Calculus MA1002－B Quiz 06

National Central University，Apr． 282020
學號： \qquad姓名： \qquad
Problem 1．Let $\boldsymbol{r}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be a vector－valued function defined by $\boldsymbol{r}(t)=\sin t \mathbf{i}+\sin t \cos t \mathbf{j}$ ． The image $\boldsymbol{r}([0,2 \pi])$ is a curve called figure eight．

1．$(2 \mathrm{pt})$ Determine the orientation of the parametrization；that is，find the direction of motion when t increases．Explain your answer and mark the direction on the figure above．

2．（3pts）Suppose that the polar representation of figure eight is given by $r^{2}=f(\theta)$ ．Find f ．
3．$(2 \mathrm{pts})$ Find all the horizontal tangent lines of figure eight．
4．（3pts）Find the area of the region enclosed by figure eight．
Solution．1．First $\boldsymbol{r}(0)=\mathbf{0}$ ；thus the starting point of the curve（given by this parametrization）is the origin．
（a）When t increases in the interval $\left[0, \frac{\pi}{2}\right]$ ，the x－coordinate of $\boldsymbol{r}(t)$ increases and the y－ coordinate of $\boldsymbol{r}(t)$ stays non－negative）．
（b）When t increases further in the interval $\left[\frac{\pi}{2}, \pi\right]$ ，the x－coordinate of $\boldsymbol{r}(t)$ decreases and the y－coordinate of $\boldsymbol{r}(t)$ stays non－positive）．
（c）When t increases further in the interval $\left[\frac{\pi}{2}, \pi\right]$ ，the x－coordinate of $\boldsymbol{r}(t)$ decreases and the y－coordinate of $\boldsymbol{r}(t)$ stays non－negative）．
（d）When t increases further in the interval $\left[\frac{3 \pi}{2}, 2 \pi\right]$ ，the x－coordinate of $\boldsymbol{r}(t)$ increases and the y－coordinate of $\boldsymbol{r}(t)$ stays non－positive）．

2．Suppose (x, y) is on figure eight．Then $x=\sin t$ and $y=\sin t \cos t$ for some $t \in[0,2 \pi]$ ． Then $x^{2}-y^{2}=\sin ^{2} t-\sin ^{2} t \cos ^{2} t=\sin ^{2} t\left(1-\cos ^{2} t\right)=\sin ^{4} t$ which implies that $y^{2}=x^{2}-x^{4}$ ． Therefore，if (x, y) is on figure eight，$y^{2}=x^{2}\left(1-x^{2}\right)$ ．Therefore，if (r, θ) is the polar coordinate， then $r^{2} \sin ^{2} \theta=r^{2} \cos ^{2} \theta\left(1-r^{2} \cos ^{2} \theta\right)$ ；thus $r^{2}=\left(1-\tan ^{2} \theta\right) \sec ^{2} \theta=\left(2-\sec ^{2} \theta\right) \sec ^{2} \theta$ ；thus $f(\theta)=\left(2-\sec ^{2} \theta\right) \sec ^{2} \theta$ ．
3．At the tangent point，$y^{\prime}(t)=\cos 2 t=0$ which implies that $t=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$ ．This gives two horizontal tangent lines：$y= \pm \frac{\sqrt{2}}{2}$ ．
4．The desired area is twice the area of the left part（whose parametrization gives counter－clockwise motion）．Using the area formula，the area of the left part is given by

$$
-\int_{\pi}^{2 \pi} x^{\prime}(t) y(t) d t=-\int_{\pi}^{2 \pi} \cos t \sin t \cos t d t=\int_{\pi}^{2 \pi} \cos ^{2} t d \cos t=\left.\frac{1}{3} \cos ^{3} t\right|_{t=\pi} ^{t=2 \pi}=\frac{2}{3}
$$

Therefore，the area of the region enclosed by figure eight is $\frac{4}{3}$ ．

