微積分 MA1002－A 上課筆記（精簡版） 2019．05．21．

Ching－hsiao Arthur Cheng 鄭經㩓

Theorem 13.74

Let f and g be continuously differentiable functions of n variables. Suppose that on the level curve $g\left(x_{1}, \cdots, x_{n}\right)=c$ the function f attains its extrema at $\left(a_{1}, \cdots, a_{n}\right)$. If $(\nabla g)\left(a_{1}, \cdots, a_{n}\right) \neq \mathbf{0}$, then there is a real value λ such that

$$
(\nabla f)\left(a_{1}, \cdots, a_{n}\right)=\lambda(\nabla g)\left(a_{1}, \cdots, a_{n}\right)
$$

Theorem 13.76: Lagrange Multiplier Theorem - More General Version

Let f, g and h be continuously differentiable functions of three variables. Suppose that subject to the constraints $g(x, y, z)=c_{1}$ and $h(x, y, z)=c_{2}$ the function f attains its extrema at $\left(x_{0}, y_{0}, z_{0}\right)$. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then there are real numbers λ and μ such that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) .
$$

Example 13.77. Find the extreme value of the function $f(x, y, z)=20+2 x+2 y+z^{2}$ subject to two constraints $x^{2}+y^{2}+z^{2}=11$ and $x+y+z=3$.

Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-11$ and $h(x, y, z)=x+y+z-3$. We first note that if (x, y, z) satisfies $g(x, y, z)=h(x, y, z)=0$, then $(\nabla g)(x, y, z) \times(\nabla h)(x, y, z) \neq \mathbf{0}$. Moreover, f attains its extrema on the intersection of the level surface $g(x, y, z)=0$ and $h(x, y, z)=$ 0 (since the intersection is closed and bounded). Suppose that f attains its extrema at $\left(x_{0}, y_{0}, z_{0}\right)$. Then there exists $\lambda, \mu \in \mathbb{R}$ such that

$$
\begin{aligned}
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right) & =\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \\
g\left(x_{0}, y_{0}, z_{0}\right) & =h\left(x_{0}, y_{0}, z_{0}\right)=0
\end{aligned}
$$

Therefore,

$$
\begin{align*}
2 \lambda x_{0}+\mu & =2, \tag{13.10.2a}\\
2 \lambda y_{0}+\mu & =2, \tag{13.10.2b}\\
2(\lambda-1) z_{0}+\mu & =0, \tag{13.10.2c}\\
x_{0}^{2}+y_{0}^{2}+z_{0}^{2} & =11, \tag{13.10.2d}\\
x_{0}+y_{0}+z_{0} & =3 . \tag{13.10.2e}
\end{align*}
$$

(13.10.2a,b) implies that $\lambda\left(x_{0}-y_{0}\right)=0$; thus $\lambda=0$ or $x_{0}=y_{0}$.

1. If $\lambda=0$, then (13.10.2a) implies $\mu=2$ and (13.10.2c) implies $\mu=2 z_{0}$. Therefore, $z_{0}=1$ which further shows $x_{0}^{2}+y_{0}^{2}=10$ and $x_{0}+y_{0}=2$. Then $\left(x_{0}, y_{0}\right)=(3,-1)$ or $(-1,3)$. Therefore, when $\lambda=0$,

$$
\left(x_{0}, y_{0}, z_{0}\right)=(3,-1,1) \quad \text { or } \quad\left(x_{0}, y_{0}, z_{0}\right)=(-1,3,1)
$$

2. If $x_{0}=y_{0}$, then (13.10.2d,e) implies that $2 x_{0}^{2}+z_{0}^{2}=11$ and $2 x_{0}+z_{0}=3$. Therefore, $x_{0}=y_{0}=\frac{3 \pm 2 \sqrt{3}}{3}, z_{0}=\frac{3 \mp 4 \sqrt{3}}{3}$.
Since $f(3,-1,1)=f(-1,3,1)=25$ and

$$
f\left(\frac{3+2 \sqrt{3}}{3}, \frac{3+2 \sqrt{3}}{3}, \frac{3-4 \sqrt{3}}{3}\right)=f\left(\frac{3-2 \sqrt{3}}{3}, \frac{3-2 \sqrt{3}}{3}, \frac{3+4 \sqrt{3}}{3}\right)=\frac{91}{3},
$$

we conclude that the maximum and minimum value of f subject to $g=h=0$ are $\frac{91}{3}$ and 25 , respectively.

Example 13.78. Find the extreme value of $f(x, y, z)=z$ subject to the constraints $x^{4}+$ $y^{4}-z^{3}=0$ and $y=z$.

Let $g(x, y, z)=x^{4}+y^{4}-z^{3}$ and $h(x, y, z)=y-z$. Then

$$
(\nabla g)(x, y, z)=\left(4 x^{3}, 4 y^{3},-3 z^{2}\right) \quad \text { and } \quad(\nabla h)(x, y, z)=(0,1,-1)
$$

which implies that

$$
(\nabla g)(x, y, z) \times(\nabla h)(x, y, z)=\left(3 z^{2}-4 y^{3}, 4 x^{3}, 4 x^{3}\right)
$$

Suppose the extreme value of f, under the constraints $g=h=0$, occurs at (x_{0}, y_{0}, z_{0}).

1. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)=\mathbf{0}$, then $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$ and $f(0,0,0)=0$.
2. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then the Lagrange Multiplier Theorem implies that there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) .
$$

Therefore, $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies that

$$
\begin{align*}
4 \lambda x_{0}^{3} & =0 \tag{13.10.3a}\\
4 \lambda y_{0}^{3}+\mu & =0 \tag{13.10.3b}\\
-3 \lambda z_{0}^{2}-\mu & =1 \tag{13.10.3c}\\
x_{0}^{4}+y_{0}^{4}-z_{0}^{3} & =0 \tag{13.10.3d}\\
y_{0}-z_{0} & =0, \tag{13.10.3e}
\end{align*}
$$

Then (13.10.3a) implies that $\lambda=0$ or $x_{0}=0$.
(a) If $\lambda=0$, then (13.10.3b) shows $\mu=0$; thus using (13.10.3c), we obtain a contradiction $0=-1$. Therefore, $\lambda \neq 0$.
(b) If $x_{0}=0$ (and $\lambda \neq 0$), then (13.10.3d) implies that $y_{0}^{4}-z_{0}^{3}=0$. Together with (13.10.3e), we find that $y_{0}=0$ or $y_{0}=1$. However, if $y_{0}=0$, then (13.10.3b) shows that $\mu=0$ which again implies a contradiction $0=1$ from (13.10.3c). Therefore, $y_{0}=z_{0}=1$ (and there are λ, μ satisfying (13.10.3b,c) for $y_{0}=z_{0}=1$ but the values of λ and μ are not important).

Therefore, the Lagrange Multiplier Theorem only provides one possible $\left(x_{0}, y_{0}, z_{0}\right)=$ $(0,1,1)$ where f attains its extreme value.

Since the intersection of the level surface $g=0$ and $h=0$ is closed and bounded, f must attains its maximum and minimum subject to the constraints $g=h=0$. Since $(0,0,0)$ and $(0,1,1)$ are the only possible points where f attains its extrema, the maximum and minimum of f, subject to the constraint $g=h=0$, is $f(0,1,1)=1$ and $f(0,0,0)=0$, respectively.

