Exercise Problem Sets 7

Problem 1. Let C be a curve parameterized by the vector-valued function $\boldsymbol{r}:[0,1] \rightarrow \mathbb{R}^{2}$,

$$
\boldsymbol{r}(t)=\left(\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}, \frac{2}{e^{t}+e^{-t}}\right), \quad 0 \leqslant t \leqslant 1
$$

(1) Show that C is part of the unit circle centered at the origin.
(3) Find the length of the curve C.

Problem 2. Let C be the curve given by the parametric equations

$$
x(t)=\frac{3+t^{2}}{1+t^{2}}, \quad y(t)=\frac{2 t}{1+t^{2}}
$$

on the interval $t \in[0,1]$.
(1) In fact C is the graph of a function $y=f(x)$. Find f.
(2) Find the arc length of the curve C.
(3) Find the area of the surface formed by revolving the curve C about the y-axis.

Let C be a simple closed curve in the plane parameterized by $r:[a, b] \rightarrow \mathbb{R}^{2}$. Suppose that

1. $\boldsymbol{r}(t)=(x(t), y(t))$ moves counter-clockwise (that is, the region enclosed by C is on the left-hand side when moving along C) as t increases.
2. There exists $c \in(a, b)$ such that x is strictly increasing on $[a, c]$ and is strictly decreasing on $[c, b]$ (this implies that every vertical line intersects with the curve C at at most two points)
3. $x^{\prime} y$ is Riemann integrable on $[a, b]$ (for example, x is continuously differentiable on $[a, b]$).

In class we "prove" that under the assumptions above

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is }-\int_{a}^{b} x^{\prime}(t) y(t) d t \tag{0.1}
\end{equation*}
$$

Similar argument can be applied to obtain that

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is } \int_{a}^{b} x(t) y^{\prime}(t) d t \tag{0.2}
\end{equation*}
$$

if $x y^{\prime}$ is Riemann integrable on $[a, b]$ and every horizontal line intersects with the curve C at at most two points. Combining (0.1) and (0.2), we obtain that

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is } \frac{1}{2} \int_{a}^{b}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] d t \tag{0.3}
\end{equation*}
$$

provided that $x^{\prime} y$ and $x y^{\prime}$ are Riemann integrable on $[a, b]$ and every vertical line and horizontal line intersects with the curve C at at most two points.

In general, the restriction that every vertical line or horizontal line intersects with curve C at at most two points can be removed from the condition for the use of (0.1), (0.2) and (0.3). We will treat this as a fact for we have proved a special case.

Using the convention that $\mathbf{u} \times \mathbf{v}=u_{1} v_{2}-u_{2} v_{1}$ when $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}, \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}$ are vectors in the plane, (0.3) can be rewritten as

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is } \frac{1}{2} \int_{a}^{b} \boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t) d t \tag{}
\end{equation*}
$$

Without confusion, the area can also be computed by $\frac{1}{2} \int_{a}^{b} \boldsymbol{r}(t) \times d \boldsymbol{r}(t)$.
Example 0.1. Let C be the curve parameterized by $\boldsymbol{r}(t)=(\cos t, \sin t), t \in[0,2 \pi]$. Then the area of the region enclosed by C can be computed by the following three ways:

1. Using (0.1),

$$
-\int_{0}^{2 \pi} \frac{d \cos t}{d t} \sin t d t=\int_{0}^{2 \pi} \sin ^{2} t d t=\int_{0}^{2 \pi} \frac{1-\cos (2 t)}{2} d t=\left.\frac{1}{2}\left(t-\frac{\sin (2 t)}{2}\right)\right|_{t=0} ^{t=2 \pi}=\pi
$$

2. Using (0.2),

$$
\int_{0}^{2 \pi} \cos t \frac{d \sin t}{d t} d t=\int_{0}^{2 \pi} \cos ^{2} t d t=\int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t=\left.\frac{1}{2}\left(t+\frac{\sin (2 t)}{2}\right)\right|_{t=0} ^{t=2 \pi}=\pi
$$

3. Using (0.3),

$$
\frac{1}{2} \int_{0}^{2 \pi}\left(\cos t \frac{d \sin t}{d t}-\frac{d \cos t}{d t} \sin t\right) d t=\frac{1}{2} \int_{0}^{2 \pi}\left(\cos ^{2} t+\sin ^{2} t\right) d t=\frac{1}{2} \int_{0}^{2 \pi} 1 d t=\pi
$$

Problem 3. Give a parametrization of the simple closed curve C shown in the figure below

and find the area of the region enclosed by C using (0.1), (0.2) or (0.3).

Problem 4. Give a parametrization of the simple closed curve C shown in the figure below

and find the area of the region enclosed by C using (0.1), (0.2) or (0.3).
Problem 5. Let $0 \leqslant \theta_{1}<\theta_{2} \leqslant 2 \pi$, and $f:\left[\theta_{1}, \theta_{2}\right] \rightarrow \mathbb{R}$ be a non-negative function. Consider the polar region

$$
\mathrm{R}=\left\{(r, \theta) \mid 0 \leqslant r \leqslant f(\theta), \theta \in\left[\theta_{1}, \theta_{2}\right]\right\}
$$

shown in the figure below.

1. Give a parametrization of the boundary of the polar region R.
2. Using (0.3) to show that the area of the polar region R is given by

$$
\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} f(t)^{2} d t
$$

Problem 6. Let C_{1} be the polar graph of the polar function $r=1+\cos \theta$ (which is a cardioid), and C_{2} be the polar graph of the polar function $r=3 \cos \theta$ (which is a circle). See the following figure for reference.

Figure 1: The polar graphs of the polar equations $r=1+\cos \theta$ and $r=3 \cos \theta$
（1）Find the intersection points of C_{1} and C_{2} ．
（2）Find the line L passing through the lowest intersection point and tangent to the curve C_{2} ．
（3）Identify the curve marked by \star on the θr－plane for $0 \leqslant \theta \leqslant 2 \pi$ ．
（4）Find the area of the shaded region．
以下問題部份小題要用到第七章的觀念，為了題目的完整性一併呈現，但是與第十二章有關的是 （1）（2）（3）三小題

Problem 7．Let R be the region bounded by the circle $r=1$ and outside the lemniscate $r^{2}=$ $-2 \cos 2 \theta$ ，and is located on the right half plane（see the shaded region in the graph）．

Figure 2：The polar graphs of the polar equations $r=1$ and $r^{2}=-2 \cos 2 \theta$
（1）Find the points of intersection of the circle $r=1$ and the lemniscate $r^{2}=-2 \cos 2 \theta$ ．
（2）Show that the straight line $x=\frac{1}{2}$ is tangent to the lemniscate at the points of intersection on the right half plane．
（3）Find the area of R ．
（4）Find the volume of the solid of revolution obtained by rotating R about the x－axis by complete the following：
（a）Suppose that (x, y) is on the lemniscate．Then (x, y) satisfies

$$
\begin{equation*}
y^{4}+a(x) y^{2}+b(x)=0 \tag{0.4}
\end{equation*}
$$

for some functions $a(x)$ and $b(x)$ ．Find $a(x)$ and $b(x)$ ．
（b）Solving（0．4），we find that $y^{2}=c(x)$ ，where $c(x)=c_{1} x^{2}+c_{2}+c_{3} \sqrt{1-4 x^{2}}$ for some constants c_{1}, c_{2} and c_{3} ．Then the volume of interests can be computed by

$$
I=\pi \int_{0}^{\frac{1}{2}} c(x) d x+\pi \int_{\frac{1}{2}}^{1} d(x) d x
$$

Compute $\int_{\frac{1}{2}}^{1}\left[d(x)-\left(1-x^{2}\right)\right] d x$.
(c) Evaluate I by first computing the integral $\int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x$, and then find I.
(5) Find the area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Problem 8. Let R be the region bounded by the lemniscate $r^{2}=2 \cos 2 \theta$ and is outside the circle $r=1$ (see the shaded region in the graph).

Figure 3: The polar graphs of the polar equations $r^{2}=2 \cos 2 \theta$ and $r=1$
(1) Find the area of R.
(2) Find the slope of the tangent line passing thought the point on the lemniscate corresponding to $\theta=\frac{\pi}{6}$.
(3) Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$
\begin{equation*}
y^{4}+a(x) y^{2}+b(x)=0 \tag{0.5}
\end{equation*}
$$

for some functions $a(x)$ and $b(x)$. Find $a(x)$ and $b(x)$.
(b) Solving (0.5), we find that $y^{2}=c(x)$, where $c(x)=c_{1} x^{2}+c_{2}+c_{3} \sqrt{1+4 x^{2}}$ for some constants c_{1}, c_{2} and c_{3}. Then the volume of interests can be computed by

$$
I=2 \times\left[\pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} c(x) d x-\pi \int_{\frac{\sqrt{3}}{2}}^{1} d(x) d x\right] .
$$

Compute $\int_{\frac{\sqrt{3}}{2}}^{1}\left[d(x)-\left(1-x^{2}\right)\right] d x$.
(c) Evaluate I by first computing the integral $\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x$, and then find I.
(4) Find the surface area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Problem 9. Let C_{1}, C_{2} be the curves given by polar coordinate $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$, respectively, and the graphs of C_{1} and C_{2} are given in Figure 4 .

Figure 4: The polar graphs of the polar equations $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$
(1) Let P_{1}, \cdots, P_{4} be four points of intersection of curves C_{1} and C_{2} as shown in Figure (the fifth one is the origin). What are the Cartesian coordinates of P_{1} and P_{2} ?
(2) Let L_{1} and L_{2} be two straight lines passing P_{1} and tangent to C_{1}, C_{2}, respectively. Find the cosine value of the acute/smaller angle between L_{1} and L_{2}.
(3) Compute the area of the shaded region.

