Exercise Problem Sets 6

Problem 1．In class we have introduced the permutation symbol $\varepsilon_{i j k}$ and use it to define the cross product：for two given vectors $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}=\sum_{i=1}^{3} u_{i} \mathbf{e}_{i}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}=\sum_{i=1}^{3} v_{i} \mathbf{e}_{i}$ ，the cross product $\mathbf{u} \times \mathbf{v}$ is defined by

$$
\mathbf{u} \times \mathbf{v}=\sum_{i=1}^{3}\left(\sum_{j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k}\right) \mathbf{e}_{i}=\sum_{i, j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k} \mathbf{e}_{i} .
$$

Use the summation notation above without expanding the sum（不要展開成向量和的形式，直接用 Σ 操作）and the identity

$$
\sum_{i=1}^{3} \varepsilon_{i j k} \varepsilon_{i r s}=\delta_{j r} \delta_{k s}-\delta_{j s} \delta_{k r}
$$

to prove the following．
（1） $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in space．（Is the associative law $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ true？$)$
（2）$(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\left|\begin{array}{cc}\mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d}\end{array}\right|$ for all vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ in space．
Problem 2.
（1）Let \mathbf{u}, \mathbf{v} be vectors in space satisfying $\mathbf{u} \cdot \mathbf{v}=\sqrt{3}$ and $\mathbf{u} \times \mathbf{v}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ ．Find the angle between \mathbf{u} and \mathbf{v} ．
（2）Let \mathbf{u}, \mathbf{v} be vectors in space．What can you conclude if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ and $\mathbf{u} \cdot \mathbf{v}=0$ ？
（3）Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in space．Show that if $\mathbf{u} \neq \mathbf{0}, \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ ，then $\mathbf{v}=\mathbf{w}$ ．

Problem 3.

（1）Let P be a point not on the line L that passes through the points Q and R ．Show that the distance d from the point P to the line L is

$$
d=\frac{\|\mathbf{a} \times \mathbf{b}\|}{\|\mathbf{a}\|},
$$

where $\mathbf{a}=\overrightarrow{Q R}$ and $\mathbf{b}=\overrightarrow{Q P}$ ．
（2）Let P be a point not on the plane that passes through the points Q, R ，and S ．Show that the distance d from P to the plane is

$$
d=\frac{|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|}{\|\mathbf{a} \times \mathbf{b}\|}
$$

where $\mathbf{a}=\overrightarrow{Q R}, \mathbf{b}=\overrightarrow{Q S}$ and $\mathbf{c}=\overrightarrow{Q P}$ ．

Problem 4．Show that the polar equation $r=a \sin \theta+b \cos \theta$ ，where $a b \neq 0$ ，represents a circle， and find its center and radius．

Problem 5．Replace the polar equations in the following questions with equivalent Cartesian equa－ tions．
（1）$r^{2} \sin 2 \theta=2$
（2）$r=4 \tan \theta \sec \theta$
（3）$r=\csc \theta e^{r \cos \theta}$
（4）$r \sin \theta=\ln r+\ln \cos \theta$ ．

Problem 6．Let C be a smooth curve parameterized by

$$
\boldsymbol{r}(t)=(\cos t \sin t, \sin t \sin t, \cos t), \quad t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

（1）Show that C is a closed curve on the unit sphere \mathbb{S}^{2} ．
（2）Using the spherical coordinate，the curve C above corresponds to a curve on the $\theta \phi$－plane． Find the curve in the region $\{(\theta, \phi) \mid 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant \phi \leqslant \pi\}$ ．

Remark：想像球面是地球，有人開飛機飛行了 C 這個路線。這個路線在世界地圖上對應到另一個曲線，第二小題即是要求在世界地圖上這個曲線為何。

Problem 7．Let C be a smooth curve parameterized by

$$
\boldsymbol{r}(t)=(\cos (\sin t) \sin t, \sin (\sin t) \sin t, \cos t), \quad t \in[0,2 \pi] .
$$

（1）Show that C is a closed curve on the unit sphere \mathbb{S}^{2} ．
（2）Using the spherical coordinate，the curve C above corresponds to a curve on the $\theta \phi$－plane． Find the curve in the region $\{(\theta, \phi) \mid 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant \phi \leqslant \pi\}$ ．

Problem 8. In class we talked about how to find the total distance that you travel when you walk along a path according to the position vector $\boldsymbol{r}:[a, b] \rightarrow \mathbb{R}^{2}$. The total distance travelled can be computed by

$$
\int_{a}^{b}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

when \boldsymbol{r} is continuously differentiable. Complete the following.

1. Let $\boldsymbol{r}:[0,4 \pi] \rightarrow \mathbb{R}^{2}$ be given by $\boldsymbol{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}$. Find the image of $[0,4 \pi]$ under \boldsymbol{r}.
2. Compute the integral $\int_{0}^{4 \pi}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t$. Does it agree with the length of the curve $C \equiv \boldsymbol{r}([0,4 \pi])$?

Problem 9. To illustrate that the length of a smooth space curve does not depend on the parametrization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

1. $\boldsymbol{r}(t)=\cos (4 t) \mathbf{i}+\sin (4 t) \mathbf{j}+4 t \mathbf{k}, t \in\left[0, \frac{\pi}{2}\right]$.
2. $\boldsymbol{r}(t)=\cos \frac{t}{2} \mathbf{i}+\sin \frac{t}{2} \mathbf{j}+\frac{t}{2} \mathbf{k}, t \in[0,4 \pi]$.
3. $\boldsymbol{r}(t)=\cos t \mathbf{i}-\sin t \mathbf{j}-t \mathbf{k}, t \in[-2 \pi, 0]$.
