微積分 MA1002-A 上課筆記(精簡版) 2019.05.09.

Ching-hsiao Arthur Cheng 鄭經斅

Let $R \subseteq \mathbb{R}^2$ be an open region in the plane, and $f : R \to \mathbb{R}$ be a function of two variables. If f is differentiable at $(x_0, y_0) \in R$, the tangent plane of the graph of f at $(x_0, y_0, f(x_0, y_0))$ is given by

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),$$

and the vector $(f_x(x_0, y_0), f_y(x_0, y_0), -1)$ is a normal vector to the graph of f at $(x_0, y_0, f(x_0, y_0))$.

Let w = F(x, y, z) be a function of three variables such that F_x , F_y and F_z are continuous. If $(\nabla F)(x_0, y_0, z_0) \neq \mathbf{0}$, then the tangent plane of the level surface $F(x, y, z) = F(x_0, y_0, z_0)$ at (x_0, y_0, z_0) is given by

$$(\nabla F)(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0,$$

and the vector $(\nabla F)(x_0, y_0, z_0)$ is a normal vector to the level surface $F(x, y, z) = F(x_0, y_0, z_0)$.

Theorem 13.51

Let F be a function of three variables. If F has continuous first partial derivatives F_x , F_y , F_z in a neighborhood of (x_0, y_0, z_0) and $(\nabla F)(x_0, y_0, z_0) \neq \mathbf{0}$, then $(\nabla F)(x_0, y_0, z_0)$ is perpendicular/normal to the level surface $F(x, y, z) = F(x_0, y_0, z_0)$ at (x_0, y_0, z_0) . Moreover, the value of F at (x_0, y_0, z_0) increase most rapidly in the direction $\frac{(\nabla F)(x_0, y_0, z_0)}{\|(\nabla F)(x_0, y_0, z_0)\|}$ and decreases most rapidly in the direction $-\frac{(\nabla F)(x_0, y_0, z_0)}{\|(\nabla F)(x_0, y_0, z_0)\|}$, where $\|\cdot\|$ denotes the length of the vector.

Theorem 13.54

Let f be a function of two variables. If f has continuous first partial derivatives f_x and f_y in a neighborhood of (x_0, y_0) and $(\nabla f)(x_0, y_0) \neq \mathbf{0}$, then $(\nabla f)(x_0, y_0)$ is perpendicular/normal to the level curve $f(x, y) = f(x_0, y_0)$ at (x_0, y_0) . Moreover, the value of f at (x_0, y_0) increase most rapidly in the direction $\frac{(\nabla f)(x_0, y_0)}{\|(\nabla f)(x_0, y_0)\|}$ and decreases most rapidly in the direction $-\frac{(\nabla f)(x_0, y_0)}{\|(\nabla f)(x_0, y_0)\|}$, where $\|\cdot\|$ denotes the length of the vector.

Example 13.56. A heat-seeking particle is located at the point (2, -3) on a metal plate whose temperature at (x, y) is $T(x, y) = 20 - 4x^2 - y^2$. Find the path of the particle as it continuously moves in the direction of maximum temperature increase.

Suppose the path of the particle is given by (x(t), y(t)). Then

$$(x'(t), y'(t)) // (\nabla T)(x(t), y(t)) = (-8x(t), -2y(t)).$$

Therefore, there exists a function k(t) such that $-8x = k\frac{dx}{dt}$ and $-2y = k\frac{dy}{dt}$; thus

$$\frac{d}{dt}\left(\ln|x| - 4\ln|y|\right) = 0$$

Then $|x||y|^{-4} = C$. Since (x(t), y(t)) passes through (2, -3), we find that $C = \frac{2}{81}$; thus (x, y) satisfies $x = \frac{2}{81}y^4$.

Example 13.57. Consider the normal line of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $(a \cos \theta, b \sin \theta)$.

Let $f(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. Then the given ellipse is the level curve $f(x,y) = 1 = f(a\cos\theta, b\sin\theta)$; thus Theorem 13.54 implies that the normal "direction" of this ellipse at point $(a\cos\theta, b\sin\theta)$ is given by

$$(f_x(a\cos\theta, b\sin\theta), f_y(a\cos\theta, b\sin\theta)) = (\frac{2\cos\theta}{a}, \frac{2\sin\theta}{b}).$$

Therefore, the normal line is given by

$$\left(-\frac{2\sin\theta}{b}, \frac{2\cos\theta}{a}\right) \cdot \left(x - a\cos\theta, y - b\sin\theta\right) = 0$$

13.8 Extrema of Functions of Several Variables

13.8.1 Relative extrema

Similar to the case of functions of one variable, we define the relative extrema as follows.

Definition 13.58: Relative Extrema

Let f be a function defined on a region R containing (x_0, y_0) .

- 1. The function f has a relative minimum at (x_0, y_0) if $f(x, y) \ge f(x_0, y_0)$ for all (x, y) in an open disk containing (x_0, y_0) .
- 2. The function f has a relative maximum at (x_0, y_0) if $f(x, y) \leq f(x_0, y_0)$ for all (x, y) in an open disk containing (x_0, y_0) .

Similar to the critical points for functions of one variable defined in Definition 3.4,we have the following

Definition 13.59: Critical Points

Let f be defined on an open region R containing (x_0, y_0) . The point (x_0, y_0) is a critical point of f if one of the following is true.

1. $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$;

2. $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

Similar to Theorem 3.5, we have the following necessary condition for points where f attains its relative extrema.

Theorem 13.60

Let R be an open region in the plane, and $f : R \to \mathbb{R}$ be continuous. If f has a relative extremum at (x_0, y_0) on an open region R, then (x_0, y_0) is a critical point of f.

Example 13.61. Determine the relative extrema of the function

$$f(x,y) = -x^3 + 4xy - 2y^2 + 1.$$

First we find the critical points of f. Since f is differentiable, the critical points are those points at which the gradient of f is the zero vector. Since $f_x(x, y) = -3x^2 + 4y$ and $f_y(x, y) = 4x - 4y$, if (a, b) is a critical point of f, then $-3a^2 + 4b = 4a - 4b = 0$. Therefore, (0, 0) and $(\frac{4}{3}, \frac{4}{3})$ are the only critical points of f.

Note that (0,0) is not a relative extremum of f since f(x,0) does not attain its extremum at x = 0. Near $(\frac{4}{3}, \frac{4}{3})$, we find that if $|h|, |k| \ll 1$,

$$\begin{split} f\left(\frac{4}{3}+h,\frac{4}{3}+k\right) &= -\left(h+\frac{4}{3}\right)^3 + 4\left(\frac{4}{3}+h\right)\left(\frac{4}{3}+k\right) - 2\left(k+\frac{4}{3}\right)^2 + 1\\ &= -h^3 - 4h^2 - \frac{16h}{3} - \frac{64}{27} + 4\left(\frac{16}{9} + \frac{4}{3}h + \frac{4}{3}k + hk\right) - 2\left(k^2 + \frac{8}{3}k + \frac{16}{9}\right) + 1\\ &= -h^3 - 4h^2 + 4hk - 2k^2 + f\left(\frac{4}{3},\frac{4}{3}\right)\\ &= f\left(\frac{4}{3},\frac{4}{3}\right) - 2(k-h)^2 - h^2(2+h) \leqslant f\left(\frac{4}{3},\frac{4}{3}\right). \end{split}$$

Therefore, f has a relative maximum at $\left(\frac{4}{3}, \frac{4}{3}\right)$.

13.8.2 The second partials test

A critical point of a function of two variables do not always yield relative maxima or minima.

Definition 13.62

Let f be a function of two variables. A point (x_0, y_0) is a saddle point of f if (x_0, y_0) is a critical point of f but f does not attain its extrema at (x_0, y_0) .

Theorem 13.63

Suppose that a function f of two variables has continuous second partial derivatives on an open region containing a point (x_0, y_0) for which $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. Let

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2 = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}.$$

1. If D > 0 and $f_{xx}(x_0, y_0) > 0$, then f has a relative minimum at (x_0, y_0) .

- 2. If D > 0 and $f_{xx}(x_0, y_0) < 0$, then f has a relative maximum at (x_0, y_0) .
- 3. If D < 0, then (x_0, y_0) is a saddle point of f.
- 4. The test is inconclusive if D = 0.

Example 13.64. Consider the relative extrema of the function given in Example 13.61. We have computed that (0,0) and $(\frac{4}{3},\frac{4}{3})$ are the only critical points of f.

1. The point (0,0): we compute the second partial derivatives and obtain that

$$f_{xx}(0,0) = 0$$
, $f_{xy}(0,0) = 4$ and $f_{yy}(0,0) = -4$.

Therefore, D = -16 < 0 which implies that (0, 0) is a saddle point.

2. The point $\left(\frac{4}{3}, \frac{4}{3}\right)$: we compute the second partial derivatives and obtain that

$$f_{xx}\left(\frac{4}{3},\frac{4}{3}\right) = -8$$
, $f_{xy}\left(\frac{4}{3},\frac{4}{3}\right) = 4$ and $f_{yy}\left(\frac{4}{3},\frac{4}{3}\right) = -4$.

Therefore, D = 16 > 0. Since $f_{xx}\left(\frac{4}{3}, \frac{4}{3}\right) < 0$, f has a relative maximum at $\left(\frac{4}{3}, \frac{4}{3}\right)$.