Calculus MA1002-B Midterm 2

National Central University, Apr. 14, 2019
Problem 1. Complete the following.

1. (5%) State the limit comparison test for the convergence or divergence of infinite series.
2. (15%) State and prove the Taylor Theorem (you can directly apply the Cauchy Mean Value Theorem without stating it).

Solution. 1. Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers, $a_{n}, b_{n}>0$ for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L
$$

where L is a non-zero real number. Then $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\sum_{k=1}^{\infty} b_{k}$ converges.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ be $(n+1)$-times differentiable, and $c \in(a, b)$. Then for each $x \in(a, b)$, there exists ξ between x and c such that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

Proof. We first show that if $h:(a, b) \rightarrow \mathbb{R}$ is m-times differentiable, and $c \in(a, b)$. Then for all $d \in(a, b)$ and $d \neq c$ there exists ξ between c and d such that

$$
\begin{equation*}
\frac{h(d)-\sum_{k=0}^{m} \frac{h^{(k)}(c)}{k!}(d-c)^{k}}{(d-c)^{m+1}}=\frac{1}{m+1} \frac{h^{\prime}(\xi)-\sum_{k=0}^{m-1} \frac{\left(h^{\prime}\right)^{(k)}(c)}{k!}(\xi-c)^{k}}{(\xi-c)^{m}} \tag{ㅁ}
\end{equation*}
$$

Let $F(x)=h(x)-\sum_{k=0}^{m} \frac{h^{(k)}(c)}{k!}(x-c)^{k}$ and $G(x)=(x-c)^{m}$. Then F, G are continuous on $[c, d]$ (or $[d, c]$) and differentiable on (c, d) (or (d, c)), and $G^{\prime}(x) \neq 0$ for all $x \neq c$. Therefore, the Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

$$
\frac{F(d)-F(c)}{G(d)-G(c)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}
$$

and (\square) is exactly the explicit form of the equality above.
Now we apply (ㅁ) successfully for $h=f, f^{\prime}, f^{\prime \prime}, \cdots$ and $f^{(n)}$ and find that

$$
\begin{aligned}
& f(d)-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(d-c)^{k} \\
&(d-c)^{n+1}=\frac{1}{n+1} \frac{f^{\prime}\left(d_{1}\right)-\sum_{k=0}^{n-1} \frac{\left(f^{\prime}\right)^{(k)}(c)}{k!}\left(d_{1}-c\right)^{k}}{\left(d_{1}-c\right)^{n}} \\
&=\frac{1}{n+1} \cdot \frac{1}{n} \frac{f^{\prime \prime}\left(d_{2}\right)-\sum_{k=0}^{n-2} \frac{\left(f^{\prime \prime}\right)^{(k)}(c)}{k!}\left(d_{2}-c\right)^{k}}{\left(d_{2}-c\right)^{n-1}} \\
&=\cdots \cdots \cdot \\
&=\frac{1}{(n+1)!} \frac{f^{(n)}\left(d_{n}\right)-f^{(n)}(c)}{d_{n}-c}=\frac{1}{(n+1)!} f^{(n+1)}(\xi) ;
\end{aligned}
$$

thus

$$
f(d)-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(d-c)^{k}=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(d-c)^{n+1}
$$

(\star) then follows from the equality above since $d \in(a, b)$ is given arbitrary.
Problem 2. (10\%) Use the ratio test to determine the whether the series $\sum_{n=0}^{\infty} \frac{n!n^{n}}{(2 n+1)!}$ converges or not.

Solution. Let $a_{n}=\frac{n!n^{n}}{(2 n+1)!}$. Then

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\frac{(n+1)!(n+1)^{n+1}}{(2(n+1)+1)!}}{\frac{n!n^{n}}{(2 n+1)!}}=\frac{(n+1)(n+1)^{n+1}}{(2 n+3)(2 n+2) n^{n}}=\frac{n+1}{2(2 n+3)}\left(1+\frac{1}{n}\right)^{n}
$$

thus

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left[\frac{n+1}{2(2 n+3)}\left(1+\frac{1}{n}\right)^{n}\right]=\frac{e}{4} .
$$

Since $\frac{e}{4}<1$, the ratio test implies that the series $\sum_{n=0}^{\infty} \frac{n!n^{n}}{(2 n+1)!}$ converges (absolutely).
Problem 3. (15\%) Find all $p \in \mathbb{R}$ such that $\sum_{k=2}^{\infty} \frac{\exp \left(\frac{1}{k}\right)-1}{(\ln k)^{p}}$ converges. Note that you need to provide the reason for the convergence or divergence of the power series for each p.

Proof. Let $a_{k}=\frac{\exp \left(\frac{1}{k}\right)-1}{(\ln k)^{p}}$ and $b_{k}=\frac{1}{k(\ln k)^{p}}$. Then $a_{k}, b_{k}>0$ for all $k \in \mathbb{N}$ and

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{e^{\frac{1}{k}}-1}{\frac{1}{k}}=1
$$

since $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$. By the limit comparison test, $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\sum_{k=1}^{\infty} b_{k}$ converges. Since $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{p}}$ converges if and only if $p>1$, we find that $\sum_{k=2}^{\infty} \frac{\exp \left(\frac{1}{k}\right)-1}{(\ln k)^{p}}$ converges if and only $p>1$.

Problem 4. (15\%) Show that $\sum_{k=1}^{\infty} \frac{(-1)^{k} \sin (k x)}{k}$ converges for all $x \in \mathbb{R}$.
Proof. First we note that since the function $f(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k} \sin k x}{k}$, when convergent, is 2π periodic; thus we only need to show that the series converges for $x \in[-\pi, \pi]$. Since $f(\pi)=f(-\pi)=0$, it suffices to show that the series converges for all $x \in(-\pi, \pi)$. Note that $(-1)^{k} \sin k x=\sin (k x+k \pi)=$
$\sin k(x+\pi)$; thus

$$
\begin{aligned}
2 \sin & \frac{x+\pi}{2} \sum_{k=1}^{n}(-1)^{k} \sin k x=\sum_{k=1}^{n} 2 \sin \frac{x+\pi}{2} \sin k(x+\pi) \\
= & \sum_{k=1}^{n} \cos \left[\left(k-\frac{1}{2}\right)(x+\pi)\right]-\cos \left[\left(k+\frac{1}{2}\right)(x+\pi)\right] \\
= & \cos \frac{x+\pi}{2}-\cos \frac{3(x+\pi)}{2}+\cos \frac{3(x+\pi)}{2}-\cos \frac{5(x+\pi)}{2}+\cdots+\cos \frac{(2 n-1)(x+\pi)}{2} \\
& \quad-\cos \frac{(2 n+1)(x+\pi)}{2} \\
= & \cos \frac{x+\pi}{2}-\cos \frac{(2 n+1)(x+\pi)}{2} .
\end{aligned}
$$

Therefore, by the fact that $\sin \frac{x+\pi}{2} \neq 0$ if $x \in(-\pi, \pi)$, we find that

$$
\sum_{k=1}^{n}(-1)^{k} \sin k x=\frac{1}{2 \sin \frac{x+\pi}{2}}\left[\cos \frac{x+\pi}{2}-\cos \frac{(2 n+1)(x+\pi)}{2}\right]
$$

thus

$$
\left|\sum_{k=1}^{n}(-1)^{k} \sin k x\right| \leqslant \frac{1}{\sin \frac{x+\pi}{2}} \quad \forall x \in(-\pi, \pi)
$$

Since the right-hand side is independent of n, by the Dirichlet test we find that

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k} \sin k x}{k} \text { converges for all } x \in(-\pi, \pi) .
$$

By the argument above, we conclude that the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} \sin k x}{k}$ converges for all $x \in \mathbb{R}$.
Problem 5. (10%) Let k be a natural number. Find the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(n!)^{k}}{(k n)!} x^{2 n}
$$

If you are not able to complete this question with general natural number k, try to complete the case $k=3$.

Solution. Let $k \in \mathbb{N}$ be given, and $a_{n}=\frac{(n!)^{k}}{(k n)!}$. Then $a_{n}>0$ and

$$
\frac{a_{n}}{a_{n+1}}=\frac{\frac{(n!)^{k}}{(k n)!}}{\frac{[(n+1)!]^{k}}{(k n+k)!}}=\frac{(k n+k)(k n+k-1) \cdots(k n+1)}{(n+1)^{k}}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=k^{k}
$$

thus the radius of convergence of the given series is $k^{\frac{k}{2}}$. Now we check the convergence or divergence of the series at the end-points $\pm k^{\frac{k}{2}}: \sum_{n=0}^{\infty} \frac{(n!)^{k} k^{k n}}{(k n)!}$. Using the Stirling formula and the limit comparison test, it suffices to consider the convergence or divergence of the series

$$
\sum_{n=1}^{\infty} \frac{\left(\sqrt{2 \pi n} n^{n} e^{-n}\right)^{k} k^{k n}}{\sqrt{2 \pi k n}(k n)^{k n} e^{-k n}}=\sum_{n=1}^{\infty} \frac{\sqrt{2 \pi n}^{k} n^{k n} e^{-k n} k^{k n}}{\sqrt{2 \pi k n}(k n)^{k n} e^{-k n}}=\sum_{n=1}^{\infty} \sqrt{2 \pi}^{k-1} n^{\frac{k-1}{2}} .
$$

If $k \in \mathbb{N}, \lim _{n \rightarrow \infty} n^{\frac{k-1}{2}} \neq 0$; thus the n-th term's test implies that the series does not converge at the end-points. Therefore, the interval of convergence is $\left(-k^{\frac{k}{2}}, k^{\frac{k}{2}}\right)$.

Problem 6. (10\%) Find the power series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ of the differential equation

$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+x^{2} y(x)=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

You need to show all the computations instead of just providing the answer.
Solution. First we note that $y(0)=1$ implies that $a_{0}=1$ and $y^{\prime}(0)=0$ implies that $a_{1}=0$. By the differentiation of power series, we find that

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}=0
$$

Therefore, by the fact that $a_{1}=0$, we have

$$
\sum_{n=2}^{\infty}\left[n(n-1) a_{n}+n a_{n}+a_{n-2}\right] x^{n}=0
$$

which implies that $n^{2} a_{n}+a_{n-2}=0$ for all $n \geqslant 2$, or equivalently,

$$
a_{n}=\frac{-1}{n^{2}} a_{n-2} \quad \forall n \geqslant 2 .
$$

Since $a_{1}=0$, we must have $a_{1}=a_{3}=a_{5}=\cdots=a_{2 n+1}=\cdots=0$. Moreover, since $a_{0}=1$, we find that

$$
a_{2 n}=\frac{-1}{(2 n)^{2}} a_{2 n-2}=\frac{(-1)^{2}}{(2 n)^{2}(2 n-2)^{2}} a_{2 n-4}=\cdots=\frac{(-1)^{n}}{(2 n)^{2}(2 n-2)^{2} \cdots 2^{2}} a_{0}=\frac{(-1)^{n}}{2^{2 n}(n!)^{2}} .
$$

Therefore, the power series solution of the differential equation is given by

$$
y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n} .
$$

Problem 7. (10\%) Find the fourth Maclaurin polynomial of the function $f(x)=\ln \cos x$.
Solution. By the chain rule and the product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-\sin x}{\cos x}=-\tan x, \quad f^{\prime \prime}(x)=-\sec ^{2} x, \\
f^{\prime \prime \prime}(x) & =-2 \sec x \frac{d}{d x} \sec x=-2 \sec ^{2} x \tan x \\
f^{(4)}(x) & =-2\left(\frac{d}{d x} \sec ^{2} x\right) \tan x-2 \sec ^{2} x \frac{d}{d x} \tan x=-4 \sec ^{2} x \tan ^{2} x-2 \sec ^{4} x .
\end{aligned}
$$

Therefore,

$$
f(0)=0, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=-1, \quad f^{(3)}(0)=0, \quad f^{(4)}(0)=-2
$$

and the fourth Maclaurin series of f is $P_{4}(x)=-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}$.
Problem 8. (10\%) Find a natural number n such that

$$
\left|\ln 1.1-\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k \cdot 10^{k}}\right|<2 \times 10^{-8}
$$

Explain your answer.
Solution. Since

$$
\frac{d^{k}}{d x^{k}} \ln (1+x)=(-1)^{k-1}(k-1)!(1+x)^{-k} \quad \forall k \in \mathbb{N}
$$

the Taylor Theorem implies that for each x there exists ξ between x and 0 such that

$$
\begin{aligned}
\ln (1+x) & =\sum_{k=1}^{n} \frac{1}{k!}\left[\left.\frac{d^{k}}{d x^{k}}\right|_{x=0} \ln (1+x)\right] x^{k}+\frac{(-1)^{n} n!(1+\xi)^{-(n+1)}}{(n+1)!} x^{n+1} \\
& =\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k}+\frac{(-1)^{n}}{n+1} \frac{x^{n}}{(1+\xi)^{n}} .
\end{aligned}
$$

In particular, there exists ξ between 0 and $\frac{1}{10}$ such that

$$
\ln 1.1=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k 10^{k}}+\frac{(-1)^{n}}{n+1} \frac{1}{(1+\xi)^{n}} 10^{-(n+1)}
$$

Therefore, if $n=7$,

$$
\left|\ln 1.1-\sum_{k=1}^{7} \frac{(-1)^{k-1}}{k 10^{k}}\right| \leqslant \frac{1}{8(1+\xi)^{8}} 10^{-8}<1.25 \times 10^{-9}<2 \times 10^{-8} .
$$

