以下以兩個與課堂（影片）上不同的方式證明 Taylor 定理。我們首先將 Taylor 定理以如下方式重述：

若 $f:(a, b) \rightarrow \mathbb{R}$ 為 $(n+1)$ 次可微，則對所有 (a, b) 中相異兩點 c 和 x ，存在一個界於 c 和 x 間的點 ξ 使得

$$
\frac{f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}}{(x-c)^{n+1}}=\frac{f^{(n+1)}(\xi)}{(n+1)!} .
$$

與之前相同，我們定義餘項 $R_{n}(x)=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$ ．
Proof 1：In this proof we prove（ \star ）by induction．
（i）Case $n=0$ ：In this case $f:(a, b)$ is differentiable．Therefore，the mean value theorem shows that there exists ξ between c and x such that

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}(\xi)
$$

which shows that（ \star ）holds for $n=0$ ．
（ii）Case $n=m-1$ ：Assume that (\star) holds for the case $n=m-1$ for some $m \in \mathbb{N}$ ．
（iii）Case $n=m$ ：Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is $(m+1)$－times differentiable．Then f^{\prime} is m－times differentiable on（ a, b ）；thus（ii）implies that
for all $c, x \in(a, b)$ satisfying $c \neq x$ there exists ξ such that

$$
\frac{f^{\prime}(x)-\sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!}(x-c)^{k}}{(x-c)^{n+1}}=\frac{f^{(m+1)}(\xi)}{m!} .
$$

Let $F(x)=f(x)-\sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$ and $G(x)=(x-c)^{m+1}$ ．By Cauchy MVT，there exists x_{1} between c and x such that

$$
\begin{equation*}
\frac{F(x)-F(c)}{G(x)-G(c)}=\frac{F^{\prime}\left(x_{1}\right)}{G^{\prime}\left(x_{1}\right)} . \tag{0.1}
\end{equation*}
$$

Since

$$
\begin{aligned}
F^{\prime}(x) & =f^{\prime}(x)-\sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!} k(x-c)^{k-1}=f^{\prime}(x)-\sum_{k=1}^{m} \frac{f^{(k)}(c)}{(k-1)!}(x-c)^{k-1} \\
& =f^{\prime}(x)-\sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!}(x-c)^{k},
\end{aligned}
$$

by（ $\star \star$ ）there exists ξ between c and x_{1} such that

$$
\begin{equation*}
\frac{F^{\prime}\left(x_{1}\right)}{G^{\prime}\left(x_{1}\right)}=\frac{f^{\prime}\left(x_{1}\right)-\sum_{k=0}^{m-1} \frac{f^{(k+1)}(c)}{k!}\left(x_{1}-c\right)^{k}}{(m+1)\left(x_{1}-c\right)^{m}}=\frac{f^{(m+1)}(\xi)}{(m+1)!} \tag{0.2}
\end{equation*}
$$

Combining（0．1）and（0．2），we conclude that（ \star ）holds for $n=m$ ．

By induction，（ \star ）holds for all $n \in \mathbb{N} \cup\{0\}$ ．
Proof 2：In this proof we establish（ $*$ ）by treating c as a variable but viewing x is a fixed number． Define

$$
F(z)=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!}(x-z)^{k} \quad \text { and } \quad G(z)=(x-z)^{n+1} .
$$

Then

$$
\begin{aligned}
F^{\prime}(z) & =-\sum_{k=0}^{n} \frac{d}{d z}\left[\frac{f^{(k)}(z)}{k!}(x-z)^{k}\right]=-\sum_{k=0}^{n}\left[\frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\frac{f^{(k)}(z)}{k!} k(x-z)^{k-1}(-1)\right] \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!} k(x-z)^{k-1} \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=1}^{n} \frac{f^{(k)}(z)}{(k-1)!}(x-z)^{k-1} \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=0}^{n-1} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}=-\frac{f^{(n+1)}(z)}{n!}(x-z)^{n}
\end{aligned}
$$

and

$$
G^{\prime}(z)=-(n+1)(x-z)^{n} .
$$

Let $I=(\min \{c, x\}, \max \{c, x\})$ and $\bar{I}=[\min \{c, x\}, \max \{c, x\}]$ ．Then $F, G: \bar{I} \rightarrow \mathbb{R}$ are contin－ uous and $F, G: I \rightarrow \mathbb{R}$ are differentiable．Moreover，$G^{\prime}(z) \neq 0$ for all $z \in I$ ．Therefore，the Cauchy MVT implies that there exists ξ between c and x such that

$$
\frac{F(x)-F(c)}{G(x)-G(c)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}=\frac{f^{(n+1)}(\xi)}{(n+1)!}
$$

We then conclude（ \star ）from the fact that $F(x)=G(x)=0$ and $F(c)=R_{n}(x)$ ．
以下為我們在課堂上展示的 matalb code。

$$
\begin{aligned}
& \gg \mathrm{dx}=2^{*} \mathrm{pi} / 100000 ; \\
& \gg \mathrm{x}=\mathrm{dx}: \mathrm{dx}: 2^{*} \mathrm{pi-} \mathrm{dx} ; \\
& \gg \mathrm{y}=\mathrm{zeros}(1, \text { length }(\mathrm{x})) ; \\
& \gg \mathrm{N}=100 ; \\
& \gg \text { for } \mathrm{k}=1: \mathrm{N} \\
& \gg \mathrm{y}=\mathrm{y}+\sin \left(\mathrm{k}^{*} \mathrm{x}\right) / \mathrm{k} ; \\
& \gg \text { end } \\
& \gg \operatorname{plot}\left(\mathrm{x}, \mathrm{y},{ }^{\prime} \mathrm{b}\right)
\end{aligned}
$$

大家可以改 N 去看不同的 partial sum 會是怎樣的結果。

