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Theorem 13.41: Implicit Function Theorem (Special case)

Let F be a function of n variables (x1, x2, ¨ ¨ ¨ , xn) such that Fx1 , Fx2 , ¨ ¨ ¨ , Fxn

are continuous in a neighborhood of (a1, a2, ¨ ¨ ¨ , an. If F (a1, a2, ¨ ¨ ¨ , an) = 0 and
Fxn(a1, a2, ¨ ¨ ¨ , an) ‰ 0, then locally near (a1, a2, ¨ ¨ ¨ , an) there exists a unique
continuous function f satisfying F (x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1)) = 0 and an =

f(a1, ¨ ¨ ¨ , an´1). Moreover, for 1 ď j ď n ´ 1,

Bf

Bxj
(x1, ¨ ¨ ¨ , xn´1) = ´

Fxj
(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))

Fxn(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))
.

Theorem 13.69: Lagrange Multiplier Theorem - Simplest Version
Let f and g be continuously differentiable functions of two variables. Suppose that
on the level curve g(x, y) = c the function f attains its extrema at (x0, y0). If
(∇g)(x0, y0) ‰ 0, then there is a real value λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Remark 13.70. The scalar λ in the theorem above is called a Lagrange multiplier.

Proof of Theorem 13.69. First we note that (x0, y0) is on the level curve g(x, y) = c; thus
c = g(x0, y0).

Define F (x, y) = g(x, y)´ g(x0, y0). Then F has continuous first partial derivatives, and
(∇F )(x0, y0) = (∇g)(x0, y0) ‰ 0. Then either Fx(x0, y0) ‰ 0 or Fy(x0, y0) ‰ 0. Suppose
that Fy(x0, y0) ‰ 0. Then the Implicit Function Theorem implies that there exist δ ą 0 and
a unique differentiable function h : (x0 ´ δ, x0 + δ) Ñ R such that

F (x, h(x)) = 0 and y0 = h(x0) .

In other words, the set
␣

(x, h(x))
ˇ

ˇx0´δ ă x ă x0+δ
(

is a subset of the level curve g(x, y) =
g(x0, y0). Therefore, the function G : (x0 ´ δ, x0 + δ) Ñ R defined by G(x) = f(x, h(x))

attains its extrema at (an interior point) x0; thus

G 1(x0) = fx(x0, y0) + fy(x0, y0)h
1(x0) = 0 .

Since the implicit differentiation shows that

h 1(x0) = ´
Fx(x0, h(x0))

Fy(x0, h(x0))
= ´

gx(x0, y0)

gy(x0, y0)
,



we conclude that
fx(x0, y0) ´ fy(x0, y0)

gx(x0, y0)

gy(x0, y0)
= 0 .

If fy(x0, y0) = 0, then fx(x0, y0) = 0 which implies that (∇f)(x0, y0) = 0 = 0 ¨ (∇g)(x0, y0).
If fy(x0, y0) ‰ 0, then

fx(x0, y0)

fy(x0, y0)
=

gx(x0, y0)

gy(x0, y0)

which implies that (∇f)(x0, y0)// (∇g)(x0, y0); thus there exists λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Similar argument can be applied to the case Fx(x0, y0) ‰ 0, and we omit the proof for
this case.

Example 13.71. Find the extreme value of f(x, y) = 4xy subject to the constraint

x2

9
+

y2

16
= 1 .

Let g(x, y) =
x2

9
+

y2

16
´ 1. Suppose that on the level curve g(x, y) = 0 the function f

attains its extrema at (x0, y0). Note that then (∇g)(x0, y0) ‰ 0 (since (x0, y0) ‰ (0, 0));
thus the Lagrange Multiplier Theorem implies that there exists λ P R such that

(4y0, 4x0) = (∇f)(x0, y0) = λ(∇g)(x0, y0) = λ
(2x0

9
,
y0
8

)
.

Therefore, (x0, y0) satisfies 4y0 =
2λx0
9

and 4x0 =
λy0
8

, as well as x20
9

+
y20
16

= 1. Therefore,
λ ‰ 0, and

4x0 =
λy0
8

=
λ

8
¨
λx0

18
=

λ2x0

144
.

The identity above implies that x0 = 0 or λ = ˘24.

1. If x0 = 0, then y0 = ˘4 which shows that λ = 0, a contradiction.

2. If λ = ˘24, then x0 = ˘
3y0
4

; thus

1 =
1

9
¨
9y20
16

+
y20
16

=
y20
8
.

Therefore, y0 = ˘2
?
2 which implies that x0 = ˘

3
?
2

2
. At these (x0, y0), f(x0, y0) =

˘24. Therefore, on the ellipse x2

9
+

y2

16
= 1 the maximum of f is 24

(
at (x0, y0) =(

˘ 2
?
2,˘

3
?
2

2

))
and the minimum of f is ´24

(
at (x0, y0) =

(
˘ 2

?
2,¯

3
?
2

2

))
.



Example 13.72. Find the extreme value of f(x, y) = 4xy, where x ą 0 and y ą 0, subject

to the constraint x2

9
+

y2

16
= 1. From the previous example we find that the maximum of

f is 24
(

at (x0, y0) =
(
2
?
2,

3
?
2

2

))
. The minimum of f occurs at the end-points (0, 4) or

(3, 0). In either points, the value of f is 0; thus the minimum of f is 0.

Example 13.73. Find the extreme value of f(x, y) = 4xy, where (x, y) satisfies x2

9
+

y2

16
ď 1.

We have find the extreme value of f , under the constraint x2

9
+

y2

16
= 1, is ˘24. Therefore,

it suffices to consider the extreme value of f in the interior x2

9
+

y2

16
ă 1.

Assume that f attains its extreme value at an interior point (x0, y0). Then (x0, y0) is a
critical point of f ; thus

fx(x0, y0) = fy(x0, y0) = 0

which implies that (x0, y0) = (0, 0). Since f(0, 0) = 0, f(0, 0) is not an extreme value of f .
Therefore, the extreme value of f on the region x2

9
+

y2

16
ď 1 is ˘24.

We note that (0, 0) in fact is a saddle point of f since fxx(0, 0)fyy(0, 0) ´ fxy(0, 0)
2 =

´16 ă 0.

Similar argument of proving Theorem 13.69 can be used to show the following
Theorem 13.74

Let f and g be continuously differentiable functions of n variables. Suppose that on
the level curve g(x1, ¨ ¨ ¨ , xn) = c the function f attains its extrema at (a1, ¨ ¨ ¨ , an). If
(∇g)(a1, ¨ ¨ ¨ , an) ‰ 0, then there is a real value λ such that

(∇f)(a1, ¨ ¨ ¨ , an) = λ(∇g)(a1, ¨ ¨ ¨ , an) .

Example 13.75. Find the minimum value of f(x, y, z) = 2x2 + y2 + 3z2 subject to the
constraint 2x ´ 3y ´ 4z = 49.

Let g(x, y, z) = 2x´ 3y ´ 4z ´ 49. Then (∇g) ‰ 0; thus if f attains its relative extrema
at (x0, y0, z0), there exists λ P R such that (∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0). Therefore,

(4x0, 2y0, 6z0) = λ(2,´3,´4)

or equivalently, λ = 2x0 = ´
2

3
y0 = ´

3

2
z0. Since 2x0 ´ 3y0 ´ 4z0 = 49, we find that λ = 6

which implies that
(x0, y0, z0) = (3,´9,´4) .



Since f grows beyond any bound as
a

x2 + y2 + z2 approaches 8, we find that f(3,´9,´4) =

147 is the minimum of f .

Next, we consider the optimization problem of finding the extreme value of a function
of three variables w = f(x, y, z) subject to two constraints g(x, y, z) = h(x, y, z) = 0.
Theorem 13.76: Lagrange Multiplier Theorem - More General Version

Let f , g and h be continuously differentiable functions of three variables. Suppose
that subject to the constraints g(x, y, z) = c1 and h(x, y, z) = c2 the function f attains
its extrema at (x0, y0, z0). If (∇g)(x0, y0, z0)ˆ (∇h)(x0, y0, z0) ‰ 0, then there are real
numbers λ and µ such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) .


