Exercise Problem Sets 6

Problem 1. 1. Let $f, g:(a, b) \rightarrow \mathbb{R}$ be functions and $f^{\prime}(x)=g^{\prime}(x)$. Show that there exists a constant C such that $f(x)=g(x)+C$.
2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function satisfying that $f^{\prime}(x)=3 x^{2}+4 \cos x$ and $f(0)=0$. Find $f(x)$.

Problem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that f has only one critical point $c \in(a, b)$.

1. Show that if $f(c)$ is a local extremum of f, then $f(c)$ is an absolute extremum of f.
2. Show that if $f(c)$ is the absolute minimum of f, then $f(x)>f(c)$ for all $x \in[a, b]$ and $x \neq c$. Similarly, show that if $f(c)$ is the absolute maximum of f, then $f(x)<f(c)$ for all $x \in[a, b]$ and $x \neq c$.

Problem 3. Let I, J be intervals, $g: I \rightarrow \mathbb{R}$ and $f: J \rightarrow \mathbb{R}$ be increasing functions. Show that if J contains the range of g, then $f \circ g$ is increasing on I.

Problem 4. 1. If the function $f(x)=x^{3}+a x^{2}+b x$ has the local minimum value $-\frac{2 \sqrt{3}}{9}$ at $x=\frac{1}{\sqrt{3}}$, what are the values of a and b ?
2. Which of the tangent lines to the curve in part (1) has the smallest slope?

Problem 5. A number a is called a fixed point of a function f if $f(a)=a$. Prove that if $f^{\prime}(x) \neq 1$ for all real numbers x, then f has at most one fixed point.

Problem 6. Suppose f is an odd function (that is, $f(-x)=-f(x)$ for all $x \in \mathbb{R}$) and is differentiable everywhere. Prove that for every positive number b, there exists a number c in $(-b, b)$ such that $f^{\prime}(c)=\frac{f(b)}{b}$.
Problem 7. Show that $2 \sqrt{x}>3-\frac{1}{x}$ for all $x>1$.
Problem 8. Show that $\sqrt{b}-\sqrt{a}<\frac{b-a}{2 \sqrt{a}}$ for all $0<a<b$.
Problem 9. Show that for all (rational numbers) $p, q \in(1, \infty)$ satisfying $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
a c+b d \leqslant\left(a^{p}+b^{p}\right)^{\frac{1}{p}}\left(c^{q}+d^{q}\right)^{\frac{1}{q}} \quad \forall a, b, c, d>0 .
$$

Hint: Let $x=\frac{a}{b}$ and $y=\frac{d}{c}$.

Problem 10．Show that for all $k \in \mathbb{N} \cup\{0\}$ ，

$$
\begin{aligned}
x-\frac{x^{3}}{3!}+\cdots+\frac{x^{4 k+1}}{(4 k+1)!}-\frac{x^{4 k+3}}{(4 k+3)!} \leqslant \sin x \leqslant x-\frac{x^{3}}{3!}+\cdots+\frac{x^{4 k+1}}{(4 k+1)!} & \forall x \geqslant 0, \\
1-\frac{x^{2}}{2!}+\cdots+\frac{x^{4 k}}{(4 k)!}-\frac{x^{4 k+2}}{(4 k+2)!} \leqslant \cos x \leqslant 1-\frac{x^{2}}{2}+\cdots+\frac{x^{4 k}}{(4 k)!} & \forall x \geqslant 0 .
\end{aligned}
$$

Problem 11．（不要用交叉相乘）Show that for all $k \in \mathbb{N} \cup\{0\}$ ，

$$
1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1} \leqslant \frac{1}{1+x} \leqslant 1-x+x^{2}-x^{3}+\cdots+x^{2 k} \quad \forall x \geqslant 0 .
$$

Problem 12．Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function satisfying that $f^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$ ， and $f(0)=1$ ．

1．（不要試著找出 f 而是直接用 f 的性質）Show that f is increasing on \mathbb{R} ．
2．Show that if $k \in \mathbb{N} \cup\{0\}$ ，then $f(x) \geqslant 1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}$ for all $x \geqslant 0$ ．
3．Show that if $k \in \mathbb{N} \cup\{0\}$ ，then

$$
1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{2 k}}{(2 k)!}+\frac{x^{2 k+1}}{(2 k+1)!} \leqslant f(x) \leqslant 1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{2 k}}{(2 k)!} \quad \forall x \leqslant 0 .
$$

Hint： 1 ．Show that f^{2} is increasing on \mathbb{R} and argue that f is also increasing on \mathbb{R} ．
Problem 13．Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|
$$

for real numbers x ．
Hint：Let $t=\sin x+\cos x$ ．
Problem 14．Let $f, g:(a, b) \rightarrow \mathbb{R}$ be twice differentiable functions such that $f^{\prime \prime}(x) \neq 0$ and $g^{\prime \prime}(x) \neq 0$ for all $x \in(a, b)$ ．Prove that if f and g are positive，increasing，and concave upward on the interval (a, b) ，then $f g$ is also concave upward on (a, b) ．

Problem 15．For what values of a and b is $(2,2.5)$ an inflection point of the curve $x^{2}+a x+b y=0$ ？ What additional inflection points does the curve have？

