Calculus MA1001-B Quiz 6

National Central University, Nov. 5 2019

學號:______ 姓名:_____

Problem 1. (4pts) Let $f : [a, b] \to \mathbb{R}$ be a function. Assuming that you know what a partition (but nothing else) of an interval is, state the definition of the integrability of f on [a, b]. (假設只有「一個區間的分割」這件事是已定義的情況下,敘述函數 $f \in [a, b]$ 上黎曼可積的定義)

Solution. f is said to be Riemann integrable on [a, b] if there exists a real number A such that for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ is a partition of [a, b]satisfying that $\max\{x_i - x_{i-1} \mid 1 \leq i \leq n\} < \delta$ and $\{c_1, \cdots, c_n\}$ satisfying that $c_i \in [x_{i-1}, x_i]$ for all $1 \leq i \leq n$, then

$$A - \varepsilon < \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}) < A + \varepsilon.$$

Problem 2. (2pts) Write the limit $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{3n+2i}$ as an integral. Do **NOT** compute the integral. Solution. Let $\mathcal{P} = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$ be a regular partition of [0, 1]. Then

$$\sum_{i=1}^{n} \frac{1}{3n+2i} = \sum_{i=1}^{n} \frac{1}{3+2 \cdot \frac{i}{n}} \frac{1}{n} = \sum_{i=1}^{n} f\left(\frac{i}{n}\right) (x_i - x_{i-1})$$

which is a Riemann of f for \mathcal{P} (using the right end-point rule), where $f(x) = \frac{1}{3+2x}$. Therefore,

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{3n+2i} = \int_{0}^{1} \frac{1}{3+2x} \, dx \, .$$

Problem 3. (4pts) Find the area of the region enclosed by the graph of $y = x^3$, the x-axis, and x = 2, using regular partitions of [0, 2] and the **mid-point rule** approximation of the area.

Solution. Let $f(x) = x^3$ and $\mathcal{P} = \{0 = x_0 < x_1 < \cdots < x_n = 2\}$ be a regular partition of [0, 2], where $x_i = \frac{2i}{n}$. Using the mid-point rule, we find that the area of the region given above is the limit, as $n \to \infty$, of the sum

$$\sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(\frac{2i + 2(i-1)}{2n}\right)^3 \frac{2}{n} = \frac{2}{n^4} \sum_{i=1}^{n} (8i^3 - 12i^2 + 6i - 1).$$

By the fact that $\sum_{i=1}^{n} 1 = n$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ and $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$, we find that

$$\sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right)(x_i - x_{i-1}) = \frac{2}{n^4} \left[2n^2(n+1)^2 - 2n(n+1)(2n+1) + 3n(n+1) - n \right].$$

Therefore, using that $\lim_{n \to \infty} \frac{1}{n} = 0$, we conclude that

$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) (x_i - x_{i-1}) = \lim_{n \to \infty} \left[4\left(1 + \frac{1}{n}\right)^2 - \frac{4}{n}\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) + \frac{6}{n^2}\left(1 + \frac{1}{n}\right) - \frac{2}{n^3} \right] = 4.$$