
Calculus MA1002-B Midterm 3
National Central University, Jun. 09, 2020

Problem 1. (10%) True or False（是非題）：每題兩分，答對得兩分，答錯倒扣兩分（倒扣至本
大題零分為止）

In the following, R is always an open region in the plane, (a, b) is always a point in R, and
f : R Ñ R is a function of two variables.

F 1. If lim
rÑ0

f(a+ r cos θ, b+ r sin θ) exists for all θ P R, then lim
(x,y)Ñ(a,b)

f(x, y) exists.

T 2. If f is differentiable at (a, b), then fx and fy both exist (a, b).

T 3. If fx and fy are continuous on R, then f is continuous on R.

F 4. If fx and fy the directional derivative of f at (a, b) exists in all directions, then f is differentiable
at (a, b).

F 5. If fxy and fyx both exist on R, then fxy = fyx on R.

Problem 2. Complete the following.

(1) (5%) Let R be an open region in the plane, f : R Ñ R be a function, and (a, b) P R. Define
the differentiability of f at (a, b).（定義 f 在 (a, b) 的可微性）

(2) (5%) Let R be an open region in the plane, f, g : R Ñ R be differentiable functions of two
variables. State the Lagrange Multiplier Theorem (for finding extrema of f subject to constraint
g = 0).（敘述雙變數函數在一個限制式下的拉格朗日乘子定理）

Problem 3. Assume that f is a continuous function of two variable satisfying that

lim
(x,y)Ñ(π,1)

f(x, y) ´ y cosx
(x ´ π)2 + (y ´ 1)2

= 0 .

1. (10%) Find fx(π, 1) and fy(π, 1).

2. (5%) Prove or disprove that f is differentiable at (π, 1).

Solution. Note that since lim
(x,y)Ñ(π,1)

f(x, y) ´ y cosx
(x ´ π)2 + (y ´ 1)2

= 0, we must have

lim
(x,y)Ñ(π,1)

f(x, y) ´ y cosx
a

(x ´ π)2 + (y ´ 1)2
= 0 and lim

(x,y)Ñ(π,1)

[
f(x, y) ´ y cosx

]
= 0 .

Therefore, lim
(x,y)Ñ(π,1)

f(x, y) = ´1. By the continuity of f , f(π, 1) = ´1.

For (x, y) ‰ (π, 1),

f(x, y) ´ y cosx
a

(x ´ π)2 + (y ´ 1)2
=

f(x, y) ´ f(π, 1) + (y ´ 1)
a

(x ´ π)2 + (y ´ 1)2
´

y + y cosx
a

(x ´ π)2 + (y ´ 1)2
.



By Taylor’s Theorem, for each x there exists ξ between x and π such that

cosx = cos π ´
cos ξ
2

(x ´ π)2 = ´1 ´
cos ξ
2

(x ´ π)2 ;

thus
ˇ

ˇ

ˇ

y + y cosx
a

(x ´ π)2 + (y ´ 1)2

ˇ

ˇ

ˇ
=

|y||1 + cosx|
a

(x ´ π)2 + (y ´ 1)2
ď

|y|

2

|x ´ π|2
a

(x ´ π)2 + (y ´ 1)2
ď

1

2
|y||x ´ π|

3
2

and the right-hand side approaches zero as (x, y) Ñ (π, 1). By the Squeeze Theorem,

lim
(x,y)Ñ(π,1)

y + y cosx
a

(x ´ π)2 + (y ´ 1)2
= 0 ;

thus
lim

(x,y)Ñ(π,1)

ˇ

ˇf(x, y) ´ f(π, 1) + (y ´ 1)
ˇ

ˇ

a

(x ´ π)2 + (y ´ 1)2
= 0 .

The equality above implies that f is differentiable at (π, 1) and fx(π, 1) = 0, fy(π, 1) = ´1. ˝

Problem 4. (12%) Suppose that c1, c2 P R are constants, and u = u(x, y, t) is a twice differentiable
function of x, y, t satisfying uxy = uyx and

Bu

B t
+ c1

Bu

Bx
+ c2

Bu

By
=

B 2u

Bx2
+

B 2u

By2
.

Let v(r, θ, t) = u(r cos θ + c1t, r sin θ + c2t, t). Show that v satisfies that
Bv

B t
=

B 2v

Br2
+

1

r

Bv

Br
+

1

r2
B 2v

Bθ2
.

Proof. Since v(r, θ, t) = u(r cos θ + c1t, r sin θ + c2t, t), by the chain rule

vt = uxc1 + uyc2 + ut ,

vr = ux cos θ + uy sin θ ,

vθ = uxr(´ sin θ) + uyr cos θ = ´uxr sin θ + uyr cos θ ;

thus by the fact that uxy = uyx we have

vrr = uxx cos2 θ + uxy cos θ sin θ + uyx sin θ cos θ + uyy sin2 θ

= uxx cos2 θ + 2uxy sin θ cos θ + uyy sin2 θ ,

and

vθθ = uxxr
2 sin2 θ ´ uxyr

2 sin θ cos θ ´ uxr cos θ ´ uyxr
2 sin θ cos θ + uyyr

2 cos2 θ ´ uyr sin θ

= uxxr
2 sin2 θ ´ 2uxyr

2 sin θ cos θ + uyyr
2 cos2 θ ´ uxr cos θ ´ uyr sin θ .

Therefore,
Bv

B t
´

B 2v

Br2
´

1

r

Bv

Br
´

1

r2
B 2v

Bθ2

= ut + c1ux + c2uy ´ uxx cos2 θ ´ 2uxy sin θ cos θ ´ uyy sin2 θ ´
1

r

(
ux cos θ + uy sin θ

)
´

1

r2

(
uxxr

2 sin2 θ ´ 2uxyr
2 sin θ cos θ + uyyr

2 cos2 θ ´ uxr cos θ ´ uyr sin θ
)

= ut + c1ux + c2uy ´ uxx ´ uyy = 0

which shows Bv

B t
=

B 2v

Br2
+

1

r

Bv

Br
+

1

r2
B 2v

Bθ2
. ˝



Problem 5. (8%) Let f, g : R2 Ñ R be defined by

f(x, y) =

$

&

%

y4(3x+ 4y)

x6 + 5y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Find the direction along which the value of the function f at (0, 0) increases most rapidly.
（找出在 (0, 0) 點 f 的函數值上升最快的方向）

Proof. Let u = (cos θ, sin θ). Then

(Duf)(0, 0) = lim
tÑ0

f(t cos θ, t sin θ) ´ f(0, 0)

t
= lim

tÑ0

t4 sin4 θ(3t cos θ + 4t sin θ)

t(t6 cos6 θ + 5t4 sin4 θ)

=

#

0 if sin θ = 0 ,
3 cos θ + 4 sin θ

5
if sin θ ‰ 0 .

The direction along which the value of f at (0, 0) increases most rapidly is the direction which
maximize (Duf)(0, 0). Since the maximum of (Duf)(0, 0) occurs at cos θ =

3

5
and sin θ =

4

5
,

the direction along which the value of f at (0, 0) increases most rapidly is
(3
5
,
4

5

)
. ˝

Problem 6. (12%) Find the second Taylor polynomial of the function f(x, y) = arctan(y tanx) at(3π
4
, 1
)
.

Solution. By the chain rule implies that

fx(x, y) =
y sec2 x

1 + y2 tan2 x
, fy(x, y) =

tanx

1 + y2 tan2 x
,

fxx(x, y) =
2y sec2 x tanx ¨ (1 + y2 tan2 x) ´ 2y2 sec2 x tanx ¨ y sec2 x

(1 + y2 tan2 x)2
,

fxy(x, y) =
sec2 x ¨ (1 + y2 tan2 x) ´ 2y tan2 x ¨ y sec2 x

(1 + y2 tan2 x)2
, fyy(x, y) =

´2y tan2 x ¨ tanx

(1 + y2 tan2 x)2
;

thus using that tan 3π

4
= ´1 and sec 3π

4
= ´

?
2, we find that

fx
(3π
4
, 1
)
= 1 , fy

(3π
4
, 1
)
= ´

1

2
, fxx

(3π
4
, 1
)
=

´8 + 8

4
= 0 ,

fxy
(3π
4
, 1
)
=

4 ´ 4

4
= 0 , fyy

(3π
4
, 1
)
=

2

4
=

1

2
.

Since f
(3π
4
, 1
)
= arctan(tan 3π

4
) = arctan(´1) = ´

π

4
, we find that the second Taylor polynomial of

f at
(3π
4
, 1
)

is

P2(x, y) = f
(3π
4
, 1
)
+ fx

(3π
4
, 1
)(
x ´

3π

4

)
+ fy

(3π
4
, 1
)
(y ´ 1)

+
1

2!

[
fxx

(3π
4
, 1
)(
x ´

3π

4

)2
+ 2fxy

(3π
4
, 1
)(
x ´

3π

4

)
(y ´ 1) + fyy

(3π
4
, 1
)
(y ´ 1)2

]
= ´

π

4
+
(
x ´

3π

4

)
´

1

2
(y ´ 1) +

1

4
(y ´ 1)2 . ˝



Problem 7. (13%) Let k ą 1 be a real number. Find all relative extrema and saddle points of
f(x, y) = (x2 + ky2)e´x2´y2 using the second derivative test. When a relative extremum is found,
determine if it is a relative maximum or a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

fx(x, y) = 2xe´x2´y2 + (x2 + ky2)(´2x)e´x2´y2 = 2x(1 ´ x2 ´ ky2)e´x2´y2 ,

fy(x, y) = 2kye´x2´y2 + (x2 + ky2)(´2y)ey
2´x2

= 2y(k ´ x2 ´ ky2)e´x2´y2 ,

fxx(x, y) =
[
2 ´ 6x2 ´ 2ky2 ´ 4x2(1 ´ x2 ´ ky2)

]
e´x2´y2 ,

fxy(x, y) =
[
2x(´2ky) ´ 4xy(1 ´ x2 ´ ky2)

]
e´x2´y2 ,

fyy(x, y) =
[
2k ´ 2x2 ´ 6ky2 ´ 4y2(k ´ x2 ´ ky2)

]
e´x2´y2 .

Therefore, critical points of f are (0, 0), (˘1, 0) and (0,˘1).

1. Since fxx(0, 0) = 2, fyy(0, 0) = 2k, fxy(0, 0) = 0, we find that

fxx(0, 0)fyy(0, 0) ´ fxy(0, 0)
2 = 4k ą 0 ;

thus the fact that fxx(0, 0) ą 0 implies that f(0, 0) is a relative minimum of f .

2. Since fxx(˘1, 0) = ´4e´1, fyy(1, 0) = 2(k ´ 1)e´1 and fxy(1, 0) = 0, we find that

fxx(˘1, 0)fyy(˘1, 0) ´ fxy(˘1, 0)2 = ´8(k ´ 1)e´2 ă 0 ;

thus (˘1, 0) is a saddle point of f .

3. Since fxx(0,˘1) = 2(1 ´ k)e´1, fyy(0,˘1) = ´4ke´1 and fxy(0,˘1) = 0, we find that

fxx(0,˘1)fyy(0,˘1) ´ fxy(0,˘1)2 = 8k(k ´ 1)e´2 ą 0 ;

thus the fact that fxx(0,˘) ă 0 implies that f(0,˘1) is a relative maximum of f . ˝

Problem 8. (20%) Find the extreme value of the function f(x, y, z) = 2x2 + 2y2 + 2z2 ´ z on the
set

R =
␣

(x, y, z)
ˇ

ˇ (2x2 + y2 ´ 1)2 ď z2 ď 4
(

.

Solution. Suppose that f attains its maximum at (x0, y0, z0) P R.

1. If (x0, y0, z0) is an interior point of R, then

(∇f)(x0, y0, z0) = (4x0, 4y0, 4z0 ´ 1) = 0

which implies that (x0, y0, z0) =
(
0, 0,

1

4

)
. This point does not belong to R; thus f does not

attain its extreme value in the interior of R.

2. Suppose that (x0, y0, z0) on the boundary z2 = 4. Then z0 = ˘2, and f(x0, y0, 2) = 2x2+2y2+6,
f(x0, y0,´2) = 2x2 + 2y2 + 10 whose minimum is 6.



3. Suppose that (x0, y0, z0) on the boundary (2x2+y2´1)2 = z2. Let g(x, y, z) = (2x2+y2´1)2´z2.
Then

(∇g)(x, y, z) =
(
8x(2x2 + y2 ´ 1), 4y(2x2 + y2 ´ 1),´2z

)
.

(a) If (∇g)(x0, y0, z0) = 0, then z0 = 0 and 2x2
0+y20 = 1. Subject to the constraint 2x2

0+y20 = 1,
f(x0, y0, z0) = 2x2

0+2y20 attains its maximum at (x0, y0) = (0,˘1) with value 2 and attains
its minimum at (x0, y0) =

(
˘

1
?
2
, 0
)

with value 1.

(b) If (∇g)(x0, y0, z0) ‰ 0, then there exists λ P R such that

(4x0, 4y0, 4z0 ´ 1) = λ
(
8x0(2x

2
0 + y20 ´ 1), 4y0(2x

2
0 + y20 ´ 1),´2z0) .

which implies that

x0 = 2λx0(2x
2
0 + y20 ´ 1) , (0.1a)

y0 = λy0(2x
2
0 + y20 ´ 1) , (0.1b)

4z0 ´ 1 = ´2λz0 , (0.1c)
z20 = (2x2

0 + y20 ´ 1)2 . (0.1d)

Note that (0.1c) implies that z0 ‰ 0 and (0.1d) implies that λ ‰ 0 (for otherwise we must
have x0 = y0 = 0 and z0 =

1

4
that do not satisfy (0.1d)).

i. If (x0, y0) = (0, 0), then z0 = ˘1 and we have f(0, 0, 1) = 1 and f(0, 0,´1) = 3.
ii. If x0 ‰ 0, then 2x2

0 + y20 ´ 1 =
1

2λ
; thus (0.1b) implies that y0 = 0. Therefore,

2x2
0 ´ 1 =

1

2λ
and (0.1c) shows that z0 =

1

2λ+ 4
. Therefore, using (0.1d) we find that

1

4λ2
=

1

(2λ+ 4)4
=

1

4(λ+ 2)2
;

thus λ2 = (λ+ 2)2 which shows that λ = ´1. Therefore, x2
0 =

1

4
and z0 =

1

2
so that

f(x0, y0, z0) = 2 ¨
1

4
+ 2 ¨ 0 + 2 ¨

1

4
´

1

2
=

1

2
.

iii. If y0 ‰ 0, then 2x2
0 + y20 ´ 1 =

1

λ
so that (0.1a) implies that x0 = 0. Therefore,

y20 = 1 +
1

λ
. Together with the fact that z0 =

1

2λ+ 4
, we find that

1

λ2
=

1

(2λ+ 4)2
=

1

4(λ+ 2)2
.

Therefore, λ = ´4 or λ = ´
4

3
.

A. If λ = ´4, then y20 =
3

4
and z0 = ´

1

4
. In this case,

f(x0, y0, z0) = 2 ¨ 0 + 2 ¨
3

4
+ 2 ¨

1

16
+

1

4
=

15

8
.



B. If λ = ´
4

3
, then y20 =

1

4
and z0 =

3

4
. In this case,

f(x0, y0, z0) = 2 ¨ 0 + 2 ¨
1

4
+ 2 ¨

9

16
´

3

4
=

7

8
.

iv. If x0, y0 ‰ 0, then (0.1a,b) implies that 2x2
0 + y20 ´ 1 = 0 which further implies that

z0 = 0, a contradiction.

4. Suppose that (x0, y0, z0) satisfies both z2 = 4 and (2x2 + y2 ´ 1)2 = z2. Then 2x2
0 + y20 ´ 1 = 2;

thus 2x2
0 + y20 = 3. In this case, f(x0, y0, 2) attaints its maximum at (0,˘

?
3, 2) with value 12,

while f(x0, y0,´2) attains its maximum at (0,˘
?
3,´2) with value 16.

Comparing all the possible extrema, we find that the minimum of f on R is 1

2
and the maximum of f

on R is 16. ˝


