Exercise Problem Sets 1

Feb. 24. 2024

Problem 1. Determine whether the sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit.

(1)
$$a_n = \frac{\ln n}{\ln(2n)}$$
 (2) $a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$ (3) $a_n = n \sin \frac{1}{n}$ (4) $a_n = n - \sqrt{n+1}\sqrt{n+3}$

- (5) $a_n = \sqrt[n]{n^2 + n}$ (6) $a_n = (3^n + 5^n)^{\frac{1}{n}}$ (7) $a_n = \frac{1}{\sqrt{n^2 1} \sqrt{n^2 + n}}$
- (8) $a_n = \sqrt{n} \ln \left(1 + \frac{1}{n}\right)$ (9) $a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!}$ (10) $a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n (n+1)!}$

Problem 2. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers.

- (1) Show that if $\lim_{n \to \infty} (a_n + b_n)$ D.N.E. and $\lim_{n \to \infty} b_n$ converges, then $\lim_{n \to \infty} a_n$ D.N.E.
- (2) Show that if $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Problem 3. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and $\{\sigma_n\}_{n=1}^{\infty}$ be a sequence of real numbers defined by

$$\sigma_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k.$$

- (1) Show that if $\lim_{n \to \infty} a_n = a$ exists, then $\lim_{n \to \infty} \sigma_n = a$.
- (2) Suppose that $\lim_{n \to \infty} \sigma_n = a$ exists, is it necessary that $\lim_{n \to \infty} a_n = a$?

Problem 4. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers defined recursively by

$$a_{n+1} = \sqrt{2a_n} \quad \forall n \in \mathbb{N} \cup \{0\}, a_0 = \sqrt{2}.$$

Show the following.

- 1. Show that $\{a_n\}_{n=1}^{\infty}$ is increasing and bounded from above by 2.
- 2. Show that $\{a_n\}_{n=1}^{\infty}$ converges and find the limit.

Problem 5. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers defined recursively by

$$a_{n+1} = \sqrt{2+a_n} \quad \forall n \in \mathbb{N} \cup \{0\}, a_0 = \sqrt{2}.$$

Show the following.

- 1. Show that $\{a_n\}_{n=1}^{\infty}$ is increasing and bounded from above by 2.
- 2. Show that $\{a_n\}_{n=1}^{\infty}$ converges and find the limit.

Problem 6. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real number defined by the recursive relation

$$a_{n+1} = \frac{1}{2+a_n} \quad \forall n \ge 0, \qquad a_0 = \frac{1}{2}.$$

Complete the following.

- (1) Show that the sequence $\{a_{2n}\}_{n=0}^{\infty}$ is a decreasing sequence; that is, $a_{2n+2} \leq a_{2n}$ for all $n \in \mathbb{N} \cup \{0\}$.
- (2) Show that the sequence $\{a_{2n+1}\}_{n=0}^{\infty}$ is an increasing sequence; that is, $a_{2n+3} \ge a_{2n+1}$ for all $n \in \mathbb{N} \cup \{0\}$.
- (3) Show that $a_{2k+1} \leq a_{2\ell}$ for all $k, \ell \in \mathbb{N} \cup \{0\}$.
- (4) Show that the two sequences $\{a_{2n}\}_{n=0}^{\infty}$ and $\{a_{2n+1}\}_{n=0}^{\infty}$ converges to the same limit.
- (5) Show that $\{a_n\}_{n=0}^{\infty}$ converges.

Problem 7. In this problem you are asked to show that the limit of the sequence $\{a_n\}_{n=1}^{\infty}$ defined by $a_n = \left(1 + \frac{1}{n}\right)^n$ converges without knowing that $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$. Complete the following.

(1) Show that if $0 \leq a < b$, then

$$\frac{b^{n+1} - a^{n+1}}{b - a} < (n+1)b^n \,.$$

- (2) Deduce that $b^n [(n+1)a nb] < a^{n+1}$.
- (3) Use $a = 1 + \frac{1}{n+1}$ and $b = 1 + \frac{1}{n}$ in (2) to show that $\{a_n\}_{n=1}^{\infty}$ is (strictly) increasing.
- (4) Use a = 1 and $b = 1 + \frac{1}{2n}$ in (2) to show that $a_{2n} < 4$.
- (5) Use (3) and (4) to show that $a_n < 4$.
- (6) Deduce that $\{a_n\}_{n=1}^{\infty}$ converges.

Problem 8. Let a, b be positive real numbers, a > b. Let two sequence $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be given by the recursive relation

$$a_{n+1} = \frac{a_n + b_n}{2}, \ b_{n+1} = \sqrt{a_n b_n} \quad \forall n \in \mathbb{N}, \qquad a_1 = \frac{a+b}{2}, \ b_1 = \sqrt{ab}.$$

Complete the following.

- (1) Show (by induction) that $a_n > a_{n+1} > b_{n+1} > b_n$ for all $n \in \mathbb{N}$.
- (2) Deduce that $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both converges.
- (3) Show that $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ both exist and are identical.