Exercise Problem Sets 10

Nov. 22. 2019

Problem 1. Let *I* be an interval, and $f: I \to \mathbb{R}$ be one-to-one, onto and continuous. Show that if $g: \mathbb{N} \to \mathbb{R}$ is a function satisfying that $\lim_{n \to \infty} f(g(n)) = b$, then $\lim_{n \to \infty} g(n) = f^{-1}(b)$.

Problem 2. Show that the following functions (defined by integrals) are one-to-one and find $(f^{-1})'(0)$.

1.
$$f(x) = \int_{2}^{x} \sqrt{1+t^{2}} dt.$$
 2. $f(x) = \int_{2}^{x} \frac{dt}{\sqrt{1+t^{4}}}$

Problem 3. Let f be an one-to-one, twice differentiable function with an inverse function g.

- 1. Show that g is twice differentiable function and find g''.
- 2. Show that if in addition f is strictly increasing and the graph of f is concave upward, then the graph of g is concave downward.

Problem 4. Find the limit $\lim_{n \to \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}$ through the following steps.

- 1. Show that $\sum_{k=1}^{n-1} \frac{1}{n} \ln \frac{k}{n} \leq \int_{\frac{1}{n}}^{1} \ln x \, dx \leq \sum_{k=2}^{n} \frac{1}{n} \ln \frac{k}{n}.$ 2. Find $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \ln \frac{k}{n}.$ 3. Find $\lim_{n \to \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}.$
- Hint: 1. Use the property of integrals.
 - 3. Using problem 1.

Problem 5. Show that for all natural number n,

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1} x^k}{k} \le \ln(1+x) \le \sum_{k=1}^{2n-1} \frac{(-1)^{k-1} x^k}{k} \qquad \forall x > 0$$

Problem 6. Find the derivative of the following functions by first taking the logarithm (base e) and then differentiating.

1.
$$y = \frac{x(x-1)^{\frac{3}{2}}}{\sqrt{x+1}}, x > 1.$$
 2. $y = \frac{(x+1)(x-2)}{(x-1)(x+2)}, x > 2$

Problem 7. Use implicit differentiation to find $\frac{dy}{dx}$, where (x, y) satisfies the relation $4xy + \ln x^2 y = 7$. **Problem 8.** Locate any relative extrema and points of inflection of the function $y = x^2 \ln \frac{x}{4}$. **Problem 9.** Use the substitution of variable $t = \tan \frac{x}{2}$ to find the integral $\int \csc x \, dx$. Problem 10. Find the following indefinite integrals.

1.
$$\int \frac{(\ln x)^2}{x} dx$$
. 2. $\int \frac{\ln \sqrt{x}}{x} dx$. 3. $\int \frac{dx}{x(\ln x^2)^3}$. 4. $\int \frac{(1+\ln x)^2}{x} dx$.
5. $\int \frac{\sin(\ln x)}{x} dx$. 6. $\int \frac{\sin 2x}{1+\cos^2 x} dx$.

Problem 11. Show that $\frac{1}{y} < \frac{\ln x - \ln y}{x - y} < \frac{1}{x}$ for all 0 < x < y.