Exercise Problem Sets 13

Jun. 12. 2020

Problem 1. Evaluate the following iterated integrals.
(1) $\int_{-1}^{1}\left(\int_{0}^{1} y \exp \left(x^{2}+y^{2}\right) d x\right) d y$
(2) $\int_{0}^{2}\left(\int_{y}^{\sqrt{8-y^{2}}} \sqrt{x^{2}+y^{2}} d x\right) d y$
(3) $\int_{0}^{1}\left(\int_{\sqrt{y}}^{1} \exp \left(x^{3}\right) d x\right) d y$
(4) $\int_{0}^{1}\left(\int_{y}^{1} \frac{1}{1+x^{4}} d x\right) d y$
(5) $\int_{0}^{4}\left(\int_{\frac{x}{2}}^{2} \sin \left(y^{2}\right) d y\right) d x$
(6) $\int_{0}^{4}\left(\int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} d y\right) d x$
(7) $\int_{0}^{2}\left(\int_{x}^{2} x \sqrt{1+y^{3}} d y\right) d x$
(8) $\int_{0}^{2}\left(\int_{\frac{y}{2}}^{1} \exp \left(x^{2}\right) d x\right) d y$
(9) $\int_{0}^{1}\left(\int_{0}^{1} \frac{y}{1+x^{2} y^{2}} d x\right) d y$
(10) $\int_{0}^{\frac{\pi}{2}}\left(\int_{x}^{\frac{\pi}{2}} \frac{\sin y}{y} d y\right) d x$
(11) $\int_{0}^{2}\left(\int_{y^{2}}^{4} \sqrt{x} \sin x d x\right) d y$
(12) $\int_{0}^{2}\left(\int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y\right) d x$
(13) $\int_{0}^{1}\left(\int_{\arcsin y}^{\frac{\pi}{2}} \cos x \sqrt{1+\cos ^{2} x} d x\right) d y$
(14) $\int_{-5}^{5}\left[\int_{0}^{\sqrt{25-x^{2}}}\left(\int_{0}^{\frac{1}{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z\right) d y\right] d x$
(15) $\int_{0}^{4}\left[\int_{0}^{1}\left(\int_{2 y}^{2} \frac{2 \cos \left(x^{2}\right)}{\sqrt{z}} d x\right) d y\right] d z$
(16) $\int_{0}^{1}\left[\int_{0}^{1}\left(\int_{x^{2}}^{1} x z \exp \left(z y^{2}\right) d y\right) d x\right] d z$
$\int_{0}^{1}\left[\int_{\sqrt[3]{z}}^{1}\left(\int_{0}^{\ln 3} \frac{\pi e^{2 x} \sin \left(\pi y^{2}\right)}{y^{2}} d x\right) d y\right] d z$
(18) $\int_{0}^{2}\left[\int_{0}^{4-x^{2}}\left(\int_{0}^{x} \frac{\sin (2 z)}{4-z} d y\right) d z\right] d x$

Problem 2. Evaluate the double integral $\iint_{R} f(x, y) d A$ with the following f and R.
(1) $f(x, y)=y^{2} e^{x y}$, and R is the region bounded by $y=x, y=4$ and $x=0$.
(2) $f(x, y)=x y$, and R is the region bounded by the line $y=x-1$ and parabola $y^{2}=2 x+6$.
(3) $f(x, y)=\sin ^{4}(x+y)$, and R is the triangle enclosed by the lines $y=0, y=2 x$, and $x=1$.
(4) $f(x, y)=x^{2}+x^{2} y^{3}-y^{2} \sin x$, and $R=\{(x, y)| | x|+|y| \leqslant 1\}$.
(5) $f(x, y)=|x|+|y|$, and $R=\{(x, y)| | x|+|y| \leqslant 1\}$.
(6) $f(x, y)=x y$, and R is the region in the first quadrant bounded by curves $x^{2}+y^{2}=4$, $x^{2}+y^{2}=9, x^{2}-y^{2}=1$ and $x^{2}-y^{2}=4$.
(7) $f(x, y)=x$, and R is the region in the first quadrant bounded by curves $4 x^{2}-y^{2}=4$, $4 x^{2}-y^{2}=16, y=x$ and the x-axis.
(8) $f(x, y)=\exp \left(-x^{2}-4 y^{2}\right)$, and $R=\left\{(x, y) \mid x^{2}+4 y^{2} \leqslant 1\right\}$.
(9) $f(x, y)=\exp \left(\frac{2 y-x}{2 x+y}\right)$, and R is the trapezoid with vertices $(0,2),(1,0),(4,0)$ and $(0,8)$.

Problem 3. Evaluate the triple integral $\iiint_{D} f(x, y, z) d V$ with the following f and D.
(1) $f(x, y, z)=x-y+z^{2}$, and D is the solid region bounded above by $z=1+x^{2}+y^{2}$, bounded below by $z=0$, and inside $x^{2}+y^{2}=4$.
(2) $f(x, y, z)=1$, and D is the solid region bounded by $z=x^{2}+y^{2}, x^{2}+y^{2}=4$ and $z=0$.
(3) $f(x, y, z)=1$, and $D=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leqslant 1\right.\right\}$, where $a, b, c>0$.

Problem 4. Evaluate the integral $\int_{0}^{2}[\arctan (\pi x)-\arctan x] d x$ by converting the integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 5. Let a, b be positive constants. Evaluate the integral $\int_{0}^{a}\left(\int_{0}^{b} \exp \left(\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}\right) d y\right) d x$.
Problem 6. Show that if $\lambda>\frac{1}{2}$, there does not exist a real-valued continuous function u such that for all x in the closed interval $[0,1]$,

$$
u(x)=1+\lambda \int_{x}^{1} u(y) u(y-x) d y
$$

Hint: Assume the contrary that there exists such a function u. Integrate the equation above on the interval $[0,1]$.

Problem 7. Find the surface area for the portion of the surface $z=x y$ that is inside the cylinder $x^{2}+y^{2}=1$.

Problem 8. Let Σ be a parametric surface parameterized by

$$
\boldsymbol{r}(u, v)=X(u, v) \mathbf{i}+Y(u, v) \mathbf{j}+Z(u, v) \mathbf{k}, \quad(u, v) \in R .
$$

Define $E=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{u}, F=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{v}$ and $G=\boldsymbol{r}_{v} \cdot \boldsymbol{r}_{v}$. Show that

$$
\left\|\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right\|^{2}=E G-F^{2}
$$

Hint: You can try to make use of $\varepsilon_{i j k}$, the permutation symbol.
Remark: This quantity $E G-F^{2}$ is called the first fundamental form (associated with the parametrization \boldsymbol{r}).

Problem 9. Let $k>0$ be a constant. Show that the surface area of the cone $z=k \sqrt{x^{2}+y^{2}}$ that lies above the circular region $x^{2}+y^{2} \leqslant r^{2}$ in the $x y$-plane is $\pi r^{2} \sqrt{k^{2}+1}$ by the following methods:

1. Use the formula $\iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A$ directly.
2. Find a parametrization of the cone above using r, θ (from the polar coordinate) as the parameters and make use of the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{r} \times \boldsymbol{r}_{\theta}\right)(r, \theta)\right\| d(r, \theta)$.

Problem 10. Let Σ be the surface formed by rotating the curve

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=\cos z, y=0,-\frac{\pi}{2} \leqslant z \leqslant \frac{\pi}{2}\right\}
$$

about the z-axis. Find a parametrization for Σ and compute its surface area.
Problem 11. The figure below shows the surface created when the cylinder $y^{2}+z^{2}=1$ intersects the cylinder $x^{2}+z^{2}=1$. Let Σ be the part shown in the figure.

(1) Find the area of Σ using the formula $\iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A$.
(2) Parameterize Σ using θ, z as parameters (from the cylindrical coordinate) and find the area of this surface using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{z}\right)(\theta, z)\right\| d(\theta, z)$.
(3) Parameterize Σ using θ, ϕ as parameters (from the spherical coordinate) and find the area of this surface using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi)$.
(3) Find the volume of this intersection using triple integrals.

Problem 12. Let Σ be the surface obtained by rotating the smooth curve $y=f(x), a \leqslant x \leqslant b$ about the x-axis, where $f(x)>0$.

1. Show that

$$
\boldsymbol{r}(x, \theta)=x \mathbf{i}+f(x) \cos \theta \mathbf{j}+f(x) \sin \theta \mathbf{k}, \quad(x, \theta) \in[a, b] \times[0,2 \pi],
$$

is a parametrization of Σ, where θ is the angle of rotation about the x-axis (see the accompanying figure).

2. Show that the surface area of Σ is

$$
\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{x} \times \boldsymbol{r}_{\theta}\right)(x, \theta)\right\| d(x, \theta)$.
Problem 13. Let S be the subset of the upper hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ enclosed by the curve C shown in the figure below

where each point of C corresponds to some point $\left(\cos t \sin t, \sin ^{2} t, \cos t\right)$ with $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find the surface of S via the following steps:
(1) Let R be the region obtained by projecting S onto the $x y$-plane along the z-axis. Suppose that R can be expressed as $R=\left\{(x, y) \mid c \leqslant y \leqslant d, g_{1}(y) \leqslant x \leqslant g_{2}(y)\right\}$. Find c, d and g_{1}, g_{2}, and find the surface area of S using the formula $\iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A$.
(2) The surface S is a parametric surface parameterized by

$$
S=\{\boldsymbol{r} \mid \boldsymbol{r}=\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k} \text { for some }(\theta, \phi) \in D\} .
$$

Find the domain D inside the rectangle $[0,2 \pi] \times[0, \pi]$, and find the surface area of S using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi)$.

Problem 14. Rewrite the following iterated integrals as an equivalent iterated integral in the five other orders.
(1) $\int_{0}^{1}\left[\int_{y}^{1}\left(\int_{0}^{y} f(x, y, z) d z\right) d x\right] d y$
(2) $\int_{0}^{1}\left[\int_{y}^{1}\left(\int_{0}^{z} f(x, y, z) d x\right) d z\right] d y$
(3) $\int_{0}^{1}\left[\int_{0}^{1-x^{2}}\left(\int_{0}^{1-x} f(x, y, z) d y\right) d z\right] d x$
(4) $\int_{0}^{3}\left[\int_{0}^{x}\left(\int_{0}^{9-x^{2}} f(x, y, z) d z\right) d y\right] d x$
(5) $\int_{0}^{1}\left[\int_{\sqrt{x}}^{1}\left(\int_{0}^{1-y} f(x, y, z) d z\right) d y\right] d x$
(6) $\int_{-1}^{1}\left[\int_{x^{2}}^{1}\left(\int_{0}^{1-y} f(x, y, z) d z\right) d y\right] d x$

Problem 15. Find volume of the solid that lies under $z=x^{2}+y^{2}$ and above the region R in the $x y$-plane bounded by the line $y=2 x$ and parabola $y=x^{2}$.
Problem 16. Evaluate the triple integral $\iiint_{D} d V$, where D is bounded by $z=x^{2}+y^{2}, x^{2}+y^{2}=4$
and $z=0$. and $z=0$.
Problem 17. Evaluate the double integral $\iint_{R} \arctan \frac{y}{x} d A$ using the polar coordinate, where

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leqslant x^{2}+y^{2} \leqslant 4,0 \leqslant y \leqslant x\right\}
$$

Problem 18. Evaluate the triple integral $\iiint_{D} x \exp \left(x^{2}+y^{2}+z^{2}\right) d V$, where D is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$ that lies in the first octant.
Problem 19. Evaluate the triple integral $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where D is the region lying above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.

Problem 20. Use the cylinder coordinate to find the volume of the ball $x^{2}+y^{2}+z^{2}=a^{2}$.
Problem 21. Use the spherical coordinate to find the volume of the cylindricality $x^{2}+y^{2}=r^{2}$, where $0 \leqslant z \leqslant h$.

Problem 22. Compute the volume of D given below using triple integrals in cylindrical coordinates.
(1) D is the solid right cylinder whose base is the region in the $x y$-plane that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$ and whose top lies in the plane $z=4$.

(2) D is the solid right cylinder whose base is the region between the circles $r=\cos \theta$ and $r=2 \cos \theta$ and whose top lies in the plane $z=3-y$.

Problem 23. Compute the volume of D given below using triple integrals in spherical coordinates.
(1) D is the solid between the sphere $\rho=\cos \phi$ and the hemisphere $\rho=2, z \geqslant 0$.

(2) D is the solid bounded below by the sphere $\rho=2 \cos \phi$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$.

Problem 24. Convert the integral

$$
\int_{-1}^{1}\left[\int_{0}^{\sqrt{1-y^{2}}}\left(\int_{0}^{x}\left(x^{2}+y^{2}\right) d z\right) d x\right] d y
$$

to an equivalent integral in cylindrical coordinates and evaluate the result.
Problem 25. Find the integrals given below with specific change of variables.
(1) Find $\int_{0}^{2}\left(\int_{\frac{y}{2}}^{\frac{y+4}{2}} y^{3}(2 x-y) e^{(2 x-y)^{2}} d x\right) d y$ using change of variables $x=u+\frac{1}{2} v, y=v$.
(2) Find $\int_{1}^{2}\left(\int_{\frac{1}{y}}^{y}\left(x^{2}+y^{2}\right) d x\right) d y+\int_{2}^{4}\left(\int_{\frac{y}{4}}^{\frac{4}{y}}\left(x^{2}+y^{2}\right) d x\right) d y$ using change of variables $x=\frac{u}{v}, y=u v$.
(3) Find $\int_{0}^{1}\left(\int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y\right) d x$ using change of variables $x=u^{2}-v^{2}, y=2 u v$.
(4) Let R be the region in the first quadrant of the $x y$-plane bounded by the hyperbolas $x y=1$, $x y=9$ and the lines $y=x, y=4 x$. Find $\iint_{R}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d A$ using the change of variables $x=\frac{u}{v}, y=u v$.
(5) Let D be the solid region in $x y z$-space defined by

$$
D=\{(x, y, z) \mid 1 \leqslant x \leqslant 2,0 \leqslant x y \leqslant 2,0 \leqslant z \leqslant 1\} .
$$

Find $\iiint_{D}\left(x^{2} y+3 x y z\right) d V$ using change of variables $u=x, v=x y, w=3 z$.

Problem 26. Evaluate the double integral $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is rectangle enclosed by the lines $x-y=0, x-y=2, x+y=0$, and $x+y=3$.

Problem 27. Let f be continuous on $[0,1]$ and let R be the triangular region with vertices $(0,0)$, $(1,0)$, and $(0,1)$. Show that

$$
\iint_{R} f(x+y) d A=\int_{0}^{1} u f(u) d u
$$

Problem 28. Let A be the area of the region in the first quadrant bounded by the line $y=\frac{1}{2} x$, the x-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$. Find the positive number m such that A is equal to the area of the region in the first quadrant bounded by the line $y=m x$, the y-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$. Hint: Try to make change of variables so that the computation of the area of the region in the first quadrant bounded by the line $y=m x$, the y-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$ looks the same as the former one.

