Calculus MA1001－B Quiz 6

National Central University，Nov． 52019
學號： \qquad姓名： \qquad
Problem 1．（4pts）Let $f:[a, b] \rightarrow \mathbb{R}$ be a function．Assuming that you know what a partition（but nothing else）of an interval is，state the definition of the integrability of f on $[a, b]$ 。（假設只有「一個區間的分割」這件事是已定義的情況下，敘述函數 f 在 $[a, b]$ 上黎曼可積的定義）

Solution．f is said to be Riemann integrable on $[a, b]$ if there exists a real number A such that for every $\varepsilon>0$ there exists $\delta>0$ such that if $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ is a partition of $[a, b]$ satisfying that $\max \left\{x_{i}-x_{i-1} \mid 1 \leqslant i \leqslant n\right\}<\delta$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ satisfying that $c_{i} \in\left[x_{i-1}, x_{i}\right]$ for all $1 \leqslant i \leqslant n$ ，then

$$
A-\varepsilon<\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)<A+\varepsilon
$$

Problem 2．（2pts）Write the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{3 n+2 i}$ as an integral．Do NOT compute the integral． Solution．Let $\mathcal{P}=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ be a regular partition of［0，1］．Then

$$
\sum_{i=1}^{n} \frac{1}{3 n+2 i}=\sum_{i=1}^{n} \frac{1}{3+2 \cdot \frac{i}{n}} \frac{1}{n}=\sum_{i=1}^{n} f\left(\frac{i}{n}\right)\left(x_{i}-x_{i-1}\right)
$$

which is a Riemann of f for \mathcal{P}（using the right end－point rule），where $f(x)=\frac{1}{3+2 x}$ ．Therefore，

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{3 n+2 i}=\int_{0}^{1} \frac{1}{3+2 x} d x
$$

Problem 3．（4pts）Find the area of the region enclosed by the graph of $y=x^{3}$ ，the x－axis，and $x=2$ ，using regular partitions of $[0,2]$ and the mid－point rule approximation of the area．
Solution．Let $f(x)=x^{3}$ and $\mathcal{P}=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=2\right\}$ be a regular partition of［0，2］， where $x_{i}=\frac{2 i}{n}$ ．Using the mid－point rule，we find that the area of the region given above is the limit， as $n \rightarrow \infty$ ，of the sum

$$
\sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i-1}}{2}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(\frac{2 i+2(i-1)}{2 n}\right)^{3} \frac{2}{n}=\frac{2}{n^{4}} \sum_{i=1}^{n}\left(8 i^{3}-12 i^{2}+6 i-1\right)
$$

By the fact that $\sum_{i=1}^{n} 1=n, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ and $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ ，we find that

$$
\sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i-1}}{2}\right)\left(x_{i}-x_{i-1}\right)=\frac{2}{n^{4}}\left[2 n^{2}(n+1)^{2}-2 n(n+1)(2 n+1)+3 n(n+1)-n\right]
$$

Therefore，using that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ ，we conclude that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i-1}}{2}\right)\left(x_{i}-x_{i-1}\right)=\lim _{n \rightarrow \infty}\left[4\left(1+\frac{1}{n}\right)^{2}-\frac{4}{n}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)+\frac{6}{n^{2}}\left(1+\frac{1}{n}\right)-\frac{2}{n^{3}}\right]=4
$$

