Calculus MA1002－B Quiz 02

National Central University，Mar． 242020

學號：

\qquad姓名： \qquad
Problem 1．（2pts）Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ is convergent or divergent．
Solution．Let $a_{n}=\frac{n!}{n^{n}}$ ．Then $a_{n}>0$ and the fact that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$ implies that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{(1+1 / n)^{n}}=e^{-1}<1
$$

By the ratio test，we conclude that $\sum_{n=2}^{\infty} a_{n}$ converges absolutely；thus $\sum_{n=2}^{\infty} a_{n}$ is convergent．
Problem 2．（3pts）Determine whether the series $\sum_{n=2}^{\infty}\left(1-\frac{1}{n}-\frac{1}{n^{2}}\right)^{n^{2}}$ is convergent or divergent．
Solution．Let $a_{n}=\left(1-\frac{1}{n}-\frac{1}{n^{2}}\right)^{n^{2}}$ ．Then $a_{n}>0$ for all $n \geqslant 2$ and $\sqrt[n]{a_{n}}=\left(1-\frac{1}{n}-\frac{1}{n^{2}}\right)^{n}$ ．Moreover，

$$
\left(1-\frac{n+1}{n^{2}}\right)^{\frac{n^{2}}{n+1}+1} \leqslant \sqrt[n]{a_{n}} \leqslant\left(1-\frac{1}{n}\right)^{n} \quad \forall n \geqslant 2
$$

By the fact that $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}=e^{-1}$ ，we obtain from the Squeeze Theorem that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=e^{-1}<1
$$

By the root test，we conclude that $\sum_{n=2}^{\infty} a_{n}$ converges absolutely；thus $\sum_{n=2}^{\infty} a_{n}$ is convergent．
Problem 3．（2pts）Determine whether the series $\sum_{n=1}^{\infty} \sin ^{n} \frac{1}{\sqrt{n}}$ is convergent or divergent．
Solution．Let $a_{n}=\sin ^{n} \frac{1}{\sqrt{n}}$ and $b_{n}=\frac{1}{\sqrt{n}^{n}}$ ．By the fact that $0 \leqslant \sin x \leqslant x$ for all $x \geqslant 0$ ，we have $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \in \mathbb{N}$ ．Moreover，$b_{n} \leqslant 2^{-n}$ for all $n \geqslant 4$ ．Since $\sum_{n=4}^{\infty} 2^{-n}$ is a geometric series with common ratio $\frac{1}{2}$ ，we find that $\sum_{n=4}^{\infty} 2^{-n}$ converges．By the direct comparison test，$\sum_{n=1}^{\infty} b_{n}$ converges； thus $\sum_{n=1}^{\infty} a_{n}$ is convergent．
Problem 4．（3pts）Determine whether the series $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n}$ is convergent or divergent．
Solution．Let $a_{n}=\frac{\sin ^{2} n}{n}$ and $b_{n}=\frac{\cos (2 n)}{n}$ ．Then $a_{n}=\frac{1}{2 n}-b_{n}$ ．Since

$$
\left|\sum_{k=1}^{n} \cos (2 k)\right|=\left|\sum_{k=1}^{n} \frac{\sin (2 k+1)-\sin (2 k-1)}{2 \sin 1}\right|=\left|\frac{\sin (2 n+1)-\sin 1}{2 \sin 1}\right| \leqslant \frac{1}{|\sin 1|}
$$

the Dirichlet test implies that $\sum_{n=1}^{\infty} b_{n}$ is convergent．Since $\sum_{n=1}^{\infty} \frac{1}{2 n}$ is divergent，we find that $\sum_{n=1}^{\infty} a_{n}$ is divergent．

