微積分 MA1002－A 上課筆記（精簡版） 2019．05．16．

Ching－hsiao Arthur Cheng 鄭經敘

## Theorem 13.41: Implicit Function Theorem (Special case)

Let $F$ be a function of $n$ variables $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $F_{x_{1}}, F_{x_{2}}, \cdots, F_{x_{n}}$ are continuous in a neighborhood of $\left(a_{1}, a_{2}, \cdots, a_{n}\right.$. If $F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=0$ and $F_{x_{n}}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$, then locally near $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ there exists a unique continuous function $f$ satisfying $F\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)=0$ and $a_{n}=$ $f\left(a_{1}, \cdots, a_{n-1}\right)$. Moreover, for $1 \leqslant j \leqslant n-1$,

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \cdots, x_{n-1}\right)=-\frac{F_{x_{j}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)}{F_{x_{n}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)} .
$$

## Theorem 13.69: Lagrange Multiplier Theorem - Simplest Version

Let $f$ and $g$ be continuously differentiable functions of two variables. Suppose that on the level curve $g(x, y)=c$ the function $f$ attains its extrema at $\left(x_{0}, y_{0}\right)$. If $(\nabla g)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then there is a real value $\lambda$ such that

$$
(\nabla f)\left(x_{0}, y_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}\right)
$$

Remark 13.70. The scalar $\lambda$ in the theorem above is called a Lagrange multiplier.
Proof of Theorem 13.69. First we note that $\left(x_{0}, y_{0}\right)$ is on the level curve $g(x, y)=c$; thus $c=g\left(x_{0}, y_{0}\right)$.

Define $F(x, y)=g(x, y)-g\left(x_{0}, y_{0}\right)$. Then $F$ has continuous first partial derivatives, and $(\nabla F)\left(x_{0}, y_{0}\right)=(\nabla g)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$. Then either $F_{x}\left(x_{0}, y_{0}\right) \neq 0$ or $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. Suppose that $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. Then the Implicit Function Theorem implies that there exist $\delta>0$ and a unique differentiable function $h:\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ such that

$$
F(x, h(x))=0 \quad \text { and } \quad y_{0}=h\left(x_{0}\right) .
$$

In other words, the set $\left\{(x, h(x)) \mid x_{0}-\delta<x<x_{0}+\delta\right\}$ is a subset of the level curve $g(x, y)=$ $g\left(x_{0}, y_{0}\right)$. Therefore, the function $G:\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ defined by $G(x)=f(x, h(x))$ attains its extrema at (an interior point) $x_{0}$; thus

$$
G^{\prime}\left(x_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) h^{\prime}\left(x_{0}\right)=0 .
$$

Since the implicit differentiation shows that

$$
h^{\prime}\left(x_{0}\right)=-\frac{F_{x}\left(x_{0}, h\left(x_{0}\right)\right)}{F_{y}\left(x_{0}, h\left(x_{0}\right)\right)}=-\frac{g_{x}\left(x_{0}, y_{0}\right)}{g_{y}\left(x_{0}, y_{0}\right)},
$$

we conclude that

$$
f_{x}\left(x_{0}, y_{0}\right)-f_{y}\left(x_{0}, y_{0}\right) \frac{g_{x}\left(x_{0}, y_{0}\right)}{g_{y}\left(x_{0}, y_{0}\right)}=0
$$

If $f_{y}\left(x_{0}, y_{0}\right)=0$, then $f_{x}\left(x_{0}, y_{0}\right)=0$ which implies that $(\nabla f)\left(x_{0}, y_{0}\right)=\mathbf{0}=0 \cdot(\nabla g)\left(x_{0}, y_{0}\right)$. If $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, then

$$
\frac{f_{x}\left(x_{0}, y_{0}\right)}{f_{y}\left(x_{0}, y_{0}\right)}=\frac{g_{x}\left(x_{0}, y_{0}\right)}{g_{y}\left(x_{0}, y_{0}\right)}
$$

which implies that $(\nabla f)\left(x_{0}, y_{0}\right) / /(\nabla g)\left(x_{0}, y_{0}\right)$; thus there exists $\lambda$ such that

$$
(\nabla f)\left(x_{0}, y_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}\right) .
$$

Similar argument can be applied to the case $F_{x}\left(x_{0}, y_{0}\right) \neq 0$, and we omit the proof for this case.

Example 13.71. Find the extreme value of $f(x, y)=4 x y$ subject to the constraint

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 .
$$

Let $g(x, y)=\frac{x^{2}}{9}+\frac{y^{2}}{16}-1$. Suppose that on the level curve $g(x, y)=0$ the function $f$ attains its extrema at $\left(x_{0}, y_{0}\right)$. Note that then $(\nabla g)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$ (since $\left.\left(x_{0}, y_{0}\right) \neq(0,0)\right)$; thus the Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$
\left(4 y_{0}, 4 x_{0}\right)=(\nabla f)\left(x_{0}, y_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}\right)=\lambda\left(\frac{2 x_{0}}{9}, \frac{y_{0}}{8}\right) .
$$

Therefore, $\left(x_{0}, y_{0}\right)$ satisfies $4 y_{0}=\frac{2 \lambda x_{0}}{9}$ and $4 x_{0}=\frac{\lambda y_{0}}{8}$, as well as $\frac{x_{0}^{2}}{9}+\frac{y_{0}^{2}}{16}=1$. Therefore, $\lambda \neq 0$, and

$$
4 x_{0}=\frac{\lambda y_{0}}{8}=\frac{\lambda}{8} \cdot \frac{\lambda x_{0}}{18}=\frac{\lambda^{2} x_{0}}{144} .
$$

The identity above implies that $x_{0}=0$ or $\lambda= \pm 24$.

1. If $x_{0}=0$, then $y_{0}= \pm 4$ which shows that $\lambda=0$, a contradiction.
2. If $\lambda= \pm 24$, then $x_{0}= \pm \frac{3 y_{0}}{4}$; thus

$$
1=\frac{1}{9} \cdot \frac{9 y_{0}^{2}}{16}+\frac{y_{0}^{2}}{16}=\frac{y_{0}^{2}}{8} .
$$

Therefore, $y_{0}= \pm 2 \sqrt{2}$ which implies that $x_{0}= \pm \frac{3 \sqrt{2}}{2}$. At these $\left(x_{0}, y_{0}\right), f\left(x_{0}, y_{0}\right)=$ $\pm 24$. Therefore, on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ the maximum of $f$ is $24\left(\right.$ at $\left(x_{0}, y_{0}\right)=$ $\left.\left( \pm 2 \sqrt{2}, \pm \frac{3 \sqrt{2}}{2}\right)\right)$ and the minimum of $f$ is $-24\left(\right.$ at $\left.\left(x_{0}, y_{0}\right)=\left( \pm 2 \sqrt{2}, \mp \frac{3 \sqrt{2}}{2}\right)\right)$.

Example 13.72. Find the extreme value of $f(x, y)=4 x y$, where $x>0$ and $y>0$, subject to the constraint $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$. From the previous example we find that the maximum of $f$ is $24\left(\right.$ at $\left.\left(x_{0}, y_{0}\right)=\left(2 \sqrt{2}, \frac{3 \sqrt{2}}{2}\right)\right)$. The minimum of $f$ occurs at the end-points $(0,4)$ or $(3,0)$. In either points, the value of $f$ is 0 ; thus the minimum of $f$ is 0 .
Example 13.73. Find the extreme value of $f(x, y)=4 x y$, where $(x, y)$ satisfies $\frac{x^{2}}{9}+\frac{y^{2}}{16} \leqslant 1$. We have find the extreme value of $f$, under the constraint $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, is $\pm 24$. Therefore, it suffices to consider the extreme value of $f$ in the interior $\frac{x^{2}}{9}+\frac{y^{2}}{16}<1$.

Assume that $f$ attains its extreme value at an interior point $\left(x_{0}, y_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is a critical point of $f$; thus

$$
f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0
$$

which implies that $\left(x_{0}, y_{0}\right)=(0,0)$. Since $f(0,0)=0, f(0,0)$ is not an extreme value of $f$. Therefore, the extreme value of $f$ on the region $\frac{x^{2}}{9}+\frac{y^{2}}{16} \leqslant 1$ is $\pm 24$.

We note that $(0,0)$ in fact is a saddle point of $f$ since $f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=$ $-16<0$.

Similar argument of proving Theorem 13.69 can be used to show the following

## Theorem 13.74

Let $f$ and $g$ be continuously differentiable functions of $n$ variables. Suppose that on the level curve $g\left(x_{1}, \cdots, x_{n}\right)=c$ the function $f$ attains its extrema at $\left(a_{1}, \cdots, a_{n}\right)$. If $(\nabla g)\left(a_{1}, \cdots, a_{n}\right) \neq \mathbf{0}$, then there is a real value $\lambda$ such that

$$
(\nabla f)\left(a_{1}, \cdots, a_{n}\right)=\lambda(\nabla g)\left(a_{1}, \cdots, a_{n}\right)
$$

Example 13.75. Find the minimum value of $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ subject to the constraint $2 x-3 y-4 z=49$.

Let $g(x, y, z)=2 x-3 y-4 z-49$. Then $(\nabla g) \neq \mathbf{0}$; thus if $f$ attains its relative extrema at $\left(x_{0}, y_{0}, z_{0}\right)$, there exists $\lambda \in \mathbb{R}$ such that $(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)$. Therefore,

$$
\left(4 x_{0}, 2 y_{0}, 6 z_{0}\right)=\lambda(2,-3,-4)
$$

or equivalently, $\lambda=2 x_{0}=-\frac{2}{3} y_{0}=-\frac{3}{2} z_{0}$. Since $2 x_{0}-3 y_{0}-4 z_{0}=49$, we find that $\lambda=6$ which implies that

$$
\left(x_{0}, y_{0}, z_{0}\right)=(3,-9,-4) .
$$

Since $f$ grows beyond any bound as $\sqrt{x^{2}+y^{2}+z^{2}}$ approaches $\infty$, we find that $f(3,-9,-4)=$ 147 is the minimum of $f$.

Next, we consider the optimization problem of finding the extreme value of a function of three variables $w=f(x, y, z)$ subject to two constraints $g(x, y, z)=h(x, y, z)=0$.

## Theorem 13.76: Lagrange Multiplier Theorem - More General Version

Let $f, g$ and $h$ be continuously differentiable functions of three variables. Suppose that subject to the constraints $g(x, y, z)=c_{1}$ and $h(x, y, z)=c_{2}$ the function $f$ attains its extrema at $\left(x_{0}, y_{0}, z_{0}\right)$. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then there are real numbers $\lambda$ and $\mu$ such that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) .
$$

