Exercise Problem Sets 11

May. 22. 2020

Problem 1. Let f be a differentiable function and consider the surface $z=x f\left(\frac{y}{x}\right)$. Show that the tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface passes through the origin.

Problem 2. Prove that the angle of inclination θ of the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies

$$
\cos \theta=\frac{1}{\sqrt{f_{x}\left(x_{0}, y_{0}\right)^{2}+f_{y}\left(x_{0}, y_{0}\right)^{2}+1}} .
$$

Problem 3. In the following problems, find all relative extrema and saddle points of the function. Use the Second Partials Test when applicable.
(1) $f(x, y)=x^{2}-x y-y^{2}-3 x-y$
(2) $f(x, y)=2 x y-\frac{1}{2}\left(x^{4}+y^{4}\right)+1$
(3) $f(x, y)=x y-2 x-2 y-x^{2}-y^{2}$
(4) $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$
(5) $f(x, y)=\sqrt{56 x^{2}-8 y^{2}-16 x-31}+1-8 x$
(6) $f(x, y)=\frac{1}{x}+x y+\frac{1}{y}$
(7) $f(x, y)=\ln (x+y)+x^{2}-y$
(8) $f(x, y)=2 \ln x+\ln y-4 x-y$
(9) $f(x, y)=x y \exp \left(-\frac{x^{2}+y^{2}}{2}\right)$
(10) $f(x, y)=x y+e^{-x y}$
(11) $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$
(12) $f(x, y)=\left(\frac{1}{2}-x^{2}+y^{2}\right) \exp \left(1-x^{2}-y^{2}\right)$

Problem 4. In the following problems, find the absolute extrema of the function over the region R (which contains boundaries).
(1) $f(x, y)=x^{2}+x y$, and $R=\{(x, y)| | x|\leqslant 2,|y| \leqslant 1\}$
(2) $f(x, y)=2 x-2 x y+y^{2}$, and R is the region in the $x y$-plane bounded by the graphs of $y=x^{2}$ and $y=1$.
(3) $f(x, y)=\frac{4 x y}{\left(x^{2}+1\right)\left(y^{2}+1\right)}$, and $R=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}$.
(4) $f(x, y)=x y^{2}$, and $R=\left\{(x, y) \mid x \geqslant 0, y \geqslant 0, x^{2}+y^{2} \leqslant 3\right\}$.
(5) $f(x, y)=2 x^{3}+y^{4}$, and $R=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}$.

Problem 5. Show that $f(x, y)=x^{2}+4 y^{2}-4 x y+2$ has an infinite number of critical points and that the discriminant $f_{x x} f_{y y}-f_{x y}^{2}=0$ at each one. Then show that f has a local (and absolute) minimum at each critical point

Problem 6. Show that $f(x, y)=x^{2} y e^{-x^{2}-y^{2}}$ has maximum values at $\left(\pm 1, \frac{1}{\sqrt{2}}\right)$ and minimum values at $\left(\pm 1,-\frac{1}{\sqrt{2}}\right)$. Show also that f has infinitely many other critical points and the discriminant $f_{x x} f_{y y}-f_{x y}^{2}=0$ at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?

Problem 7. Find two numbers a and b with $a \leqslant b$ such that

$$
\int_{a}^{b} \sqrt[3]{24-2 x-x^{2}} d x
$$

has its largest value.
Problem 8. Let $m>n$ be natural numbers, and A be an $m \times n$ real matrix, $\boldsymbol{b} \in \mathbb{R}^{m}$ be a vector.
(1) Show that if the minimum of the function $f\left(x_{1}, \cdots, x_{n}\right)=\|A \boldsymbol{x}-\boldsymbol{b}\|$ occurs at the point $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n}\right)$, then \boldsymbol{c} satisfies $A^{\mathrm{T}} A \boldsymbol{c}=A^{\mathrm{T}} \boldsymbol{b}$.
(2) Find the relation between the linear regression and (1).

Problem 9. Let $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}$ be n points with $x_{i} \neq x_{j}$ if $i \neq j$. Use the Second Partials Test to verify that the formulas for a and b given by

$$
a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \quad \text { and } \quad b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-a \sum_{i=1}^{n} x_{i}\right)
$$

indeed minimize the function $S(a, b)=\sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}$.
Problem 10. The Shannon index (sometimes called the Shannon-Wiener index or Shannon-Weaver index) is a measure of diversity in an ecosystem. For the case of three species, it is defined as

$$
H=-p_{1} \ln p_{1}-p_{2} \ln p_{2}-p_{3} \ln p_{3}
$$

where p_{i} is the proportion of species i in the ecosystem.
(1) Express H as a function of two variables using the fact that $p_{1}+p_{2}+p_{3}=1$.
(2) What is the domain of H ?
(3) Find the maximum value of H. For what values of p_{1}, p_{2}, p_{3} does it occur?

Problem 11. Three alleles (alternative versions of a gene) A, B, and O determine the four blood types $\mathrm{A}(\mathrm{AA}$ or AO$), \mathrm{B}(\mathrm{BB}$ or BO$), \mathrm{O}(\mathrm{OO})$, and AB . The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q,
$$

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that $p+q+r=1$ to show that P is at most $\frac{2}{3}$.
Problem 12. Find an equation of the plane that passes through the point $(1,2,3)$ and cuts off the smallest volume in the first octant.

