Calculus MA1002－B Midterm 3

National Central University，Jun．09， 2020
Problem 1．（ 10% ）True or False（是非題）：每題兩分，答對得兩分，答錯倒扣兩分（倒扣至本大題零分為止）

In the following，R is always an open region in the plane，(a, b) is always a point in R ，and $f: R \rightarrow \mathbb{R}$ is a function of two variables．

F 1．If $\lim _{r \rightarrow 0} f(a+r \cos \theta, b+r \sin \theta)$ exists for all $\theta \in \mathbb{R}$ ，then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists．
T 2．If f is differentiable at (a, b) ，then f_{x} and f_{y} both exist (a, b) ．
T 3．If f_{x} and f_{y} are continuous on R ，then f is continuous on R ．
F 4．If f_{x} and f_{y} the directional derivative of f at (a, b) exists in all directions，then f is differentiable at (a, b) ．

F 5．If $f_{x y}$ and $f_{y x}$ both exist on R ，then $f_{x y}=f_{y x}$ on R ．
Problem 2．Complete the following．
（1）（5\％）Let R be an open region in the plane，$f: R \rightarrow \mathbb{R}$ be a function，and $(a, b) \in R$ ．Define the differentiability of f at (a, b) ．（定義 f 在 (a, b) 的可微性）
（2）（5\％）Let R be an open region in the plane，$f, g: R \rightarrow \mathbb{R}$ be differentiable functions of two variables．State the Lagrange Multiplier Theorem（for finding extrema of f subject to constraint $g=0)$ ．（敘述雙變數函數在一個限制式下的拉格朗日乘子定理）

Problem 3．Assume that f is a continuous function of two variable satisfying that

$$
\lim _{(x, y) \rightarrow(\pi, 1)} \frac{f(x, y)-y \cos x}{(x-\pi)^{2}+(y-1)^{2}}=0
$$

1．（10\％）Find $f_{x}(\pi, 1)$ and $f_{y}(\pi, 1)$ ．
2．(5%) Prove or disprove that f is differentiable at $(\pi, 1)$ ．
Solution．Note that since $\lim _{(x, y) \rightarrow(\pi, 1)} \frac{f(x, y)-y \cos x}{(x-\pi)^{2}+(y-1)^{2}}=0$ ，we must have

$$
\lim _{(x, y) \rightarrow(\pi, 1)} \frac{f(x, y)-y \cos x}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}=0 \quad \text { and } \quad \lim _{(x, y) \rightarrow(\pi, 1)}[f(x, y)-y \cos x]=0
$$

Therefore， $\lim _{(x, y) \rightarrow(\pi, 1)} f(x, y)=-1$ ．By the continuity of $f, f(\pi, 1)=-1$ ．
For $(x, y) \neq(\pi, 1)$ ，

$$
\frac{f(x, y)-y \cos x}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}=\frac{f(x, y)-f(\pi, 1)+(y-1)}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}-\frac{y+y \cos x}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}} .
$$

By Taylor's Theorem, for each x there exists ξ between x and π such that

$$
\cos x=\cos \pi-\frac{\cos \xi}{2}(x-\pi)^{2}=-1-\frac{\cos \xi}{2}(x-\pi)^{2}
$$

thus

$$
\left|\frac{y+y \cos x}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}\right|=\frac{|y||1+\cos x|}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}} \leqslant \frac{|y|}{2} \frac{|x-\pi|^{2}}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}} \leqslant \frac{1}{2}|y||x-\pi|^{\frac{3}{2}}
$$

and the right-hand side approaches zero as $(x, y) \rightarrow(\pi, 1)$. By the Squeeze Theorem,

$$
\lim _{(x, y) \rightarrow(\pi, 1)} \frac{y+y \cos x}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}=0
$$

thus

$$
\lim _{(x, y) \rightarrow(\pi, 1)} \frac{|f(x, y)-f(\pi, 1)+(y-1)|}{\sqrt{(x-\pi)^{2}+(y-1)^{2}}}=0 .
$$

The equality above implies that $\underline{f \text { is differentiable at }(\pi, 1)}$ and $\underline{f_{x}(\pi, 1)=0, ~} \underline{f_{y}(\pi, 1)=-1}$.
Problem 4. (12\%) Suppose that $c_{1}, c_{2} \in \mathbb{R}$ are constants, and $u=u(x, y, t)$ is a twice differentiable function of x, y, t satisfying $u_{x y}=u_{y x}$ and

$$
\frac{\partial u}{\partial t}+c_{1} \frac{\partial u}{\partial x}+c_{2} \frac{\partial u}{\partial y}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} .
$$

Let $v(r, \theta, t)=u\left(r \cos \theta+c_{1} t, r \sin \theta+c_{2} t, t\right)$. Show that v satisfies that

$$
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} .
$$

Proof. Since $v(r, \theta, t)=u\left(r \cos \theta+c_{1} t, r \sin \theta+c_{2} t, t\right)$, by the chain rule

$$
\begin{aligned}
& v_{t}=u_{x} c_{1}+u_{y} c_{2}+u_{t}, \\
& v_{r}=u_{x} \cos \theta+u_{y} \sin \theta \\
& v_{\theta}=u_{x} r(-\sin \theta)+u_{y} r \cos \theta=-u_{x} r \sin \theta+u_{y} r \cos \theta
\end{aligned}
$$

thus by the fact that $u_{x y}=u_{y x}$ we have

$$
\begin{aligned}
v_{r r} & =u_{x x} \cos ^{2} \theta+u_{x y} \cos \theta \sin \theta+u_{y x} \sin \theta \cos \theta+u_{y y} \sin ^{2} \theta \\
& =u_{x x} \cos ^{2} \theta+2 u_{x y} \sin \theta \cos \theta+u_{y y} \sin ^{2} \theta,
\end{aligned}
$$

and

$$
\begin{aligned}
v_{\theta \theta} & =u_{x x} r^{2} \sin ^{2} \theta-u_{x y} r^{2} \sin \theta \cos \theta-u_{x} r \cos \theta-u_{y x} r^{2} \sin \theta \cos \theta+u_{y y} r^{2} \cos ^{2} \theta-u_{y} r \sin \theta \\
& =u_{x x} r^{2} \sin ^{2} \theta-2 u_{x y} r^{2} \sin \theta \cos \theta+u_{y y} r^{2} \cos ^{2} \theta-u_{x} r \cos \theta-u_{y} r \sin \theta
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\partial v}{\partial t}- & \frac{\partial^{2} v}{\partial r^{2}}-\frac{1}{r} \frac{\partial v}{\partial r}-\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} \\
= & u_{t}+c_{1} u_{x}+c_{2} u_{y}-u_{x x} \cos ^{2} \theta-2 u_{x y} \sin \theta \cos \theta-u_{y y} \sin ^{2} \theta-\frac{1}{r}\left(u_{x} \cos \theta+u_{y} \sin \theta\right) \\
& -\frac{1}{r^{2}}\left(u_{x x} r^{2} \sin ^{2} \theta-2 u_{x y} r^{2} \sin \theta \cos \theta+u_{y y} r^{2} \cos ^{2} \theta-u_{x} r \cos \theta-u_{y} r \sin \theta\right) \\
= & u_{t}+c_{1} u_{x}+c_{2} u_{y}-u_{x x}-u_{y y}=0
\end{aligned}
$$

which shows $\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}$.

Problem 5．（8\％）Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{y^{4}(3 x+4 y)}{x^{6}+5 y^{4}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Find the direction along which the value of the function f at $(0,0)$ increases most rapidly． （找出在 $(0,0)$ 點 f 的函數值上升最快的方向）

Proof．Let $\boldsymbol{u}=(\cos \theta, \sin \theta)$ ．Then

$$
\begin{aligned}
\left(D_{u} f\right)(0,0) & =\lim _{t \rightarrow 0} \frac{f(t \cos \theta, t \sin \theta)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{4} \sin ^{4} \theta(3 t \cos \theta+4 t \sin \theta)}{t\left(t^{6} \cos ^{6} \theta+5 t^{4} \sin ^{4} \theta\right)} \\
& =\left\{\begin{array}{cl}
0 & \text { if } \sin \theta=0, \\
\frac{3 \cos \theta+4 \sin \theta}{5} & \text { if } \sin \theta \neq 0 .
\end{array}\right.
\end{aligned}
$$

The direction along which the value of f at $(0,0)$ increases most rapidly is the direction which maximize $\left(D_{u} f\right)(0,0)$ ．Since the maximum of $\left(D_{u} f\right)(0,0)$ occurs at $\cos \theta=\frac{3}{5}$ and $\sin \theta=\frac{4}{5}$ ， the direction along which the value of f at $(0,0)$ increases most rapidly is $\left(\frac{3}{5}, \frac{4}{5}\right)$ ．

Problem 6．（12\％）Find the second Taylor polynomial of the function $f(x, y)=\arctan (y \tan x)$ at $\left(\frac{3 \pi}{4}, 1\right)$ ．

Solution．By the chain rule implies that

$$
\begin{aligned}
f_{x}(x, y) & =\frac{y \sec ^{2} x}{1+y^{2} \tan ^{2} x}, \quad f_{y}(x, y)=\frac{\tan x}{1+y^{2} \tan ^{2} x} \\
f_{x x}(x, y) & =\frac{2 y \sec ^{2} x \tan x \cdot\left(1+y^{2} \tan ^{2} x\right)-2 y^{2} \sec ^{2} x \tan x \cdot y \sec ^{2} x}{\left(1+y^{2} \tan ^{2} x\right)^{2}} \\
f_{x y}(x, y) & =\frac{\sec ^{2} x \cdot\left(1+y^{2} \tan ^{2} x\right)-2 y \tan ^{2} x \cdot y \sec ^{2} x}{\left(1+y^{2} \tan ^{2} x\right)^{2}}, \quad f_{y y}(x, y)=\frac{-2 y \tan ^{2} x \cdot \tan x}{\left(1+y^{2} \tan ^{2} x\right)^{2}} ;
\end{aligned}
$$

thus using that $\tan \frac{3 \pi}{4}=-1$ and $\sec \frac{3 \pi}{4}=-\sqrt{2}$ ，we find that

$$
\begin{aligned}
f_{x}\left(\frac{3 \pi}{4}, 1\right) & =1, \quad f_{y}\left(\frac{3 \pi}{4}, 1\right)=-\frac{1}{2}, \quad f_{x x}\left(\frac{3 \pi}{4}, 1\right)=\frac{-8+8}{4}=0, \\
f_{x y}\left(\frac{3 \pi}{4}, 1\right) & =\frac{4-4}{4}=0, \quad f_{y y}\left(\frac{3 \pi}{4}, 1\right)=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Since $f\left(\frac{3 \pi}{4}, 1\right)=\arctan \left(\tan \frac{3 \pi}{4}\right)=\arctan (-1)=-\frac{\pi}{4}$ ，we find that the second Taylor polynomial of f at $\left(\frac{3 \pi}{4}, 1\right)$ is

$$
\begin{aligned}
\underline{P_{2}(x, y)}= & f\left(\frac{3 \pi}{4}, 1\right)+f_{x}\left(\frac{3 \pi}{4}, 1\right)\left(x-\frac{3 \pi}{4}\right)+f_{y}\left(\frac{3 \pi}{4}, 1\right)(y-1) \\
& +\frac{1}{2!}\left[f_{x x}\left(\frac{3 \pi}{4}, 1\right)\left(x-\frac{3 \pi}{4}\right)^{2}+2 f_{x y}\left(\frac{3 \pi}{4}, 1\right)\left(x-\frac{3 \pi}{4}\right)(y-1)+f_{y y}\left(\frac{3 \pi}{4}, 1\right)(y-1)^{2}\right] \\
= & -\frac{\pi}{4}+\left(x-\frac{3 \pi}{4}\right)-\frac{1}{2}(y-1)+\frac{1}{4}(y-1)^{2} .
\end{aligned}
$$

Problem 7. (13\%) Let $k>1$ be a real number. Find all relative extrema and saddle points of $f(x, y)=\left(x^{2}+k y^{2}\right) e^{-x^{2}-y^{2}}$ using the second derivative test. When a relative extremum is found, determine if it is a relative maximum or a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

$$
\begin{aligned}
f_{x}(x, y) & =2 x e^{-x^{2}-y^{2}}+\left(x^{2}+k y^{2}\right)(-2 x) e^{-x^{2}-y^{2}}=2 x\left(1-x^{2}-k y^{2}\right) e^{-x^{2}-y^{2}} \\
f_{y}(x, y) & =2 k y e^{-x^{2}-y^{2}}+\left(x^{2}+k y^{2}\right)(-2 y) e^{y^{2}-x^{2}}=2 y\left(k-x^{2}-k y^{2}\right) e^{-x^{2}-y^{2}}, \\
f_{x x}(x, y) & =\left[2-6 x^{2}-2 k y^{2}-4 x^{2}\left(1-x^{2}-k y^{2}\right)\right] e^{-x^{2}-y^{2}}, \\
f_{x y}(x, y) & =\left[2 x(-2 k y)-4 x y\left(1-x^{2}-k y^{2}\right)\right] e^{-x^{2}-y^{2}}, \\
f_{y y}(x, y) & =\left[2 k-2 x^{2}-6 k y^{2}-4 y^{2}\left(k-x^{2}-k y^{2}\right)\right] e^{-x^{2}-y^{2}} .
\end{aligned}
$$

Therefore, critical points of f are $(0,0),(\pm 1,0)$ and $(0, \pm 1)$.

1. Since $f_{x x}(0,0)=2, f_{y y}(0,0)=2 k, f_{x y}(0,0)=0$, we find that

$$
f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=4 k>0 ;
$$

thus the fact that $f_{x x}(0,0)>0$ implies that $\underline{f(0,0)}$ is a relative minimum of f.
2. Since $f_{x x}(\pm 1,0)=-4 e^{-1}, f_{y y}(1,0)=2(k-1) e^{-1}$ and $f_{x y}(1,0)=0$, we find that

$$
f_{x x}(\pm 1,0) f_{y y}(\pm 1,0)-f_{x y}(\pm 1,0)^{2}=-8(k-1) e^{-2}<0 ;
$$

thus $(\pm 1,0)$ is a saddle point of f.
3. Since $f_{x x}(0, \pm 1)=2(1-k) e^{-1}, f_{y y}(0, \pm 1)=-4 k e^{-1}$ and $f_{x y}(0, \pm 1)=0$, we find that

$$
f_{x x}(0, \pm 1) f_{y y}(0, \pm 1)-f_{x y}(0, \pm 1)^{2}=8 k(k-1) e^{-2}>0 ;
$$

thus the fact that $f_{x x}(0, \pm)<0$ implies that $\underline{f(0, \pm 1) \text { is a relative maximum of } f}$.
Problem 8. (20\%) Find the extreme value of the function $f(x, y, z)=2 x^{2}+2 y^{2}+2 z^{2}-z$ on the set

$$
R=\left\{(x, y, z) \mid\left(2 x^{2}+y^{2}-1\right)^{2} \leqslant z^{2} \leqslant 4\right\} .
$$

Solution. Suppose that f attains its maximum at $\left(x_{0}, y_{0}, z_{0}\right) \in R$.

1. If $\left(x_{0}, y_{0}, z_{0}\right)$ is an interior point of R, then

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\left(4 x_{0}, 4 y_{0}, 4 z_{0}-1\right)=\mathbf{0}
$$

which implies that $\left(x_{0}, y_{0}, z_{0}\right)=\left(0,0, \frac{1}{4}\right)$. This point does not belong to R; thus f does not attain its extreme value in the interior of R.
2. Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ on the boundary $z^{2}=4$. Then $z_{0}= \pm 2$, and $f\left(x_{0}, y_{0}, 2\right)=2 x^{2}+2 y^{2}+6$, $f\left(x_{0}, y_{0},-2\right)=2 x^{2}+2 y^{2}+10$ whose minimum is 6 .
3. Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ on the boundary $\left(2 x^{2}+y^{2}-1\right)^{2}=z^{2}$. Let $g(x, y, z)=\left(2 x^{2}+y^{2}-1\right)^{2}-z^{2}$. Then

$$
(\nabla g)(x, y, z)=\left(8 x\left(2 x^{2}+y^{2}-1\right), 4 y\left(2 x^{2}+y^{2}-1\right),-2 z\right) .
$$

(a) If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)=\mathbf{0}$, then $z_{0}=0$ and $2 x_{0}^{2}+y_{0}^{2}=1$. Subject to the constraint $2 x_{0}^{2}+y_{0}^{2}=1$, $f\left(x_{0}, y_{0}, z_{0}\right)=2 x_{0}^{2}+2 y_{0}^{2}$ attains its maximum at $\left(x_{0}, y_{0}\right)=(0, \pm 1)$ with value 2 and attains its minimum at $\left(x_{0}, y_{0}\right)=\left(\pm \frac{1}{\sqrt{2}}, 0\right)$ with value 1 .
(b) If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then there exists $\lambda \in \mathbb{R}$ such that

$$
\left(4 x_{0}, 4 y_{0}, 4 z_{0}-1\right)=\lambda\left(8 x_{0}\left(2 x_{0}^{2}+y_{0}^{2}-1\right), 4 y_{0}\left(2 x_{0}^{2}+y_{0}^{2}-1\right),-2 z_{0}\right)
$$

which implies that

$$
\begin{align*}
x_{0} & =2 \lambda x_{0}\left(2 x_{0}^{2}+y_{0}^{2}-1\right), \tag{0.1a}\\
y_{0} & =\lambda y_{0}\left(2 x_{0}^{2}+y_{0}^{2}-1\right), \tag{0.1b}\\
4 z_{0}-1 & =-2 \lambda z_{0}, \tag{0.1c}\\
z_{0}^{2} & =\left(2 x_{0}^{2}+y_{0}^{2}-1\right)^{2} . \tag{0.1d}
\end{align*}
$$

Note that (0.1 c$)$ implies that $z_{0} \neq 0$ and (0.1 d) implies that $\lambda \neq 0$ (for otherwise we must have $x_{0}=y_{0}=0$ and $z_{0}=\frac{1}{4}$ that do not satisfy $(0.1 \mathrm{~d})$).
i. If $\left(x_{0}, y_{0}\right)=(0,0)$, then $z_{0}= \pm 1$ and we have $f(0,0,1)=1$ and $f(0,0,-1)=3$.
ii. If $x_{0} \neq 0$, then $2 x_{0}^{2}+y_{0}^{2}-1=\frac{1}{2 \lambda}$; thus (0.1b) implies that $y_{0}=0$. Therefore, $2 x_{0}^{2}-1=\frac{1}{2 \lambda}$ and $(0.1 \mathrm{c})$ shows that $z_{0}=\frac{1}{2 \lambda+4}$. Therefore, using $(0.1 \mathrm{~d})$ we find that

$$
\frac{1}{4 \lambda^{2}}=\frac{1}{(2 \lambda+4)^{4}}=\frac{1}{4(\lambda+2)^{2}} ;
$$

thus $\lambda^{2}=(\lambda+2)^{2}$ which shows that $\lambda=-1$. Therefore, $x_{0}^{2}=\frac{1}{4}$ and $z_{0}=\frac{1}{2}$ so that

$$
f\left(x_{0}, y_{0}, z_{0}\right)=2 \cdot \frac{1}{4}+2 \cdot 0+2 \cdot \frac{1}{4}-\frac{1}{2}=\frac{1}{2} .
$$

iii. If $y_{0} \neq 0$, then $2 x_{0}^{2}+y_{0}^{2}-1=\frac{1}{\lambda}$ so that (0.1a) implies that $x_{0}=0$. Therefore, $y_{0}^{2}=1+\frac{1}{\lambda}$. Together with the fact that $z_{0}=\frac{1}{2 \lambda+4}$, we find that

$$
\frac{1}{\lambda^{2}}=\frac{1}{(2 \lambda+4)^{2}}=\frac{1}{4(\lambda+2)^{2}} .
$$

Therefore, $\lambda=-4$ or $\lambda=-\frac{4}{3}$.
A. If $\lambda=-4$, then $y_{0}^{2}=\frac{3}{4}$ and $z_{0}=-\frac{1}{4}$. In this case,

$$
f\left(x_{0}, y_{0}, z_{0}\right)=2 \cdot 0+2 \cdot \frac{3}{4}+2 \cdot \frac{1}{16}+\frac{1}{4}=\frac{15}{8} .
$$

B. If $\lambda=-\frac{4}{3}$, then $y_{0}^{2}=\frac{1}{4}$ and $z_{0}=\frac{3}{4}$. In this case,

$$
f\left(x_{0}, y_{0}, z_{0}\right)=2 \cdot 0+2 \cdot \frac{1}{4}+2 \cdot \frac{9}{16}-\frac{3}{4}=\frac{7}{8} .
$$

iv. If $x_{0}, y_{0} \neq 0$, then $(0.1 \mathrm{a}, \mathrm{b})$ implies that $2 x_{0}^{2}+y_{0}^{2}-1=0$ which further implies that $z_{0}=0$, a contradiction.
4. Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies both $z^{2}=4$ and $\left(2 x^{2}+y^{2}-1\right)^{2}=z^{2}$. Then $2 x_{0}^{2}+y_{0}^{2}-1=2$; thus $2 x_{0}^{2}+y_{0}^{2}=3$. In this case, $f\left(x_{0}, y_{0}, 2\right)$ attaints its maximum at $(0, \pm \sqrt{3}, 2)$ with value 12 , while $f\left(x_{0}, y_{0},-2\right)$ attains its maximum at $(0, \pm \sqrt{3},-2)$ with value 16 .

Comparing all the possible extrema, we find that the minimum of f on R is $\frac{1}{2}$ and the maximum of f on R is 16 .

