
Exercise Problem Sets 3
Mar. 08. 2024

Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = c is called the
quadratic approximation of f at x = c. Find the quadratic approximate of the following functions
at x = 0.

(1) f(x) = ln cos x (2) f(x) = esinx (3) f(x) = tanx (4) f(x) = 1
?
1 ´ x2

(5) f(x) = ex sin2 x (6) f(x) = ex ln(1 + x) (7) f(x) = (arctanx)2

Problem 2. Let f have derivatives through order n at x = c. Show that the n-th Taylor polynomial
for f at c and its first n derivatives have the same values that f and its first n derivatives have at
x = c.

Problem 3. Suppose that f is differentiable on an interval centered at x = c and that g(x) =

b0 + b1(x´ c) + ¨ ¨ ¨ + bn(x´ c)n is a polynomial of degree n with constant coefficients b0, b1, ¨ ¨ ¨ , bn.
Let E(x) = f(x) ´ g(x). Show that if we impose on g the conditions

1. E(c) = 0 (which means “the approximation error is zero at x = c”);

2. lim
xÑc

E(x)

(x ´ c)n
= 0 (which means “the error is negligible when compared to (x ´ c)n),

then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial Pn is the only
polynomial of degree less than or equal to n whose error is both zero at x = c and
negligible when compared with (x ´ c)n.

Problem 4. Show that if p is an polynomial of degree n, then

p(x+ 1) =
n

ÿ

k=0

p(k)(x)

k!
.

Problem 5. In Chapter 3 we considered Newton’s method for approximating a root/zero r of the
equation f(x) = 0, and from an initial approximation x1 we obtained successive approximations x2,
x3, ¨ ¨ ¨ , where

xn+1 = xn ´
f(xn)

f 1(xn)
@n ě 1 .

Show that if f 11 exists on an interval I containing r, xn, and xn+1, and
ˇ

ˇf 11(x)
ˇ

ˇ ď M and
ˇ

ˇf 1(x)
ˇ

ˇ ě K

for all x P I, then
|xn+1 ´ r| ď

M

2K
|xn ´ r|2

This means that if xn is accurate to d decimal places, then xn+1 is accurate to about 2d

decimal places. More precisely, if the error at stage n is at most 10´m, then the error

at stage n+ 1 is at most M

2K
10´2m.

Hint: Apply Taylor’s Theorem to write f(r) = P2(r) + R2(r), where P2 is the second Taylor
polynomial for f at xn.



Proof. By Taylor’s theorem, there exists ξ between r and xn such that

0 = f(r) = f(xn) + f 1(xn)(r ´ xn) +
f 11(ξ)

2
(xn ´ r)2 .

Therefore,
xn ´ r ´

f 1(xn)

f(xn)
=
f 11(ξ)

2
(xn ´ r)2 ;

thus by the iterative relation we obtain that

|xn+1 ´ r| =
ˇ

ˇ

ˇ
xn ´

f 1(xn)

f(xn)
´ r

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

f 11(ξ)

2
(xn ´ r)2

ˇ

ˇ

ˇ
ď

M

2K
|xn ´ r|2 . ˝

Problem 6. Consider a function f with continuous first and second derivatives at x = c. Prove that
if f has a relative maximum at x = c, then the second Taylor polynomial centered at x = c also has
a relative maximum at x = c.

Problem 7. Let f : (a, b) Ñ R be (n+1)-times differentiable, and c P (a, b). In this problem you are
ask to derive the remaind associated with the n-th Taylor polynomial for f at c in Schlomilch-Roche
form:

Rn(x) =
f (n+1)(ξ)

n!p
(x ´ c)p(x ´ ξ)n+1´p . (‹)

Suppose that f : (a, b) Ñ R is (n+ 1)-times differentiable. For a fixed x P (a, b), define

φ(z) = f(x) ´

n
ÿ

k=0

f (k)(z)

k!
(x ´ z)k .

Note that φ(c) = Rn(x). Complete the following.

1. Show that φ 1(z) = ´
f (n+1)(z)

n!
(x ´ z)n.

2. Apply the Cauchy mean value theorem to the two functions φ(z) and ψ(z) ” (x´ z)p for some
p P t1, 2, ¨ ¨ ¨ , nu; that is,

φ(x) ´ φ(c)

ψ(x) ´ ψ(c)
=
φ 1(ξ)

ψ 1(ξ)
for some ξ between c and x,

to show (‹).

3. Use (‹) to show that

ln(1 + x) =
8
ÿ

k=1

(´1)k´1

k
xk @x P (´1, 1] . (‹‹)

Remark: The remainder in Schlomilch-Roche form with p = 1 is called Cauchy remainder, and
Lagrange remainder is obtained by letting p = n+ 1 in (‹).



Proof. 1. We compute the derivative of φ as follows:

φ 1(z) = ´

n
ÿ

k=0

d

dz

[f (k)(z)

k!
(x ´ z)k

]
= ´

n
ÿ

k=0

[f (k+1)(z)

k!
(x ´ z)k +

f (k)(z)

k!
k(x ´ z)k´1(´1)

]
= ´

n
ÿ

k=0

f (k+1)(z)

k!
(x ´ z)k +

n
ÿ

k=0

f (k)(z)

k!
k(x ´ z)k´1

= ´

n
ÿ

k=0

f (k+1)(z)

k!
(x ´ z)k +

n
ÿ

k=1

f (k)(z)

(k ´ 1)!
(x ´ z)k´1

= ´

n
ÿ

k=0

f (k+1)(z)

k!
(x ´ z)k +

n´1
ÿ

k=0

f (k+1)(z)

k!
(x ´ z)k = ´

f (n+1)(z)

n!
(x ´ z)n

2. Let I = (mintc, xu,maxtc, xu) and Ī = [mintc, xu,maxtc, xu]. Then φ, ψ : Ī Ñ R are continu-
ous and φ, ψ : I Ñ R are differentiable. Moreover, ψ 1(z) = ´p(x ´ z)p´1 so that ψ 1(z) ‰ 0 for
all z P I. Therefore, the Cauchy MVT implies that there exists ξ between c and x such that

φ(x) ´ φ(c)

ψ(x) ´ ψ(c)
=
φ 1(ξ)

ψ 1(ξ)
=

´
f (n+1)(ξ)

n!
(x ´ ξ)n

´p(x ´ ξ)p´1
=
f (n+1)(ξ)

n!p
(x ´ ξ)n+1´p .

Since φ(x) = ψ(x) = 0, we find that

Rn(x) = φ(c) =
f (n+1)(ξ)

n!p
(x ´ ξ)n+1´pψ(c) =

f (n+1)(ξ)

n!p
(x ´ ξ)n+1´p(x ´ c)p .

3. Let f(x) = ln(1 + x). Then

f (n+1)(x) = (´1)nn!(1 + x)´(n+1) . (˛)

(a) the case x P (0, 1]: using (‹) (with c = 0 and p = n+ 1) and (˛) we find that

Rn(x) =
(´1)nn!(1 + ξ)´(n+1)

n!(n+ 1)
xn+1 =

(´1)n

n+ 1

( x

1 + ξ

)n

.

Since 0 ă ξ ă x ď 1, we have
ˇ

ˇ

ˇ

x
1+ξ

ˇ

ˇ

ˇ
ď 1; thus

|Rn(x)| ď
1

n+ 1
Ñ 0 as n Ñ 8 .

Therefore, identity (‹‹) holds for x P (0, 1].

(b) the case x P (´1, 0): using (‹) (with c = 0 and p = 1) and (˛) we find that

Rn(x) =
(´1)nn!(1 + ξ)´(n+1)

n!
x(x ´ ξ)n = (´1)n

x

1 + ξ

(x ´ ξ

1 + ξ

)n

.

Since ´1 ă x ă ξ ă 0, we have
ˇ

ˇ

ˇ

x ´ ξ

1 + ξ

ˇ

ˇ

ˇ
ď |x|; thus

|Rn(x)| ď

ˇ

ˇ

ˇ

x

1 + ξ

ˇ

ˇ

ˇ
|x|n Ñ 0 as n Ñ 8 .

Therefore, identity (‹‹) holds for x P (´1, 0).

(c) Clearly, identity (‹‹) holds for x = 0.

Combining the three cases above, we conclude that identity (‹‹) holds for x P (´1, 1]. ˝


