Exercise Problem Sets 6

Apr. 06. 2024

Problem 1. In the following sub-problems, find the limit if it exists or explain why it does not exist.
(1) $\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x^{2}+y}$
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{x^{2}-y^{2}}$
(3) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$
(4) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$
(5) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}}$
(6) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
(7) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{4}+y^{4}}$
(8) $\lim _{(x, y) \rightarrow(0,0)} y \sin \frac{1}{x}$
(9) $\lim _{(x, y) \rightarrow(0,0)} x \cos \frac{1}{y}$
(10) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}$
(11) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}$
(12) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{2}}$
(13) $\lim _{(x, y, z) \rightarrow(0,0,0)} \arctan \frac{1}{x^{2}+y^{2}+z^{2}}$

Problem 2. Discuss the continuity of the functions given below.

1. $f(x, y)=\left\{\begin{array}{cl}\frac{\sin (x y)}{x y} & \text { if } x y \neq 0, \\ 1 & \text { if } x y=0 .\end{array}\right.$
2. $f(x, y)=\left\{\begin{array}{cl}\frac{e^{-x^{2}-y^{2}}-1}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 1 & \text { if }(x, y)=(0,0) .\end{array}\right.$
3. $f(x, y)=\left\{\begin{array}{cl}\frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

Solution. 3. Since $|\sin x| \leqslant|x|$ for all $x \in \mathbb{R}$, we find that if $(x, y) \neq(0,0)$,

$$
0 \leqslant|f(x, y)| \leqslant\left|\frac{x^{3}+y^{4}}{x^{2}+y^{2}}\right| \leqslant|x|+y^{2}
$$

Since $\lim _{(x, y) \rightarrow(0,0)}|x|+y^{2}=0$, the Squeeze Theorem implies that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)
$$

which shows that f is continuous at $(0,0)$. On the other hand, if $(a, b) \neq(0,0)$, then the continuity of the sine function and polynomials shows that

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(x, y) \rightarrow(a, b)} \frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}}=\frac{\lim _{(x, y) \rightarrow(a, b)} \sin \left(x^{3}+y^{4}\right)}{\lim _{(x, y) \rightarrow(a, b)}\left(x^{2}+y^{2}\right)}=\frac{\sin \left(a^{3}+3^{4}\right)}{a^{2}+b^{2}}=f(a, b)
$$

thus f is continuous on \mathbb{R}^{2}.

Problem 3. Let $f(x, y)= \begin{cases}0 & \text { if } y \leqslant 0 \text { or } y \geqslant x^{4}, \\ 1 & \text { if } 0<y<x^{4} .\end{cases}$

1. Show that $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along any path through $(0,0)$ of the form $y=m x^{\alpha}$ with $0<\alpha<4$.
2. Show that f is discontinuous on two entire curves.

Problem 4. Find $\left.\frac{\partial}{\partial x}\right|_{(x, y, z)=(\ln 4, \ln 9,2)} \sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!z^{n}}$. Do not write the answer in terms of an infinite sum.

Solution. Note that for each $x, y \in \mathbb{R}$ and $z \neq 0$, we have

$$
\sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!z^{n}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{x+y}{z}\right)^{n}=\exp \left(\frac{x+y}{z}\right) .
$$

Therefore,

$$
\begin{aligned}
\left.\frac{\partial}{\partial x}\right|_{(x, y, z)=(\ln 4, \ln 9,2)} \sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!z^{n}} & =\left.\frac{\partial}{\partial x}\right|_{(x, y, z)=(\ln 4, \ln 9,2)} \exp \left(\frac{x+y}{z}\right) \\
& =\left.\exp \left(\frac{x+y}{z}\right) \frac{1}{z}\right|_{(x, y, z)=(\ln 4, \ln 9,2)}=\frac{1}{2} \exp \left(\frac{\ln 4+\ln 9}{2}\right)
\end{aligned}
$$

so the fact that $\frac{\ln 4+\ln 9}{2}=\ln 6$ shows that $\left.\frac{\partial}{\partial x}\right|_{(x, y, z)=(\ln 4, \ln 9,2)} \sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!z^{n}}=3$.
Problem 5. Let $f(x, y)=\left(x^{2}+y^{2}\right)^{\frac{2}{3}}$. Find the partial derivative $\frac{\partial f}{\partial x}$.
Problem 6. Let $f(x, y, z)=x y^{2} z^{3}+\arcsin (x \sqrt{z})$. Find $f_{x z y}$ in the region $\left\{(x, y, z)\left|\left|x^{2} z\right|<1\right\}\right.$.
Problem 7. Let $\overrightarrow{\boldsymbol{a}}=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be a unit vector, $\overrightarrow{\boldsymbol{x}}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, and $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=$ $\exp (\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{x}})$. Show that

$$
\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=f
$$

Problem 8. Let $f(x, y)=x\left(x^{2}+y^{2}\right)^{-\frac{3}{2}} e^{\sin \left(x^{2} y\right)}$. Find $f_{x}(1,0)$.
Problem 9. Let $f(x, y)=\int_{1}^{y} \frac{d t}{\sqrt{1-x^{3} t^{3}}}$. Show that

$$
f_{x}(x, y)=\int_{1}^{y}\left(\frac{\partial}{\partial x} \frac{1}{\sqrt{1-x^{3} t^{3}}}\right) d t
$$

in the region $\{(x, y) \mid x<1, y>1$ and $x y<1\}$.
Solution. By the substitution of variable $s=x t$, we find that

$$
f(x, y)=\int_{x}^{x y} \frac{d s}{x \sqrt{1-s^{3}}}=\frac{1}{x} \int_{x}^{x y} \frac{d t}{\sqrt{1-t^{3}}} .
$$

Therefore, by the FTOC we obtain that

$$
\begin{aligned}
f_{x}(x, y) & =-\frac{1}{x^{2}} \int_{x}^{x y} \frac{d t}{\sqrt{1-t^{3}}}+\frac{y}{\sqrt{1-x^{3} y^{3}}}-\frac{1}{\sqrt{1-x^{3}}} \\
& =-\frac{1}{x} \int_{1}^{y} \frac{d t}{\sqrt{1-x^{3} t^{3}}}+\frac{y}{\sqrt{1-x^{3} y^{3}}}-\frac{1}{\sqrt{1-x^{3}}} .
\end{aligned}
$$

On the other hand, since

$$
\frac{\partial}{\partial x} \frac{1}{\sqrt{1-x^{3} t^{3}}}=\frac{3 x^{2} t^{3}}{2\left(1-x^{3} t^{3}\right)^{3 / 2}} \quad \text { and } \quad \frac{\partial}{\partial t} \frac{1}{\sqrt{1-x^{3} t^{3}}}=\frac{3 x^{3} t^{2}}{2\left(1-x^{3} t^{3}\right)^{3 / 2}}
$$

we have

$$
\frac{\partial}{\partial x} \frac{1}{\sqrt{1-x^{3} t^{3}}}=\frac{t}{x} \frac{\partial}{\partial t} \frac{1}{\sqrt{1-x^{3} t^{3}}}
$$

so that integrating by parts shows that

$$
\begin{aligned}
\int_{1}^{y}\left(\frac{\partial}{\partial x} \frac{1}{\sqrt{1-x^{3} t^{3}}}\right) d t & =\int_{1}^{y}\left(\frac{t}{x} \frac{\partial}{\partial t} \frac{1}{\sqrt{1-x^{3} t^{3}}}\right) d t=\left.\frac{t}{x} \frac{1}{\sqrt{1-x^{3} t^{3}}}\right|_{t=1} ^{t=y}-\int_{1}^{y} \frac{1}{\sqrt{1-x^{3} t^{3}}} \frac{\partial}{\partial t} \frac{t}{x} d t \\
& =\frac{y}{x \sqrt{1-x^{3} y^{3}}}-\frac{1}{x \sqrt{1-x^{3}}}-\frac{1}{x} \int_{1}^{y} \frac{d t}{\sqrt{1-x^{3} t^{3}}}
\end{aligned}
$$

which is identical to $f_{x}(x, y)$ computed above.
Problem 10. The gas law for a fixed mass m of an ideal gas at absolute temperature T, pressure P, and volume V is $P V=m R T$, where R is the gas constant. Show that

$$
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}=-1
$$

Proof. Since $P V=m R T$,

$$
\frac{\partial P}{\partial V}=-\frac{m R T}{V^{2}}, \quad \frac{\partial V}{\partial T}=\frac{m R}{P} \quad \text { and } \quad \frac{\partial T}{\partial P}=\frac{V}{m R}
$$

Therefore,

$$
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}=-\frac{m R T}{V^{2}} \cdot \frac{m R}{P} \cdot \frac{V}{m R}=-\frac{m R T}{P V}=-1
$$

which conclude the proof.
Problem 11. The total resistance R produced by three conductors with resistances R_{1}, R_{2}, R_{3} connected in a parallel electrical circuit is given by the formula

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} .
$$

Find $\frac{\partial R}{\partial R_{1}}$ by directly taking the partial derivative of the equation above.
Solution. Taking the partial derivative of the equation w.r.t. R_{1}, we obtain that

$$
\frac{\partial}{\partial R_{1}} \frac{1}{R}=\frac{\partial}{\partial R_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)=-\frac{1}{R_{1}^{2}} ;
$$

thus the implicit differentiation shows that

$$
-\frac{1}{R^{2}} \frac{\partial R}{\partial R_{1}}=-\frac{1}{R_{1}^{2}} .
$$

Therefore, $\frac{\partial R}{\partial R_{1}}=\frac{R^{2}}{R_{1}^{2}}$.
Problem 12. Find the value of $\frac{\partial z}{\partial x}$ at the point $(1,1,1)$ if the equation

$$
x y+z^{3} x-2 y z=0
$$

defines z as a function of the two independent variables x and y and the partial derivative exists.
Problem 13. Find the value of $\frac{\partial x}{\partial z}$ at the point $(1,-1,-3)$ if the equation

$$
x z+y \ln x-x^{2}+4=0
$$

defines x as a function of the two independent variables y and z and the partial derivative exists.
Problem 14. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f_{x}(a, b)$ and $f_{y}(a, b)$ exists. Suppose that $c=f(a, b)$.

1. Using the geometric meaning of partial derivatives, explain what the vectors $\left(1,0, f_{x}(a, b)\right)$ and $\left(0,1, f_{y}(a, b)\right)$ mean.
2. Suppose that you know that there is a tangent plane (which we have not talked about, but you can roughly imagine what it is) of the graph of f at (a, b, c). What should the equation of the tangent plane be?

Problem 15. Define

$$
f(x, y)=\left\{\begin{array}{cl}
x^{2} \arctan \frac{y}{x}-y^{2} \arctan \frac{x}{y} & \text { if } x, y \neq 0, \\
0 & \text { if } x=0 \text { or } y=0 .
\end{array}\right.
$$

Find $f_{x y}(0,0)$ and $f_{y x}(0,0)$.

