Exercise Problem Sets 4

Oct. 4. 2019

Problem 1. Let f be a function defined on an open interval containing c. Show that f is differentiable at c if and only if there exists a real number L satisfying that for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
|f(c+h)-f(c)-L h| \leqslant \varepsilon|h| \quad \text { whenever } \quad|h|<\delta .
$$

Hint: See the (first part of the) proof of the chain rule for reference.
Problem 2. Let f, g be functions defined on an open interval, and $n \in \mathbb{N}$. Show that if the n-th derivatives of f and g exist on I, then

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}}(f g)(x)= & f^{(n)}(x) g(x)+C_{1}^{n} f^{(n-1)}(x) g^{\prime}(x)+C_{2}^{n} g^{(n-2)}(x) g^{\prime \prime}(x)+\cdots \\
& +C_{n-2}^{n} f^{\prime \prime}(x) g^{(n-2)}(x)+C_{n-1}^{n} f^{\prime}(x) g^{(n-1)}(x)+f(x) g^{(n)}(x) \\
= & \sum_{k=0}^{n} C_{k}^{n} f^{(n-k)}(x) g^{(k)}(x)
\end{aligned}
$$

where $C_{k}^{n}=\frac{n!}{k!(n-k)!}$ is " n choose k ".
Hint: Prove by induction.
Problem 3. Let I be an open interval and $c \in I$. The left-hand and right-hand derivative of f at c, denoted by $f^{\prime}\left(c^{+}\right)$and $f^{\prime}\left(c^{-}\right)$, respectively, are defined by

$$
f^{\prime}\left(c^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \quad \text { and } \quad f^{\prime}\left(c^{-}\right)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}
$$

provides the limits exist.

1. Show that if f is differentiable at c if and only if $f^{\prime}\left(c^{+}\right)=f^{\prime}\left(c^{-}\right)$, and in either case we have $f^{\prime}(c)=f^{\prime}\left(c^{+}\right)=f^{\prime}\left(c^{-}\right)$.
2. Let $f(x)=\left\{\begin{array}{cc}x^{2} & \text { if } x \leqslant 2, \\ m x+k & \text { if } x>2 .\end{array}\right.$ Find the value of m and k such that f is differentiable at 2 .
3. Is there a value of b that will make

$$
g(x)= \begin{cases}x+b & \text { if } x<0, \\ \cos x & \text { if } x \geqslant 0 .\end{cases}
$$

continuous at 0 ? Differentiable at 0 ? Give reasons for your answers.
Problem 4. 1. Let $n \in \mathbb{N}$. Show that $\sum_{k=1}^{n-1} k x^{k-1}=\frac{(n-1) x^{n}-n x^{n-1}+1}{(x-1)^{2}}$ if $x \neq 1$.
2. Show that $\sum_{k=1}^{n} k \cos (k x)=\frac{-1+(2 n+1) \sin \frac{x}{2} \sin \left(n+\frac{1}{2}\right) x+\cos \frac{x}{2} \cos \left(n+\frac{1}{2}\right) x}{4 \sin ^{2} \frac{x}{2}}$ if $x \in(-\pi, \pi)$.

Hint 1. Find the sum $\sum_{k=1}^{n-1} x^{k}$ first and then observe that $\sum_{k=1}^{n-1} k x^{k-1}=\sum_{k=1}^{n-1} \frac{d}{d x} x^{k}$.

2．Find the sum $\sum_{k=1}^{n} \sin (k x)$ first and then observe that $\sum_{k=1}^{n} k \cos (k x)=\sum_{k=1}^{n} \frac{d}{d x} \sin (k x)$ ．
Problem 5．For a fixed constant $a>1$ ，consider the function $f(x)=\log _{a} x$ ．Suppose that you are given the fact that the limit

$$
\lim _{h \rightarrow 0} \frac{\log _{10}(1+h)}{h} \approx 0.43429
$$

exists．
1．Show that f is differentiable on $(0, \infty)$ for all $a>1$ ．
2．Show that there exists $a>1$ such that $f^{\prime}(x)=\frac{1}{x}$ for all $x \in(0, \infty)$ ．
Hint：1．Use the＂change of base formula＂（換底公式）for logarithm．
2．Define $g(a)=\left.\frac{d}{d x}\right|_{x=1} \log _{a} x$ ．Apply the intermediate value theorem to g ．
Problem 6．Let $f(x)=a_{1} \sin x+a_{2} \sin (2 x)+a_{3} \sin (3 x)+\cdots+a_{n} \sin (n x)$ ，where $a_{1}, a_{2}, \cdots, a_{n}$ are real numbers and $n \in \mathbb{N}$ ．Show that if $|f(x)| \leqslant|\sin x|$ for all $x \in \mathbb{R}$ ，then

$$
\left|a_{1}+2 a_{2}+3 a_{3}+\cdots+n a_{n}\right| \leqslant 1 .
$$

Problem 7．Let $k \in \mathbb{N}$ ．Suppose that $\frac{d^{n}}{d x^{n}} \frac{1}{x^{k}-1}=\frac{p_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ ．Find the degree of p_{n} and $p_{n}(1)$ ．
Problem 8．Let $f_{1}, f_{2}, \cdots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions（that is，f_{j} is differentiable on \mathbb{R} for all $1 \leqslant j \leqslant n$ ），and

$$
h(x)=\left(f_{n} \circ f_{n-1} \circ \cdots \circ f_{2} \circ f_{1}\right)(x) .
$$

Show that

$$
h^{\prime}(x)=f_{n}^{\prime}\left(g_{n-1}(x)\right) \cdot f_{n-2}^{\prime}\left(g_{n-2}(x)\right) \cdots \cdot f_{2}^{\prime}\left(g_{1}(x)\right) \cdot f_{1}^{\prime}(x) .
$$

where $g_{k}=f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}$ ．
Hint：Prove by induction．
Problem 9．1．Let $r \in \mathbb{Q}$ ，and $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=x^{r}$ ．Find the derivative of f ．
2．Find the derivatives of $y=x^{\frac{1}{4}}$ and $y=x^{\frac{3}{4}}$ by the fact that $x^{\frac{1}{4}}=\sqrt{\sqrt{x}}$ and $x^{\frac{3}{4}}=\sqrt{x \sqrt{x}}$ ．
3．Let $g:(a, b) \rightarrow \mathbb{R}$ be differentiable．Find the derivative of $y=|g(x)|$ ．
Problem 10．Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and satisfy $f\left(\frac{x^{2}-1}{x^{2}+1}\right)=x$ for all $x>0$ ．Find $f^{\prime}(0)$ ．
Problem 11．1．Let $n \in \mathbb{N}$ ．Show that $\frac{d}{d x}\left[\sin ^{n} x \cos (n x)\right]=n \sin ^{n-1} x \cos (n+1) x$ ．
2．Find a similar formula for the derivative of $\cos ^{n} x \cos (n x)$ ．
Problem 12．Find the derivative of the following functions：
1．$y=\cos \sqrt{\sin (\tan (\pi x))}$ ．
2．$y=\left[x+\left(x+\sin ^{2} x\right)^{3}\right]^{4}$ ．

