Exercise Problem Sets 8

Apr. 19. 2024

Problem 1. Use the chain rule for functions of several variables to compute $\frac{dz}{dt}$ or $\frac{dw}{dt}$.

(1)
$$z = \sqrt{1 + xy}, x = \tan t, y = \arctan t.$$

(2)
$$w = x \exp\left(\frac{y}{z}\right), x = t^2, y = 1 - t, z = 1 + 2t.$$

(3)
$$w = \ln \sqrt{x^2 + y^2 + z^2}, x = \sin t, y = \cos t, z = \tan t$$

(4) $w = xy \cos z, x = t, y = t^2, z = \arccos t.$

(5)
$$w = 2ye^x - \ln z, x = \ln(t^2 + 1), y = \arctan t, z = e^t.$$

Problem 2. Use the chain rule for functions of several variables to compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

(1)
$$z = \arctan(x^2 + y^2), x = s \ln t, y = te^s$$
.

- (2) $z = \arctan \frac{x}{y}, x = s \cos t, y = s \sin t.$
- (3) $z = e^x \cos y, x = st, y = s^2 + t^2$.

Problem 3. Assume that $z = f(ts^2, \frac{s}{t}), \frac{\partial f}{\partial x}(x, y) = xy, \frac{\partial f}{\partial y}(x, y) = \frac{x^2}{2}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Problem 4. Find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at given points.

- (1) $\sin(x+y) + \sin(y+z) + \sin(x+z) = 0, \ (x,y,z) = (\pi,\pi,\pi).$
- (2) $xe^{y} + ye^{z} + 2\ln x 2 3\ln 2 = 0, (x, y, z) = (1, \ln 2, \ln 3).$
- (3) $z = e^x \cos(y+z), (x, y, z) = (0, -1, 1).$

Problem 5. Let f be differentiable, and $z = \frac{1}{x} [f(x-y) + g(x+y)]$. Show that

$$\frac{\partial}{\partial x} \left(x^2 \frac{\partial z}{\partial x} \right) = x^2 \frac{\partial^2 z}{\partial y^2} \,.$$

Problem 6. Let f be differentiable, and $z = \frac{1}{y} [f(ax+y) + g(ax-y)]$. Show that

$$\frac{\partial^2 z}{\partial x^2} = \frac{a^2}{y^2} \frac{\partial}{\partial y} \left(y^2 \frac{\partial z}{\partial y} \right)$$

Problem 7. Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function z = f(x, y).

(1) Show that $\frac{\partial z}{\partial r} = f_x \cos \theta + f_y \sin \theta$ and $\frac{1}{r} \frac{\partial r}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$.

- (2) Solve the equations in part (1) to express f_x and f_y in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
- (3) Show that $(f_x)^2 + (f_y)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$.
- (4) Suppose in addition that f_x and f_y are differentiable. Show that

$$f_{xx} + f_{yy} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2}$$

Problem 8. Let $f(x, y) = \sqrt[3]{xy}$.

- (1) Show that f is continuous at (0,0).
- (2) Show that f_x and f_y exist at the origin but that the directional derivatives at the origin in all other directions do not exist.

Problem 9. Let

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) ,\\ 0 & \text{if } (x,y) = (0,0) . \end{cases}$$

(1) Show that the directional derivative of f at the origin exists in all directions \boldsymbol{u} , and

$$(D_{\boldsymbol{u}}f)(0,0) = \left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot \boldsymbol{u}.$$

(2) Determine whether f is differentiable at (0,0) or not.

Problem 10. Let u = (a, b) be a unit vector and f be twice continuously differentiable. Show that

$$D_{u}^{2}f = f_{xx}a^{2} + 2f_{xy}ab + f_{yy}b^{2} \,,$$

where $D_u^2 f = D_u (D_u f)$.

Problem 11. Show that the operation of taking the gradient of a function has the given property. Assume that u and v are differentiable functions of x and y and that a, b are constants.

(1) $\nabla(au+bv) = a\nabla u + b\nabla v.$

(2)
$$\nabla(uv) = u\nabla v + v\nabla u.$$

(3)
$$\nabla\left(\frac{u}{v}\right) = \frac{v\nabla u - u\nabla v}{v^2}.$$

(4) $\nabla(u^n) = nu^{n-1}\nabla u.$