微積分 MA1002－A 上課筆記（精簡版） 2019．05．09．

Ching－hsiao Arthur Cheng 鄭經敘

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. If f is differentiable at $\left(x_{0}, y_{0}\right) \in R$, the tangent plane of the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

and the vector $\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right)$ is a normal vector to the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

Let $w=F(x, y, z)$ be a function of three variables such that F_{x}, F_{y} and F_{z} are continuous. If $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then the tangent plane of the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

and the vector $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is a normal vector to the level surface $F(x, y, z)$ $=F\left(x_{0}, y_{0}, z_{0}\right)$.

Theorem 13.51

Let F be a function of three variables. If F has continuous first partial derivatives F_{x}, F_{y}, F_{z} in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$ and $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular/normal to the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$ at $\left(x_{0}, y_{0}, z_{0}\right)$. Moreover, the value of F at $\left(x_{0}, y_{0}, z_{0}\right)$ increase most rapidly in the direction $\frac{(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)}{\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\|}$ and decreases most rapidly in the direction $-\frac{(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)}{\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\|}$, where $\|\cdot\|$ denotes the length of the vector.

Theorem 13.54

Let f be a function of two variables. If f has continuous first partial derivatives f_{x} and f_{y} in a neighborhood of $\left(x_{0}, y_{0}\right)$ and $(\nabla f)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then $(\nabla f)\left(x_{0}, y_{0}\right)$ is perpendicular/normal to the level curve $f(x, y)=f\left(x_{0}, y_{0}\right)$ at $\left(x_{0}, y_{0}\right)$. Moreover, the value of f at $\left(x_{0}, y_{0}\right)$ increase most rapidly in the direction $\frac{(\nabla f)\left(x_{0}, y_{0}\right)}{\left\|(\nabla f)\left(x_{0}, y_{0}\right)\right\|}$ and decreases most rapidly in the direction $-\frac{(\nabla f)\left(x_{0}, y_{0}\right)}{\left\|(\nabla f)\left(x_{0}, y_{0}\right)\right\|}$, where $\|\cdot\|$ denotes the length of the vector.

Example 13.56. A heat-seeking particle is located at the point $(2,-3)$ on a metal plate whose temperature at (x, y) is $T(x, y)=20-4 x^{2}-y^{2}$. Find the path of the particle as it continuously moves in the direction of maximum temperature increase.

Suppose the path of the particle is given by $(x(t), y(t))$. Then

$$
\left(x^{\prime}(t), y^{\prime}(t)\right) / /(\nabla T)(x(t), y(t))=(-8 x(t),-2 y(t)) .
$$

Therefore, there exists a function $k(t)$ such that $-8 x=k \frac{d x}{d t}$ and $-2 y=k \frac{d y}{d t}$; thus

$$
\frac{d}{d t}(\ln |x|-4 \ln |y|)=0
$$

Then $|x||y|^{-4}=C$. Since $(x(t), y(t))$ passes through $(2,-3)$, we find that $C=\frac{2}{81}$; thus (x, y) satisfies $x=\frac{2}{81} y^{4}$.
Example 13.57. Consider the normal line of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$.
Let $f(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$. Then the given ellipse is the level curve $f(x, y)=1=$ $f(a \cos \theta, b \sin \theta)$; thus Theorem 13.54 implies that the normal "direction" of this ellipse at point $(a \cos \theta, b \sin \theta)$ is given by

$$
\left(f_{x}(a \cos \theta, b \sin \theta), f_{y}(a \cos \theta, b \sin \theta)\right)=\left(\frac{2 \cos \theta}{a}, \frac{2 \sin \theta}{b}\right) .
$$

Therefore, the normal line is given by

$$
\left(-\frac{2 \sin \theta}{b}, \frac{2 \cos \theta}{a}\right) \cdot(x-a \cos \theta, y-b \sin \theta)=0 .
$$

13.8 Extrema of Functions of Several Variables

13.8.1 Relative extrema

Similar to the case of functions of one variable, we define the relative extrema as follows.

Definition 13.58: Relative Extrema

Let f be a function defined on a region R containing $\left(x_{0}, y_{0}\right)$.

1. The function f has a relative minimum at $\left(x_{0}, y_{0}\right)$ if $f(x, y) \geqslant f\left(x_{0}, y_{0}\right)$ for all (x, y) in an open disk containing $\left(x_{0}, y_{0}\right)$.
2. The function f has a relative maximum at $\left(x_{0}, y_{0}\right)$ if $f(x, y) \leqslant f\left(x_{0}, y_{0}\right)$ for all (x, y) in an open disk containing $\left(x_{0}, y_{0}\right)$.

Similar to the critical points for functions of one variable defined in Definition 3.4, we have the following

Definition 13.59: Critical Points

Let f be defined on an open region R containing $\left(x_{0}, y_{0}\right)$. The point $\left(x_{0}, y_{0}\right)$ is a critical point of f if one of the following is true.

1. $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$;
2. $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ does not exist.

Similar to Theorem 3.5, we have the following necessary condition for points where f attains its relative extrema.

Theorem 13.60

Let R be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be continuous. If f has a relative extremum at $\left(x_{0}, y_{0}\right)$ on an open region R, then $\left(x_{0}, y_{0}\right)$ is a critical point of f.

Example 13.61. Determine the relative extrema of the function

$$
f(x, y)=-x^{3}+4 x y-2 y^{2}+1
$$

First we find the critical points of f. Since f is differentiable, the critical points are those points at which the gradient of f is the zero vector. Since $f_{x}(x, y)=-3 x^{2}+4 y$ and $f_{y}(x, y)=4 x-4 y$, if (a, b) is a critical point of f, then $-3 a^{2}+4 b=4 a-4 b=0$. Therefore, $(0,0)$ and $\left(\frac{4}{3}, \frac{4}{3}\right)$ are the only critical points of f.

Note that $(0,0)$ is not a relative extremum of f since $f(x, 0)$ does not attain its extremum at $x=0$. Near $\left(\frac{4}{3}, \frac{4}{3}\right)$, we find that if $|h|,|k| \ll 1$,

$$
\begin{aligned}
f\left(\frac{4}{3}\right. & \left.+h, \frac{4}{3}+k\right)=-\left(h+\frac{4}{3}\right)^{3}+4\left(\frac{4}{3}+h\right)\left(\frac{4}{3}+k\right)-2\left(k+\frac{4}{3}\right)^{2}+1 \\
& =-h^{3}-4 h^{2}-\frac{16 h}{3}-\frac{64}{27}+4\left(\frac{16}{9}+\frac{4}{3} h+\frac{4}{3} k+h k\right)-2\left(k^{2}+\frac{8}{3} k+\frac{16}{9}\right)+1 \\
& =-h^{3}-4 h^{2}+4 h k-2 k^{2}+f\left(\frac{4}{3}, \frac{4}{3}\right) \\
& =f\left(\frac{4}{3}, \frac{4}{3}\right)-2(k-h)^{2}-h^{2}(2+h) \leqslant f\left(\frac{4}{3}, \frac{4}{3}\right) .
\end{aligned}
$$

Therefore, f has a relative maximum at $\left(\frac{4}{3}, \frac{4}{3}\right)$.

13.8.2 The second partials test

A critical point of a function of two variables do not always yield relative maxima or minima.

Definition 13.62

Let f be a function of two variables. A point $\left(x_{0}, y_{0}\right)$ is a saddle point of f if $\left(x_{0}, y_{0}\right)$ is a critical point of f but f does not attain its extrema at $\left(x_{0}, y_{0}\right)$.

Theorem 13.63

Suppose that a function f of two variables has continuous second partial derivatives on an open region containing a point $\left(x_{0}, y_{0}\right)$ for which $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0$. Let

$$
D=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}\left(x_{0}, y_{0}\right)^{2}=\left|\begin{array}{ll}
f_{x x}\left(x_{0}, y_{0}\right) & f_{x y}\left(x_{0}, y_{0}\right) \\
f_{y x}\left(x_{0}, y_{0}\right) & f_{y y}\left(x_{0}, y_{0}\right)
\end{array}\right|
$$

1. If $D>0$ and $f_{x x}\left(x_{0}, y_{0}\right)>0$, then f has a relative minimum at $\left(x_{0}, y_{0}\right)$.
2. If $D>0$ and $f_{x x}\left(x_{0}, y_{0}\right)<0$, then f has a relative maximum at $\left(x_{0}, y_{0}\right)$.
3. If $D<0$, then $\left(x_{0}, y_{0}\right)$ is a saddle point of f.
4. The test is inconclusive if $D=0$.

Example 13.64. Consider the relative extrema of the function given in Example 13.61. We have computed that $(0,0)$ and $\left(\frac{4}{3}, \frac{4}{3}\right)$ are the only critical points of f.

1. The point $(0,0)$: we compute the second partial derivatives and obtain that

$$
f_{x x}(0,0)=0, \quad f_{x y}(0,0)=4 \quad \text { and } \quad f_{y y}(0,0)=-4
$$

Therefore, $D=-16<0$ which implies that $(0,0)$ is a saddle point.
2. The point $\left(\frac{4}{3}, \frac{4}{3}\right)$: we compute the second partial derivatives and obtain that

$$
f_{x x}\left(\frac{4}{3}, \frac{4}{3}\right)=-8, \quad f_{x y}\left(\frac{4}{3}, \frac{4}{3}\right)=4 \quad \text { and } \quad f_{y y}\left(\frac{4}{3}, \frac{4}{3}\right)=-4
$$

Therefore, $D=16>0$. Since $f_{x x}\left(\frac{4}{3}, \frac{4}{3}\right)<0, f$ has a relative maximum at $\left(\frac{4}{3}, \frac{4}{3}\right)$.

