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Problem 1. 1. Let f, g : (a, b) Ñ R be differentiable functions and f 1(x) = g 1(x). Show that there
exists a constant C such that f(x) = g(x) + C.

2. Suppose that f : R Ñ R is a differentiable function satisfying that f 1(x) = 3x2 + 4 cosx and
f(0) = 0. Find f(x).

Problem 2. Let f : [a, b] Ñ R be a continuous function such that f has only one critical point
c P (a, b).

1. Show that if f(c) is a local extremum of f , then f(c) is an absolute extremum of f .

2. Show that if f(c) is the absolute minimum of f , then f(x) ą f(c) for all x P [a, b] and x ‰ c.
Similarly, show that if f(c) is the absolute maximum of f , then f(x) ă f(c) for all x P [a, b]

and x ‰ c.

Proof. 1. W.L.O.G. we can assume that f(c) is a local minimum of f . By the definition of local
extremum, there exists δ ą 0 such that

f(x) ě f(c) @x P (c ´ δ, c+ δ) Ď [a, b] .

Since c is the only critical point of f , there exist x1 P (c ´ δ, c) and x2 P (c, c + δ) such that
f(x1) ą f(c) and f(x2) ą f(c) (for otherwise f is constant in an interval which contradicts to
the fact that c is the only critical point of f). This shows that f(c) cannot be the absolute
maximum of f .

Suppose the contrary that f(c) is not the absolute minimum of f . Since f is continuous on
[a, b], the Extreme Value Theorem and Fermat’s Theorem imply that the absolute minimum
of f occurs at the end-point.

(a) If f(a) is the absolute minimum of f (with f(a) ă f(c)), the continuity of f on [a, c]

implies that f attains its absolute maximum on [a, c] at some point x0. It is clear that
x0 ‰ a. Moreover, since f(x1) ą f(c), x0 ‰ c; thus x0 P (a, c). By Fermat’s Theorem, x0

is a critical point of f , a contradiction.

(b) Similarly, that f(b) is the absolute minimum of f (with f(b) ă f(c)) also leads to a
contradiction.

Therefore, f(c) has to be the absolute minimum of f .

2. Note that since f has only one critical point c, then f is differentiable on (a, b) except possibly
at c. Suppose that there exists another point d P [a, b], d ‰ c, such that f(d) = f(c). If
d P (a, c), Rolle’s Theorem implies that there exists some point x0 P (d, c) such that f 1(x0) = 0

which implies that c is not the only critical point, a contradiction. Similarly, that d P (c, b)

also leads to the existence of another critical point in (c, d) which is again a contradiction. ˝



Problem 3. Let I, J be intervals, g : I Ñ R and f : J Ñ R be increasing functions. Show that if J
contains the range of g, then f ˝ g is increasing on I.

Problem 4. 1. If the function f(x) = x3+ ax2+ bx has the local minimum value ´
2
?
3

9
at x =

1
?
3
,

what are the values of a and b?

2. Which of the tangent lines to the curve in part (1) has the smallest slope?

Problem 5. A number a is called a fixed point of a function f if f(a) = a. Prove that if f 1(x) ‰ 1

for all real numbers x, then f has at most one fixed point.

Problem 6. Suppose f is an odd function (that is, f(´x) = ´f(x) for all x P R) and is differentiable
everywhere. Prove that for every positive number b, there exists a number c in (´b, b) such that

f 1(c) =
f(b)

b
.

Problem 7. Show that 2
?
x ą 3 ´

1

x
for all x ą 1.

Problem 8. Show that
?
b ´

?
a ă

b ´ a

2
?
a

for all 0 ă a ă b.

Problem 9. Show that for all (rational numbers) p, q P (1,8) satisfying 1

p
+

1

q
= 1, we have

ac+ bd ď (ap + bp)
1
p (cq + dq)

1
q @ a, b, c, d ą 0 .

Hint: Let x =
a

b
and y =

d

c
.

Proof. Let x =
a

b
and y =

d

c
, then the desired inequality is equivalent to that

x+ y ď (xp + 1)
1
p (yq + 1)

1
q @x, y ą 0 .

Therefore, it suffices to show the inequality above.
Let y ą 0 be given. Define

f(x) = (xp + 1)
1
p (yq + 1)

1
q ´ x ´ y .

Then
f 1(x) =

1

p
(xp + 1)

1´p
p (yq + 1)

1
q ¨ pxp´1 ´ 1 = (1 + x´p)´ 1

q (yq + 1)
1
q ´ 1 ;

thus there is only one critical point of f which is c = y´
q
p . Now, since

f 11(c) =
p

q

(
1 + c´p

)´ 1
q

´1

(yq + 1)
1
q c´(p+1) ą 0 ,

f attains its local minimum at c. Moreover, since f has only one critical point, f must attain its
global minimum at c; thus

f(x) ě f(c) @x ą 0 .

The desired inequality is established by the fact that

f(c) = (y´q + 1)
1
p (yq + 1)

1
q ´ y´

q
p ´ y = y ¨ (y´q + 1) ´ y1´q ´ y = 0 . ˝



Problem 10. Show that for all k P N Y t0u,

x ´
x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
´

x4k+3

(4k + 3)!
ď sinx ď x ´

x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
@x ě 0 ,

1 ´
x2

2!
+ ¨ ¨ ¨ +

x4k

(4k)!
´

x4k+2

(4k + 2)!
ď cosx ď 1 ´

x2

2
+ ¨ ¨ ¨ +

x4k

(4k)!
@x ě 0 .

Problem 11. （不要用交叉相乘）Show that for all k P N Y t0u,

1 ´ x+ x2 ´ x3 + ¨ ¨ ¨ + x2k ´ x2k+1 ď
1

1 + x
ď 1 ´ x+ x2 ´ x3 + ¨ ¨ ¨ + x2k @x ě 0 .

Problem 12. Let f : R Ñ R be a differentiable function satisfying that f 1(x) = f(x) for all x P R,
and f(0) = 1.

1.（不要試著找出 f 而是直接用 f 的性質）Show that f is increasing on R.

2. Show that if k P N Y t0u, then f(x) ě 1 + x+
x2

2!
+ ¨ ¨ ¨ +

xk

k!
for all x ě 0.

3. Show that if k P N Y t0u, then

1 + x+
x2

2!
+ ¨ ¨ ¨ +

x2k

(2k)!
+

x2k+1

(2k + 1)!
ď f(x) ď 1 + x+

x2

2!
+ ¨ ¨ ¨ +

x2k

(2k)!
@x ď 0 .

Hint: 1. Show that f 2 is increasing on R and argue that f is also increasing on R.

Proof. 1. Since f is differentiable on R, f is continuous on R. By the fact f(0) = 1, there exists
a interval [a, b], where a ă 0 and b ą 0, such that f ą 0 on [a, b]. Since f 1(x) = f(x) for all
x P R, we must have f 1(x) ą 0 on [a, b]; thus f is increasing on [a, b].

Suppose the contrary that f is not increasing on [0,8). Then there exists c ą 0 such that
f(c) = f 1(c) ă 0. Since f is continuous on [0, c], f , restricted to the interval [0, c], attains its
maximum at some x0 P [0, c]. If x0 P (0, c), by Fermat’s Theorem f 1(x0) = 0 which further
implies that f(x0) = 0, a contradiction since f(0) = 1 ą f(x0). Therefore, x0 must be 0 or
c. However, f is strictly increasing on [0, b], so f(0) cannot be the maximum of f on [0, c].
On the other hand, f(x0) ă 0 ă f(0), so f(x0) cannot be the maximum of f on [0, c]. These
contradictions lead to the fact that f is increasing on [0,8).

Similarly, suppose the contrary that f is not increasing on (´8, 0]. Then there exists c ă 0

such that f(c) = f 1(c) ă 0. Since f is continuous, there exists some interval [c, c + δ] Ď [c, 0]

such that f ă 0 on [c, c + δ]. Therefore, f is strictly decreasing on [c, c + δ]. Now, by the
continuity of f on [c, 0], f , restricted to the interval [c, 0], attains its minimum at x0 P [c, 0].
Again, x0 cannot be 0 since f is increasing on [a, 0], while x0 cannot be c since f is strictly
decreasing on [c, c+ δ]. Therefore, x0 P (c, 0). Then Fermat’s Theorem implies that f 1(x0) = 0

which implies that f(x0) = 0 is the minimum of f on [c, 0], a contradiction. Therefore, f is
increasing on (´8, 0]. Combining with the fact that f is increasing on [0,8), we find that f

is increasing on R.



2. First from the previous step we find that f(x) ě 1 for all x ě 0. Therefore, the desired
inequality holds for the case k = 0.

Assume that the desired inequality holds for the case k = n. Define a function g : [0,8) Ñ R
by

g(x) = f(x) ´ 1 ´ x ´
x2

2!
´ ¨ ¨ ¨ ´

xn+1

(n+ 1)!
.

Then
g 1(x) = f 1(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

xn

n!
= f(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

xn

n!
which, by the assumption that the desired inequality holds for k = n, implies that g 1(x) ě 0.
Therefore, g(x) ě g(0) = 0 for all x ě 0.

3. First from the previous step we find that f(x) ď 1 for all x ď 0. On the other hand, since
d

dx

[
f(x) ´ 1 ´ x

]
= f 1(x) ´ 1 = f(x) ´ 1 ď 0 ,

we find that the function y = f(x)´1´x is decreasing. Therefore, f(x)´1´x ě f(0)´1´0 = 0

for all x ď 0. This shows that the desired inequality holds for the case k = 0.

Assume that the desired inequality holds for the case k = n.

(a) Define h1 : (´8, 0] Ñ R by

h1(x) = f(x) ´ 1 ´ x ´
x2

2!
´ ¨ ¨ ¨ ´

x2(n+1)

[2(n+ 1)]!
.

Then

h 1
1(x) = f 1(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

x2n+1

(2n+ 1)!
= f(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

x2n+1

(2n+ 1)!

which, by the assumption that the desired inequality holds for the case k = n, implies that
h 1
1(x) ě 0 for all x ď 0. Therefore, h1 is increasing on (´8, 0]; thus h1(x) ď h1(0) = 0 for

all x ď 0. This implies that

f(x) ď 1 + x+
x2

2!
+ ¨ ¨ ¨ +

x2(n+1)

[2(n+ 1)]!
@x ď 0 .

(b) Define h2 : (´8, 0] Ñ R by

h2(x) = f(x) ´ 1 ´ x ´
x2

2!
´ ¨ ¨ ¨ ´

x2(n+1)+1

[2(n+ 1) + 1]!
.

Then

h 1
2(x) = f 1(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

x2n+2

(2n+ 2)!
= f(x) ´ 1 ´ x ´

x2

2!
´ ¨ ¨ ¨ ´

x2(n+1)

[2(n+ 1)]!

and the (a) implies that h 1
2(x) ď 0 for all x ď 0. Therefore, h2 is decreasing on (´8, 0];

thus h2(x) ě h2(0) = 0 for all x ď 0. This implies that

f(x) ě 1 + x+
x2

2!
+ ¨ ¨ ¨ +

x2(n+1)+1

[2(n+ 1) + 1]!
@x ď 0 .



Combining (a) and (b), we find that the desired inequality holds for the case k = n+1. By
induction, we find that the desired inequality holds for all k P N Y t0u. ˝

Problem 13. 1. The function
f(x) =

"

0 if x = 0 ,

1 ´ x if 0 ă x ď 1

is differentiable on (0, 1) and satisfies f(0) = f(1). However, its derivative is never zero on
(0, 1). Does this contradict Rolle’s Theorem? Explain.

2. Can you find a function f such that f(´2) = ´2, f(2) = 6, and f 1(x) ă 1 for all x? Why or
why not?

Problem 14. Find the minimum value of
ˇ

ˇ sinx+ cosx+ tanx+ cotx+ secx+ cscx
ˇ

ˇ

for real numbers x.
Hint: Let t = sinx+ cosx.

Solution. Let t = sinx+ cosx. Then t2 = 1 + 2 sinx cosx; thus sinx cosx =
t2 ´ 1

2
. Therefore,

sinx+ cosx+
sinx

cosx +
cosx
sinx

+
1

cosx +
1

sinx

= sinx+ cosx+
sin2 x+ cos2 x+ sinx+ cosx

sinx cosx
= sinx+ cosx+

1 + sinx+ cosx
sinx cosx

= t+
2(1 + t)

t2 ´ 1
= t+

2

t ´ 1
=: f(t) .

Define f(t) = t+
2

t ´ 1
. Since ´

?
2 ď t ď

?
2, we need to find min

tP[´
?
2,

?
2]

ˇ

ˇf(t)
ˇ

ˇ .

Since f 1(t) = 1 ´
2

(t ´ 1)2
, we find that c = 1 ´

?
2 is the only critical point of f in

[
´

?
2,

?
2
]
.

Finally, since

f(1 ´
?
2) = 1 ´ 2

?
2 , f(´

?
2) = ´

?
2 +

2

´
?
2 ´ 1

= 2 ´ 3
?
2 , f(

?
2) =

?
2 +

2
?
2 ´ 1

= 3
?
2 + 2 ,

we find that min
tP[´

?
2,

?
2]

ˇ

ˇf(t)
ˇ

ˇ = 2
?
2 ´ 1. ˝

Problem 15. Let f, g : (a, b) Ñ R be twice differentiable functions such that f 11(x) ‰ 0 and
g 11(x) ‰ 0 for all x P (a, b). Prove that if f and g are positive, increasing, and concave upward on
the interval (a, b), then fg is also concave upward on (a, b).

Problem 16. For what values of a and b is (2, 2.5) an inflection point of the curve x2+ ax+ by = 0?
What additional inflection points does the curve have?


