Exercise Problem Sets 9

Apr. 27. 2024

Problem 1. Show that the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1 .
$$

Problem 2. Show that the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{2 x x_{0}}{a^{2}}+\frac{2 y y_{0}}{b^{2}}=\frac{z+z_{0}}{c} .
$$

Problem 3. Let f be a differentiable function and consider the surface $z=x f\left(\frac{y}{x}\right)$. Show that the tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface passes through the origin.

Problem 4. Prove that the angle of inclination θ of the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies

$$
\cos \theta=\frac{1}{\sqrt{f_{x}\left(x_{0}, y_{0}\right)^{2}+f_{y}\left(x_{0}, y_{0}\right)^{2}+1}} .
$$

Problem 5. In the following problems, find all relative extrema and saddle points of the function. Use the Second Partials Test when applicable.
(1) $f(x, y)=x^{2}-x y-y^{2}-3 x-y$
(2) $f(x, y)=2 x y-\frac{1}{2}\left(x^{4}+y^{4}\right)+1$
(3) $f(x, y)=x y-2 x-2 y-x^{2}-y^{2}$
(4) $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$
(5) $f(x, y)=\sqrt{56 x^{2}-8 y^{2}-16 x-31}+1-8 x$
(6) $f(x, y)=\frac{1}{x}+x y+\frac{1}{y}$
(7) $f(x, y)=\ln (x+y)+x^{2}-y$
(8) $f(x, y)=2 \ln x+\ln y-4 x-y$
(9) $f(x, y)=x y \exp \left(-\frac{x^{2}+y^{2}}{2}\right)$
(10) $f(x, y)=x y+e^{-x y}$
(11) $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$
(12) $f(x, y)=\left(\frac{1}{2}-x^{2}+y^{2}\right) \exp \left(1-x^{2}-y^{2}\right)$

Problem 6. In the following problems, find the absolute extrema of the function over the region R (which contains boundaries).
(1) $f(x, y)=x^{2}+x y$, and $R=\{(x, y)| | x|\leqslant 2,|y| \leqslant 1\}$
(2) $f(x, y)=2 x-2 x y+y^{2}$, and R is the region in the $x y$-plane bounded by the graphs of $y=x^{2}$ and $y=1$.
(3) $f(x, y)=\frac{4 x y}{\left(x^{2}+1\right)\left(y^{2}+1\right)}$, and $R=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}$.
(4) $f(x, y)=x y^{2}$, and $R=\left\{(x, y) \mid x \geqslant 0, y \geqslant 0, x^{2}+y^{2} \leqslant 3\right\}$.
(5) $f(x, y)=2 x^{3}+y^{4}$, and $R=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}$.

Problem 7. Show that $f(x, y)=x^{2}+4 y^{2}-4 x y+2$ has an infinite number of critical points and that the discriminant $f_{x x} f_{y y}-f_{x y}^{2}=0$ at each one. Then show that f has a local (and absolute) minimum at each critical point

Problem 8. Show that $f(x, y)=x^{2} y e^{-x^{2}-y^{2}}$ has maximum values at $\left(\pm 1, \frac{1}{\sqrt{2}}\right)$ and minimum values at $\left(\pm 1,-\frac{1}{\sqrt{2}}\right)$. Show also that f has infinitely many other critical points and the discriminant $f_{x x} f_{y y}-f_{x y}^{2}=0$ at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?

Problem 9. Find two numbers a and b with $a \leqslant b$ such that

$$
\int_{a}^{b} \sqrt[3]{24-2 x-x^{2}} d x
$$

has its largest value.

