Exercise Problem Sets 9

Apr. 27. 2024

Problem 1. Show that the equation of the tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at the point (x_0, y_0, z_0) can be written as

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

Problem 2. Show that the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ at the point (x_0, y_0, z_0) can be written as

$$\frac{2xx_0}{a^2} + \frac{2yy_0}{b^2} = \frac{z+z_0}{c} \,.$$

Problem 3. Let f be a differentiable function and consider the surface $z = xf(\frac{y}{x})$. Show that the tangent plane at any point (x_0, y_0, z_0) on the surface passes through the origin.

Problem 4. Prove that the angle of inclination θ of the tangent plane to the surface z = f(x, y) at the point (x_0, y_0, z_0) satisfies

$$\cos \theta = \frac{1}{\sqrt{f_x(x_0, y_0)^2 + f_y(x_0, y_0)^2 + 1}}$$

Problem 5. In the following problems, find all relative extrema and saddle points of the function. Use the Second Partials Test when applicable.

(1) $f(x,y) = x^2 - xy - y^2 - 3x - y$ (2) $f(x,y) = 2xy - \frac{1}{2}(x^4 + y^4) + 1$ (3) $f(x,y) = xy - 2x - 2y - x^2 - y^2$ (4) $f(x,y) = x^3 + y^3 - 3x^2 - 3y^2 - 9x^2$ (5) $f(x,y) = \sqrt{56x^2 - 8y^2 - 16x - 31} + 1 - 8x$ (6) $f(x,y) = \frac{1}{x} + xy + \frac{1}{y}$ (7) $f(x,y) = \ln(x+y) + x^2 - y$ (8) $f(x,y) = 2\ln x + \ln y - 4x - y$ (9) $f(x,y) = xy \exp\left(-\frac{x^2 + y^2}{2}\right)$ (10) $f(x,y) = xy + e^{-xy}$ (11) $f(x,y) = (x^2 + x^2)e^{-x}$ (12) $f(x,y) = \frac{1}{2}(x^2 + x^2)\exp(1 - x^2 - y^2)$

(11)
$$f(x,y) = (x^2 + y^2)e^{-x}$$
 (12) $f(x,y) = \left(\frac{1}{2} - x^2 + y^2\right)\exp(1 - x^2 - y^2)$

Problem 6. In the following problems, find the absolute extrema of the function over the region R (which contains boundaries).

- (1) $f(x,y) = x^2 + xy$, and $R = \{(x,y) \mid |x| \le 2, |y| \le 1\}$
- (2) $f(x,y) = 2x 2xy + y^2$, and R is the region in the xy-plane bounded by the graphs of $y = x^2$ and y = 1.

(3)
$$f(x,y) = \frac{4xy}{(x^2+1)(y^2+1)}$$
, and $R = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}.$

- (4) $f(x,y) = xy^2$, and $R = \{(x,y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}.$
- (5) $f(x,y) = 2x^3 + y^4$, and $R = \{(x,y) | x^2 + y^2 \le 1\}.$

Problem 7. Show that $f(x,y) = x^2 + 4y^2 - 4xy + 2$ has an infinite number of critical points and that the discriminant $f_{xx}f_{yy} - f_{xy}^2 = 0$ at each one. Then show that f has a local (and absolute) minimum at each critical point

Problem 8. Show that $f(x, y) = x^2 y e^{-x^2 - y^2}$ has maximum values at $(\pm 1, \frac{1}{\sqrt{2}})$ and minimum values at $(\pm 1, -\frac{1}{\sqrt{2}})$. Show also that f has infinitely many other critical points and the discriminant $f_{xx}f_{yy} - f_{xy}^2 = 0$ at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?

Problem 9. Find two numbers a and b with $a \leq b$ such that

$$\int_a^b \sqrt[3]{24 - 2x - x^2} \, dx$$

has its largest value.