Calculus MA1002－B Quiz 08

National Central University，May． 122020

學號：

\qquad姓名： \qquad
Problem 1．Let U be an open set in $\mathbb{R}^{2}, f: U \rightarrow \mathbb{R}$ be a real－valued function of two variables，and $(a, b) \in U$ ．

1．（2pts）State the definition of that f is differentiable at (a, b) ．
2．（3pts）Show that if f is differentiable at (a, b) ，then f is continuous at (a, b) ．
Solution．1．f is said to be differentiable at (a, b) if there exist $A, B \in \mathbb{R}$ such that

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{|f(x, y)-f(a, b)-A(x-a)-B(y-b)|}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0 .
$$

2．Suppose that f is differentiable at (a, b) ．By the definition of differentiability，

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{|f(x, y)-f(a, b)-A(x-a)-B(y-b)|}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0 .
$$

Then by the fact that $\lim _{(x, y) \rightarrow(a, b)} A(x-a)=\lim _{(x, y) \rightarrow(a, b)} B(y-b)=0$ ，we find that

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(a, b)}|f(x, y)-f(a, b)|=\lim _{(x, y) \rightarrow(a, b)}|f(x, y)-f(a, b)-A(x-a)-B(y-b)| \\
& =\lim _{(x, y) \rightarrow(a, b)}\left(\frac{|f(x, y)-f(a, b)-A(x-a)-B(y-b)|}{\sqrt{(x-a)^{2}+(y-b)^{2}}} \sqrt{(x-a)^{2}+(y-b)^{2}}\right) \\
& =\lim _{(x, y) \rightarrow(a, b)} \frac{|f(x, y)-f(a, b)-A(x-a)-B(y-b)|}{\sqrt{(x-a)^{2}+(y-b)^{2}}} \cdot \lim _{(x, y) \rightarrow(a, b)} \sqrt{(x-a)^{2}+(y-b)^{2}}=0 .
\end{aligned}
$$

Therefore， $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$ ．
Problem 2．（5pts）Show that the function $f(x, y)=\left\{\begin{array}{cl}\frac{2 x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0),\end{array}\right.$ is not differ－ entiable at $(0,0)$ but $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist．

Proof．First we compute $f_{x}(0,0)$ and $f_{y}(0,0)$ ．By definition，

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \quad \text { and } \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0} \frac{0}{k}=0 .
$$

Therefore，$f_{x}(0,0)=f_{y}(0,0)=0$ both exist．However，f is not differentiable at $(0,0)$ since the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{\left|f(x, y)-f(0,0)-f_{x}(0,0)(x-0)-f_{y}(0,0)(y-0)\right|}{\sqrt{x^{2}+y^{2}}}$ D．N．E．：when (x, y) approaches $(0,0)$ along the line $y=m x$ ，then

$$
\lim _{\substack{x, y) \rightarrow(0,0) \\ y=m x}} \frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}}=\lim _{x \rightarrow 0} \frac{2|m| x^{2}}{x^{2}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{2|m|}{1+m^{2}}=\frac{2|m|}{1+m^{2}}
$$

which has different values for different m ．

