Exercise Problem Sets 10

May. 15. 2020

Problem 1. Use the chain rule for functions of several variables to compute $\frac{d z}{d t}$ or $\frac{d w}{d t}$.
(1) $z=\sqrt{1+x y}, x=\tan t, y=\arctan t$.
(2) $w=x \exp \left(\frac{y}{z}\right), x=t^{2}, y=1-t, z=1+2 t$.
(3) $w=\ln \sqrt{x^{2}+y^{2}+z^{2}}, x=\sin t, y=\cos t, z=\tan t$.
(4) $w=x y \cos z, x=t, y=t^{2}, z=\arccos t$.
(5) $w=2 y e^{x}-\ln z, x=\ln \left(t^{2}+1\right), y=\arctan t, z=e^{t}$.

Problem 2. Use the chain rule for functions of several variables to compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
(1) $z=\arctan \left(x^{2}+y^{2}\right), x=s \ln t, y=t e^{s}$.
(2) $z=\arctan \frac{x}{y}, x=s \cos t, y=s \sin t$.
(3) $z=e^{x} \cos y, x=s t, y=s^{2}+t^{2}$.

Problem 3. Assume that $z=f\left(t s^{2}, \frac{s}{t}\right), \frac{\partial f}{\partial x}(x, y)=x y, \frac{\partial f}{\partial y}(x, y)=\frac{x^{2}}{2}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
Problem 4. Find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at given points.
(1) $\sin (x+y)+\sin (y+z)+\sin (x+z)=0,(x, y, z)=(\pi, \pi, \pi)$.
(2) $x e^{y}+y e^{z}+2 \ln x-2-3 \ln 2=0,(x, y, z)=(1, \ln 2, \ln 3)$.
(3) $z=e^{x} \cos (y+z),(x, y, z)=(0,-1,1)$.

Problem 5. Let f be differentiable, and $z=\frac{1}{y}[f(a x+y)+g(a x-y)]$. Show that

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{a^{2}}{y^{2}} \frac{\partial}{\partial y}\left(y^{2} \frac{\partial z}{\partial y}\right) .
$$

Problem 6. Suppose that we substitute polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ in a differentiable function $z=f(x, y)$.
(1) Show that $\frac{\partial z}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta$ and $\frac{1}{r} \frac{\partial r}{\partial \theta}=-f_{x} \sin \theta+f_{y} \cos \theta$.
(2) Solve the equations in part (1) to express f_{x} and f_{y} in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
(3) Show that $\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$.
（4）Suppose in addition that f_{x} and f_{y} are differentiable．Show that

$$
f_{x x}+f_{y y}=\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}
$$

Problem 7．（此題不在本週講授的課程範图，算是增加知識用，也為了下一題做準備）Let R be an open region in \mathbb{R}^{2} and $f: R \rightarrow \mathbb{R}$ be a real－valued function．In class we have talked about the differentiability of f ．For $k \geqslant 2$ ，the k－times differentiability of f is defined inductively：for $k \in \mathbb{N}, f$ is said to be $(k+1)$－times differentiable at (a, b) if the k－th partial derivative $\frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}$ is differentiable at (a, b) for all $0 \leqslant j \leqslant k$（note that in order to achieve this，$\frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}$ has to be defined in a neighborhood of (a, b) for all $0 \leqslant j \leqslant k)$ ．f is said to be k－times differentiable on R if f is k－times differentiable at (a, b) for all $(a, b) \in R$ ．f is said to be k－times continuously differentiable on R if the k－th partial derivative $\frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}$ is continuous at (a, b) for all $0 \leqslant j \leqslant k$ ．
（1）Show that if f is $(k+1)$－times differentiable on R ，then f is k－times continuously differentiable on R ．
（2）Show that if f is k－times continuously differentiable on R ，then f is k－times differentiable on R ．

Hint：In this problem the following fact is used（without proving yet）：

$$
\text { if } f_{x} \text { and } f_{y} \text { are continuous at }(a, b) \text {, then } f \text { is differentiable at }(a, b) \text {. }
$$

Remark：In the course＂Introduction to Mathematical Analysis（分析導論）＂，the differentiability of a function will be discussed more systematically．

Problem 8．In this problem we investigate the Taylor Theorem for functions of two variables．Let R be an open region in $\mathbb{R}^{2},(a, b) \in R$ ，and $f: R \rightarrow \mathbb{R}$ be a $(n+1)$－times differentiable function for some $n \in \mathbb{N} \cup\{0\}$（the $(n+1)$－times differentiability of functions of two variables is defined in Problem（7．Complete the following．
（1）For a given point $(x, y) \in R$ ，suppose that the line segment connecting (a, b) and (x, y) belongs to R ；that is，

$$
\{(a+t(x-a)) \mathbf{i}+(b+t(y-b)) \mathbf{j} \mid t \in[0,1]\} \subseteq R
$$

Define $\boldsymbol{r}(t)=(a+t(x-a)) \mathbf{i}+(b+t(y-b)) \mathbf{j}$ ．Show that the function $g(t)=f(\boldsymbol{r}(t))=$ $f(a+t(x-a), b+t(y-b))$ is $(n+1)$－times differentiable on I ．
（2）Show that for $1 \leqslant k \leqslant n$ ，

$$
g^{(k)}(t)=\sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}(\boldsymbol{r}(t))(x-a)^{k-j}(y-b)^{j}
$$

(3) Show that if f is $(n+1)$-times continuously differentiable on R, then

$$
\begin{aligned}
f(x, y)= & \sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}(a, b)(x-a)^{k-j}(y-b)^{j} \\
& +\frac{1}{(n+1)!} \sum_{j=0}^{n+1} C_{j}^{n+1} \frac{\partial^{n+1} f}{\partial x^{n-j+1} \partial y^{j}}(c, d)(x-a)^{k-j}(y-b)^{j}
\end{aligned}
$$

for some point (c, d) on the line segment connecting (a, b) and (x, y).
Hint: By the Taylor Theorem for functions of one variable, there exists $0<\xi<1$ such that

$$
g(1)=\sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!}+g^{(n+1)}(\xi)
$$

(4) The polynomial $\sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}(a, b)(x-a)^{k-j}(y-b)^{j}$ is called the n-th Taylor polynomial for f at (a, b). Find the fourth Taylor polynomial for the following functions at $(0,0)$.
(a) $\sin \left(x^{3}+y^{4}\right)$
(b) $\exp \left(x^{2}+y^{2}\right)$
(c) $\ln \left(\cos \left(x^{2}+y\right)\right)$

Problem 9. Let $f(x)=,\sqrt[3]{x y}$.
(1) Show that f is continuous at $(0,0)$.
(2) Show that f_{x} and f_{y} exist at the origin but that the directional derivatives at the origin in all other directions do not exist.

Problem 10. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(1) Show that the directional derivative of f at the origin exists in all directions \boldsymbol{u}, and

$$
\left(D_{u} f\right)(0,0)=\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot \boldsymbol{u}
$$

(2) Determine whether f is differentiable at $(0,0)$ or not.

Problem 11. Let $\boldsymbol{u}=(a, b)$ be a unit vector and f be twice continuously differentiable. Show that

$$
D_{u}^{2} f=f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}
$$

where $D_{u}^{2} f=D_{u}\left(D_{u} f\right)$.
Problem 12. Show that the operation of taking the gradient of a function has the given property. Assume that u and v are differentiable functions of x and y and that a, b are constants.
(1) $\nabla(a u+b v)=a \nabla u+b \nabla v$.
(2) $\nabla(u v)=u \nabla v+v \nabla u$.
(3) $\nabla\left(\frac{u}{v}\right)=\frac{v \nabla u-u \nabla v}{v^{2}}$.
(4) $\nabla\left(u^{n}\right)=n u^{n-1} \nabla u$.

Problem 13. Show that the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1
$$

Problem 14. Show that the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{2 x x_{0}}{a^{2}}+\frac{2 y y_{0}}{b^{2}}=\frac{z+z_{0}}{c} .
$$

