可以改 N 去看不同的 partial sum 會是怎樣的結果。