## Exercise Problem Sets 3

Mar. 08. 2024

Problem 1. The second Taylor polynomial for a twice-differentiable function $f$ at $x=c$ is called the quadratic approximation of $f$ at $x=c$. Find the quadratic approximate of the following functions at $x=0$.
(1) $f(x)=\ln \cos x$
(2) $f(x)=e^{\sin x}$
(3) $f(x)=\tan x$
(4) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
(5) $f(x)=e^{x} \sin ^{2} x$
(6) $f(x)=e^{x} \ln (1+x)$
(7) $f(x)=(\arctan x)^{2}$

Problem 2. Let $f$ have derivatives through order $n$ at $x=c$. Show that the $n$-th Taylor polynomial for $f$ at $c$ and its first $n$ derivatives have the same values that $f$ and its first $n$ derivatives have at $x=c$.

Problem 3. Suppose that $f$ is differentiable on an interval centered at $x=c$ and that $g(x)=$ $b_{0}+b_{1}(x-c)+\cdots+b_{n}(x-c)^{n}$ is a polynomial of degree $n$ with constant coefficients $b_{0}, b_{1}, \cdots, b_{n}$. Let $E(x)=f(x)-g(x)$. Show that if we impose on $g$ the conditions

1. $E(c)=0$ (which means "the approximation error is zero at $x=c$ ");
2. $\lim _{x \rightarrow c} \frac{E(x)}{(x-c)^{n}}=0$ (which means "the error is negligible when compared to $(x-c)^{n}$ ),
then $g$ is the $n$-th Taylor polynomial for $f$ at $c$. Thus, the Taylor polynomial $P_{n}$ is the only polynomial of degree less than or equal to $n$ whose error is both zero at $x=c$ and negligible when compared with $(x-c)^{n}$.

Problem 4. Show that if $p$ is an polynomial of degree $n$, then

$$
p(x+1)=\sum_{k=0}^{n} \frac{p^{(k)}(x)}{k!} .
$$

Problem 5. In Chapter 3 we considered Newton's method for approximating a root/zero $r$ of the equation $f(x)=0$, and from an initial approximation $x_{1}$ we obtained successive approximations $x_{2}$, $x_{3}, \cdots$, where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \forall n \geqslant 1 .
$$

Show that if $f^{\prime \prime}$ exists on an interval $I$ containing $r, x_{n}$, and $x_{n+1}$, and $\left|f^{\prime \prime}(x)\right| \leqslant M$ and $\left|f^{\prime}(x)\right| \geqslant K$ for all $x \in I$, then

$$
\left|x_{n+1}-r\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2}
$$

This means that if $x_{n}$ is accurate to $d$ decimal places, then $x_{n+1}$ is accurate to about $2 d$ decimal places. More precisely, if the error at stage $n$ is at most $10^{-m}$, then the error at stage $n+1$ is at most $\frac{M}{2 K} 10^{-2 m}$.
Hint: Apply Taylor's Theorem to write $f(r)=P_{2}(r)+R_{2}(r)$, where $P_{2}$ is the second Taylor polynomial for $f$ at $x_{n}$.

Proof. By Taylor's theorem, there exists $\xi$ between $r$ and $x_{n}$ such that

$$
0=f(r)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(r-x_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2}\left(x_{n}-r\right)^{2}
$$

Therefore,

$$
x_{n}-r-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}=\frac{f^{\prime \prime}(\xi)}{2}\left(x_{n}-r\right)^{2} ;
$$

thus by the iterative relation we obtain that

$$
\left|x_{n+1}-r\right|=\left|x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}-r\right|=\left|\frac{f^{\prime \prime}(\xi)}{2}\left(x_{n}-r\right)^{2}\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2} .
$$

Problem 6. Consider a function $f$ with continuous first and second derivatives at $x=c$. Prove that if $f$ has a relative maximum at $x=c$, then the second Taylor polynomial centered at $x=c$ also has a relative maximum at $x=c$.

Problem 7. Let $f:(a, b) \rightarrow \mathbb{R}$ be $(n+1)$-times differentiable, and $c \in(a, b)$. In this problem you are ask to derive the remaind associated with the $n$-th Taylor polynomial for $f$ at $c$ in Schlomilch-Roche form:

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{n!p}(x-c)^{p}(x-\xi)^{n+1-p}
$$

Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is $(n+1)$-times differentiable. For a fixed $x \in(a, b)$, define

$$
\varphi(z)=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!}(x-z)^{k} .
$$

Note that $\varphi(c)=R_{n}(x)$. Complete the following.

1. Show that $\varphi^{\prime}(z)=-\frac{f^{(n+1)}(z)}{n!}(x-z)^{n}$.
2. Apply the Cauchy mean value theorem to the two functions $\varphi(z)$ and $\psi(z) \equiv(x-z)^{p}$ for some $p \in\{1,2, \cdots, n\}$; that is,

$$
\frac{\varphi(x)-\varphi(c)}{\psi(x)-\psi(c)}=\frac{\varphi^{\prime}(\xi)}{\psi^{\prime}(\xi)} \quad \text { for some } \xi \text { between } c \text { and } x
$$

to show ( $\star$ ).
3. Use ( $\star$ ) to show that

$$
\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k} \quad \forall x \in(-1,1] .
$$

Remark: The remainder in Schlomilch-Roche form with $p=1$ is called Cauchy remainder, and Lagrange remainder is obtained by letting $p=n+1$ in ( $\star$ ).

Proof. 1. We compute the derivative of $\varphi$ as follows:

$$
\begin{aligned}
\varphi^{\prime}(z) & =-\sum_{k=0}^{n} \frac{d}{d z}\left[\frac{f^{(k)}(z)}{k!}(x-z)^{k}\right]=-\sum_{k=0}^{n}\left[\frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\frac{f^{(k)}(z)}{k!} k(x-z)^{k-1}(-1)\right] \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!} k(x-z)^{k-1} \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=1}^{n} \frac{f^{(k)}(z)}{(k-1)!}(x-z)^{k-1} \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}+\sum_{k=0}^{n-1} \frac{f^{(k+1)}(z)}{k!}(x-z)^{k}=-\frac{f^{(n+1)}(z)}{n!}(x-z)^{n}
\end{aligned}
$$

2. Let $I=(\min \{c, x\}, \max \{c, x\})$ and $\bar{I}=[\min \{c, x\}, \max \{c, x\}]$. Then $\varphi, \psi: \bar{I} \rightarrow \mathbb{R}$ are continuous and $\varphi, \psi: I \rightarrow \mathbb{R}$ are differentiable. Moreover, $\psi^{\prime}(z)=-p(x-z)^{p-1}$ so that $\psi^{\prime}(z) \neq 0$ for all $z \in I$. Therefore, the Cauchy MVT implies that there exists $\xi$ between $c$ and $x$ such that

$$
\frac{\varphi(x)-\varphi(c)}{\psi(x)-\psi(c)}=\frac{\varphi^{\prime}(\xi)}{\psi^{\prime}(\xi)}=\frac{-\frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}}{-p(x-\xi)^{p-1}}=\frac{f^{(n+1)}(\xi)}{n!p}(x-\xi)^{n+1-p}
$$

Since $\varphi(x)=\psi(x)=0$, we find that

$$
R_{n}(x)=\varphi(c)=\frac{f^{(n+1)}(\xi)}{n!p}(x-\xi)^{n+1-p} \psi(c)=\frac{f^{(n+1)}(\xi)}{n!p}(x-\xi)^{n+1-p}(x-c)^{p}
$$

3. Let $f(x)=\ln (1+x)$. Then

$$
f^{(n+1)}(x)=(-1)^{n} n!(1+x)^{-(n+1)} .
$$

(a) the case $x \in(0,1]$ : using $(\star)$ (with $c=0$ and $p=n+1$ ) and ( $\diamond$ ) we find that

$$
R_{n}(x)=\frac{(-1)^{n} n!(1+\xi)^{-(n+1)}}{n!(n+1)} x^{n+1}=\frac{(-1)^{n}}{n+1}\left(\frac{x}{1+\xi}\right)^{n}
$$

Since $0<\xi<x \leqslant 1$, we have $\left|\frac{x}{1+\xi}\right| \leqslant 1$; thus

$$
\left|R_{n}(x)\right| \leqslant \frac{1}{n+1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore, identity ( $\star \star$ ) holds for $x \in(0,1]$.
(b) the case $x \in(-1,0)$ : using ( $\star$ ) (with $c=0$ and $p=1$ ) and ( $\diamond$ ) we find that

$$
R_{n}(x)=\frac{(-1)^{n} n!(1+\xi)^{-(n+1)}}{n!} x(x-\xi)^{n}=(-1)^{n} \frac{x}{1+\xi}\left(\frac{x-\xi}{1+\xi}\right)^{n}
$$

Since $-1<x<\xi<0$, we have $\left|\frac{x-\xi}{1+\xi}\right| \leqslant|x|$; thus

$$
\left|R_{n}(x)\right| \leqslant\left|\frac{x}{1+\xi}\right||x|^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore, identity $(\star \star)$ holds for $x \in(-1,0)$.
(c) Clearly, identity ( $\star \star$ ) holds for $x=0$.

Combining the three cases above, we conclude that identity ( $\star \star$ ) holds for $x \in(-1,1]$.

