微積分 MA1002-A 上課筆記(精簡版) 2019.05.21.

Ching-hsiao Arthur Cheng 鄭經斅

Theorem 13.74

Let f and g be continuously differentiable functions of n variables. Suppose that on the level curve $g(x_1, \dots, x_n) = c$ the function f attains its extrema at (a_1, \dots, a_n) . If $(\nabla g)(a_1, \dots, a_n) \neq \mathbf{0}$, then there is a real value λ such that

$$(\nabla f)(a_1,\cdots,a_n) = \lambda(\nabla g)(a_1,\cdots,a_n).$$

Theorem 13.76: Lagrange Multiplier Theorem - More General Version

Let f, g and h be continuously differentiable functions of three variables. Suppose that subject to the constraints $g(x, y, z) = c_1$ and $h(x, y, z) = c_2$ the function f attains its extrema at (x_0, y_0, z_0) . If $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) \neq \mathbf{0}$, then there are real numbers λ and μ such that

$$(\nabla f)(x_0, y_0, z_0) = \lambda(\nabla g)(x_0, y_0, z_0) + \mu(\nabla h)(x_0, y_0, z_0).$$

Example 13.77. Find the extreme value of the function $f(x, y, z) = 20 + 2x + 2y + z^2$ subject to two constraints $x^2 + y^2 + z^2 = 11$ and x + y + z = 3.

Let $g(x, y, z) = x^2 + y^2 + z^2 - 11$ and h(x, y, z) = x + y + z - 3. We first note that if (x, y, z) satisfies g(x, y, z) = h(x, y, z) = 0, then $(\nabla g)(x, y, z) \times (\nabla h)(x, y, z) \neq 0$. Moreover, f attains its extrema on the intersection of the level surface g(x, y, z) = 0 and h(x, y, z) = 0 (since the intersection is closed and bounded). Suppose that f attains its extrema at (x_0, y_0, z_0) . Then there exists $\lambda, \mu \in \mathbb{R}$ such that

$$(\nabla f)(x_0, y_0, z_0) = \lambda(\nabla g)(x_0, y_0, z_0) + \mu(\nabla h)(x_0, y_0, z_0),$$

$$g(x_0, y_0, z_0) = h(x_0, y_0, z_0) = 0.$$

Therefore,

$$2\lambda x_0 + \mu = 2, \qquad (13.10.2a)$$

$$2\lambda y_0 + \mu = 2, \qquad (13.10.2b)$$

$$2(\lambda - 1)z_0 + \mu = 0, \qquad (13.10.2c)$$

$$x_0^2 + y_0^2 + z_0^2 = 11$$
, (13.10.2d)

 $x_0 + y_0 + z_0 = 3. (13.10.2e)$

(13.10.2a,b) implies that $\lambda(x_0 - y_0) = 0$; thus $\lambda = 0$ or $x_0 = y_0$.

1. If $\lambda = 0$, then (13.10.2a) implies $\mu = 2$ and (13.10.2c) implies $\mu = 2z_0$. Therefore, $z_0 = 1$ which further shows $x_0^2 + y_0^2 = 10$ and $x_0 + y_0 = 2$. Then $(x_0, y_0) = (3, -1)$ or (-1, 3). Therefore, when $\lambda = 0$,

$$(x_0, y_0, z_0) = (3, -1, 1)$$
 or $(x_0, y_0, z_0) = (-1, 3, 1)$

2. If $x_0 = y_0$, then (13.10.2d,e) implies that $2x_0^2 + z_0^2 = 11$ and $2x_0 + z_0 = 3$. Therefore, $x_0 = y_0 = \frac{3 \pm 2\sqrt{3}}{3}, z_0 = \frac{3 \mp 4\sqrt{3}}{3}$. Since f(3, -1, 1) = f(-1, 3, 1) = 25 and $(3 + 2\sqrt{3}, 3 + 2\sqrt{3}, 3 - 4\sqrt{3}, 3 - 2\sqrt{3}, 3 - 2\sqrt{3}, 3 + 4\sqrt{3}, 91$

$$f\left(\frac{3+2\sqrt{3}}{3},\frac{3+2\sqrt{3}}{3},\frac{3-4\sqrt{3}}{3}\right) = f\left(\frac{3-2\sqrt{3}}{3},\frac{3-2\sqrt{3}}{3},\frac{3+4\sqrt{3}}{3}\right) = \frac{91}{3},$$

we conclude that the maximum and minimum value of f subject to g = h = 0 are $\frac{91}{3}$ and 25, respectively.

Example 13.78. Find the extreme value of f(x, y, z) = z subject to the constraints $x^4 + y^4 - z^3 = 0$ and y = z.

Let $g(x, y, z) = x^4 + y^4 - z^3$ and h(x, y, z) = y - z. Then $(\nabla g)(x, y, z) = (4x^3, 4y^3, -3z^2)$ and $(\nabla h)(x, y, z) = (0, 1, -1)$

which implies that

$$(\nabla g)(x, y, z) \times (\nabla h)(x, y, z) = (3z^2 - 4y^3, 4x^3, 4x^3).$$

Suppose the extreme value of f, under the constraints g = h = 0, occurs at (x_0, y_0, z_0) .

- 1. If $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) = \mathbf{0}$, then $(x_0, y_0, z_0) = (0, 0, 0)$ and f(0, 0, 0) = 0.
- 2. If $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) \neq \mathbf{0}$, then the Lagrange Multiplier Theorem implies that there exist $\lambda, \mu \in \mathbb{R}$ such that

$$(\nabla f)(x_0, y_0, z_0) = \lambda(\nabla g)(x_0, y_0, z_0) + \mu(\nabla h)(x_0, y_0, z_0).$$

Therefore, (x_0, y_0, z_0) satisfies that

$$4\lambda x_0^3 = 0\,, \tag{13.10.3a}$$

$$4\lambda y_0^3 + \mu = 0, \qquad (13.10.3b)$$

$$-3\lambda z_0^2 - \mu = 1, \qquad (13.10.3c)$$

$$x_0^4 + y_0^4 - z_0^3 = 0, \qquad (13.10.3d)$$

 $y_0 - z_0 = 0. (13.10.3e)$

Then (13.10.3a) implies that $\lambda = 0$ or $x_0 = 0$.

- (a) If $\lambda = 0$, then (13.10.3b) shows $\mu = 0$; thus using (13.10.3c), we obtain a contradiction 0 = -1. Therefore, $\lambda \neq 0$.
- (b) If $x_0 = 0$ (and $\lambda \neq 0$), then (13.10.3d) implies that $y_0^4 z_0^3 = 0$. Together with (13.10.3e), we find that $y_0 = 0$ or $y_0 = 1$. However, if $y_0 = 0$, then (13.10.3b) shows that $\mu = 0$ which again implies a contradiction 0 = 1 from (13.10.3c). Therefore, $y_0 = z_0 = 1$ (and there are λ, μ satisfying (13.10.3b,c) for $y_0 = z_0 = 1$ but the values of λ and μ are not important).

Therefore, the Lagrange Multiplier Theorem only provides one possible $(x_0, y_0, z_0) = (0, 1, 1)$ where f attains its extreme value.

Since the intersection of the level surface g = 0 and h = 0 is closed and bounded, f must attains its maximum and minimum subject to the constraints g = h = 0. Since (0, 0, 0)and (0, 1, 1) are the only possible points where f attains its extrema, the maximum and minimum of f, subject to the constraint g = h = 0, is f(0, 1, 1) = 1 and f(0, 0, 0) = 0, respectively.