Exercise Problem Sets 7
Oct. 27. 2023

Problem 1. 1. Let f,¢g: (a,b) — R be differentiable functions and f’(z) = ¢’(z). Show that there
exists a constant C' such that f(z) = g(z) + C.

2. Suppose that f : R — R is a differentiable function satisfying that f’(z) = 322 + 4cosz and
£(0) = 0. Find f().

Problem 2. Let f : [a,b] — R be a continuous function such that f has only one critical point
ce€ (a,b).

1. Show that if f(c) is a local extremum of f, then f(c) is an absolute extremum of f.

2. Show that if f(c) is the absolute minimum of f, then f(z) > f(c) for all z € [a,b] and z # c.
Similarly, show that if f(c) is the absolute maximum of f, then f(z) < f(c) for all x € [a, b]

and x # c.

Proof. 1. W.L.O.G. we can assume that f(c) is a local minimum of f. By the definition of local

extremum, there exists > 0 such that
flz) = f(e) Vee(c—d,c+6) < [a,b].

Since ¢ is the only critical point of f, there exist x; € (¢ — d,¢) and x2 € (¢,c + J) such that
f(z1) > f(c) and f(x2) > f(c) (for otherwise f is constant in an interval which contradicts to
the fact that ¢ is the only critical point of f). This shows that f(c) cannot be the absolute

maximum of f.

Suppose the contrary that f(c) is not the absolute minimum of f. Since f is continuous on
[a,b], the Extreme Value Theorem and Fermat’s Theorem imply that the absolute minimum

of f occurs at the end-point.

(a) If f(a) is the absolute minimum of f (with f(a) < f(c)), the continuity of f on [a,(]
implies that f attains its absolute maximum on [a, | at some point zy. It is clear that
xo # a. Moreover, since f(x1) > f(c), xg # ¢; thus g € (a,c). By Fermat’s Theorem, xg

is a critical point of f, a contradiction.

(b) Similarly, that f(b) is the absolute minimum of f (with f(b) < f(c)) also leads to a

contradiction.
Therefore, f(c) has to be the absolute minimum of f.

2. Note that since f has only one critical point ¢, then f is differentiable on (a,b) except possibly
at c¢. Suppose that there exists another point d € [a,b], d # ¢, such that f(d) = f(c). If
d € (a,c), Rolle’s Theorem implies that there exists some point zg € (d, ¢) such that f'(z¢) =0
which implies that ¢ is not the only critical point, a contradiction. Similarly, that d € (c,b)

also leads to the existence of another critical point in (¢, d) which is again a contradiction. o



Problem 3. Let I,J be intervals, g : I — R and f : J — R be increasing functions. Show that if J

contains the range of g, then f o g is increasing on I.

Problem 4. 1. If the function f(z) = 2® + az? + bz has the local minimum value 23 at x = \}5’

what are the values of a and b?

2. Which of the tangent lines to the curve in part (1) has the smallest slope?

Problem 5. A number a is called a fixed point of a function f if f(a) = a. Prove that if f'(z) # 1

for all real numbers x, then f has at most one fixed point.

Problem 6. Suppose f is an odd function (that is, f(—x) = — f(x) for all z € R) and is differentiable
everywhere. Prove that for every positive number b, there exists a number ¢ in (—b,b) such that

o=

Problem 7. Show that 2/z > 3 — — for all z > 1.
X
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Problem 9. Show that for all (rational numbers) p, ¢ € (1, 00) satisfying ! + L 1, we have
p q

Problem 8. Show that vb — \/a < b2_ Y forall 0 < a < b.

+bd < (P +)r(c?+dY)s  Yabed>0.

ac
. d
Hint: Let z = & and y=—.
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d

Proof. Let x = % and y = —, then the desired inequality is equivalent to that
C

x+y<(xp+1)z%(yq+1)é Va,y>0.

Therefore, it suffices to show the inequality above.

Let y > 0 be given. Define
fl2) = (@ + 1)r(y" + 1)1~z —y.

Then
1
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thus there is only one critical point of f which is ¢ =y ». Now, since

11 p —p _%_1 q 5 —(+1)
f (c)-q(l—kc ) (y!+1)ac >0,

f attains its local minimum at ¢. Moreover, since f has only one critical point, f must attain its
global minimum at c; thus

f(z) = f(c) Vae>0.
The desired inequality is established by the fact that

fO =@+ )+ )i —y v —y=y-(y7+1) -y —y=0. o



Problem 10. Show that for all k € N u {0},
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Problem 11. (7 £ * 2% 4p3k ) Show that for all k€ N u {0},

l—z+a? -4 a2 — g%t < <l—-z4+2? -2+ 22 Ve=>0.
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Problem 12. Let f : R — R be a differentiable function satisfying that f’(x) = f(z) for all z € R,
and f(0) = 1.

L(?2&2FFHN fa ik f i) Show that f is increasing on R.
2 k
2. Showthatifk:eNu{O},thenf(x)>1+x+%+-'-+%forallx>0.

3. Show that if £ € N U {0}, then
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Hint: 1. Show that f2 is increasing on R and argue that f is also increasing on R.

Proof. 1. Since f is differentiable on R, f is continuous on R. By the fact f(0) = 1, there exists
a interval [a,b], where a < 0 and b > 0, such that f > 0 on [a,b]. Since f'(z) = f(x) for all

x € R, we must have f’(z) > 0 on [a,b]; thus f is increasing on [a, b].

Suppose the contrary that f is not increasing on [0,00). Then there exists ¢ > 0 such that
f(e) = f'(¢) < 0. Since f is continuous on [0, c|, f, restricted to the interval [0, ¢], attains its
maximum at some zg € [0,c]. If 5 € (0,¢), by Fermat’s Theorem f’(xy) = 0 which further
implies that f(xy) = 0, a contradiction since f(0) = 1 > f(xy). Therefore, xo must be 0 or
c. However, f is strictly increasing on [0,0], so f(0) cannot be the maximum of f on [0, ¢|.
On the other hand, f(zg) < 0 < f(0), so f(xy) cannot be the maximum of f on [0, ¢|. These

contradictions lead to the fact that f is increasing on [0, o0).

Similarly, suppose the contrary that f is not increasing on (—oo,0]. Then there exists ¢ < 0
such that f(c) = f’(c) < 0. Since f is continuous, there exists some interval [c, ¢ + 0] < [c, 0]
such that f < 0 on [¢,¢ + §]. Therefore, f is strictly decreasing on [c,c + 0]. Now, by the
continuity of f on [c,0], f, restricted to the interval [c, 0], attains its minimum at zq € [c, 0].
Again, xy cannot be 0 since f is increasing on [a, 0], while xy cannot be ¢ since f is strictly
decreasing on [c, ¢+ 0]. Therefore, xy € (¢,0). Then Fermat’s Theorem implies that f’(x¢) =0
which implies that f(z¢) = 0 is the minimum of f on [¢, 0], a contradiction. Therefore, f is
increasing on (—0,0]. Combining with the fact that f is increasing on [0, ), we find that f

is increasing on R.



2. First from the previous step we find that f(z) > 1 for all x > 0. Therefore, the desired
inequality holds for the case k = 0.

Assume that the desired inequality holds for the case k = n. Define a function g : [0,0) — R
by
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Therefore, g(z) = g(0) = 0 for all z > 0.

3. First from the previous step we find that f(z) <1 for all x < 0. On the other hand, since

%ﬁﬂ@—l—x}zf%w—lzf@ﬂ—l<0

we find that the function y = f(z)—1—= is decreasing. Therefore, f(x)—1—x > f(0)—1-0=10
for all x < 0. This shows that the desired inequality holds for the case k& = 0.

Assume that the desired inequality holds for the case k = n.

(a) Define hy : (—0,0] — R by

72 1.2(71+1)
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/ / x2 £L‘2n+1 $2 $2n+1
@)= @) —l-w= g s oy /@ e g

which, by the assumption that the desired inequality holds for the case k = n, implies that
hi(xz) = 0 for all x < 0. Therefore, h; is increasing on (—o0, 0]; thus hy(x) < hy(0) = 0 for
all x < 0. This implies that
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(b) Define hy : (—0,0] — R by
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and the (a) implies that hi(z) < 0 for all x < 0. Therefore, hy is decreasing on (—o0, 0];
thus ho(x) = ho(0) = 0 for all # < 0. This implies that
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Combining (a) and (b), we find that the desired inequality holds for the case k =n+ 1. By
induction, we find that the desired inequality holds for all £ € N U {0}. D

Problem 13. 1. The function
0 ifx=0,
1—z if0<z<l1

)= {

is differentiable on (0, 1) and satisfies f(0) = f(1). However, its derivative is never zero on
(0,1). Does this contradict Rolle’s Theorem? Explain.

2. Can you find a function f such that f(—2) = —2, f(2) = 6, and f'(z) < 1 for all 27 Why or
why not?

Problem 14. Find the minimum value of
‘ sinx + cosx + tanx + cot x + secx + cscx

for real numbers z.

Hint: Let t = sinz + cosz.

. : : . t?2—1
Solution. Let t = sinx + cosz. Then > = 1 + 2sinz cos z; thus sinz cosz =

. Therefore,

. sin x CcosS T 1 1
sinx + cosx +

cos T sinx CoS T sin x
sinx + cos?x + sinx + cosx

=sginz + cosx + -
sin x cos x

1+sinx + cosx

=sinx 4 cosx + -
sin « cos x

2(1+41) 2
- t2 -1 +75—1 f()

Define f(t) =1t + _%_ Since —v2 <t <+/2, weneed to find  min _|f(?)].
t—1 tel-v/2/2]

Since f'(t) =1 — (15_21)2, we find that ¢ = 1 — /2 is the only critical point of f in [—ﬂ, \/ﬂ
Finally, since
2 2
1—V2)=1-2v2, f(—V2) = —V2+ =2-3v2, f(V2) =2+ =3V2+2,
f(1-v3) F(=v2) 2 V) -
we find that min _[f(t)] =2v2— 1. o

te[—v/2,v/2]

Problem 15. Let f,g : (a,b) — R be twice differentiable functions such that f”(x) # 0 and
g"(x) # 0 for all x € (a,b). Prove that if f and g are positive, increasing, and concave upward on

the interval (a,b), then fg is also concave upward on (a, b).

Problem 16. For what values of a and b is (2, 2.5) an inflection point of the curve x? + az + by = 07

What additional inflection points does the curve have?



