Calculus MA1001－B Quiz 2

National Central University，Oct． 12019

學號： \qquad姓名： \qquad
Problem 1．(2%) Let f be a function defined on $(-\infty, a)$ ．State the definition of $\lim _{x \rightarrow-\infty} f(x)=\infty$ ． Do NOT use logic symbols．

Solution． $\lim _{x \rightarrow-\infty} f(x)=\infty$ if for every $M>0$ ，there exists $N>0$ such that $f(x)>M$ whenever $x<-N$ ．
Problem 2．（8\％）Find all asymptotes of the graph of the function $f(x)=\frac{3 x^{3}\left(x-\sqrt[3]{x^{3}-x^{2}+x}\right)}{x^{2}-1}$ ． Solution．Since the denominator vanishes at $x= \pm 1$ ，there are two possible vertical asymptotes $x=1$ or $x=-1$ ．Since the denominator also vanishes at $x=1$ ，we need to check further the behavior of $f(x)$ as x approaches 1 ．Note that for $x \neq \pm 1$ ，

$$
\frac{x-\sqrt[3]{x^{3}-x^{2}+x}}{x^{2}-1}=\frac{x}{(x+1)\left[x^{2}+x \sqrt[3]{x^{3}-x^{2}+x}+\left(x^{3}-x^{2}+x\right)^{\frac{2}{3}}\right]}
$$

thus for $x \neq \pm 1$ ，

$$
f(x)=\frac{3 x^{4}}{(x+1)\left[x^{2}+x \sqrt[3]{x^{3}-x^{2}+x}+\left(x^{3}-x^{2}+x\right)^{\frac{2}{3}}\right]} .
$$

Therefore， $\lim _{x \rightarrow 1} f(x)=0$ exists which shows that $x=1$ is not a vertical asymptote of the graph of f ． On the other hand，

$$
\lim _{x \rightarrow-1^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{-}} f(x)=-\infty
$$

we find that $x=-1$ is the only vertical asymptote of the graph of f ．
For slant or horizontal asymptotes，we note that for $x \neq \pm 1,0$ ，

$$
\frac{f(x)}{x}=\frac{3}{\left(1+\frac{1}{x}\right)\left[1+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}\right]}
$$

Since $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0$ ，we find that $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1$ and $\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=1$ ．It remains to find the limit $\lim _{x \rightarrow \infty}[f(x)-x]$ and $\lim _{x \rightarrow-\infty}[f(x)-x]$ ．Using (\star) ，

$$
f(x)-x=\frac{3 x-(x+1)\left[1+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}\right]}{\left(1+\frac{1}{x}\right)\left[1+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}\right]} .
$$

Noting that the denominator approaches 3 as x approaches $\pm \infty$ ，we only focus on the limit of the numerator．Since

$$
\begin{aligned}
3 x & -(x+1)\left[1+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}\right] \\
& =3 x-(x+1)\left[3+\left(\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right)+\left(\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}-1\right)\right] \\
& =-3-\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right]\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+2\right]-x\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right]\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+2\right],
\end{aligned}
$$

to find the limit of the numerator as $x \rightarrow \pm \infty$ it suffices to find the limit

$$
\lim _{x \rightarrow \infty} x\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right] \quad \text { and } \quad \lim _{x \rightarrow-\infty} x\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right] .
$$

Now,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right] & =\lim _{x \rightarrow 0^{+}} \frac{\left(1-x+x^{2}\right)^{\frac{1}{3}}-1}{x}=\lim _{x \rightarrow 0^{+}} \frac{\left(1-x+x^{2}\right)-1^{3}}{x\left[\left(1-x+x^{2}\right)^{\frac{2}{3}}+\left(1-x+x^{2}\right)^{\frac{1}{3}}+1\right]} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x-1}{\left(1-x+x^{2}\right)^{\frac{2}{3}}+\left(1-x+x^{2}\right)^{\frac{1}{3}}+1}=-\frac{1}{3}
\end{aligned}
$$

and similarly, $\lim _{x \rightarrow-\infty} x\left[\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}-1\right]=-\frac{1}{3}$. Therefore,

$$
\left.\lim _{x \rightarrow \pm \infty}\left[3 x-(x+1)\left[1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{1}{3}}+\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{\frac{2}{3}}\right]\right]=-3+\frac{1}{3} \cdot 3=-2 ;
$$

thus $\lim _{x \rightarrow \infty}[f(x)-x]=-\frac{2}{3}$ which implies that $y=x-\frac{2}{3}$ is the only slant asymptote of the graph of f.

