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Theorem 13.37
Let z = f(x, y) be a differentiable function (of x and y). If x = g(t) and y = h(t) are
differentiable functions (of t), then z(t) = f

(
x(t), y(t)

)
is differentiable and

z 1(t) = fx
(
x(t), y(t)

)
x 1(t) + fy

(
x(t), y(t)

)
y 1(t) .

Corollary 13.38

Let z = f(x, y) be a differentiable function (of x and y).

1. If x = u(s, t) and y = v(s, t) are such that Bu

Bs
and Bv

Bs
exist, then the first partial

derivative Bz

Bs
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zs(s, t) = fx
(
u(s, t), v(s, t)

)
us(s, t) + fy

(
u(s, t), v(s, t)

)
vs(s, t) .

2. If x = u(s, t) and y = v(s, t) are such that Bu

B t
and Bv

B t
exist, then the first partial

derivative Bz

B t
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zt(s, t) = fx
(
u(s, t), v(s, t)

)
ut(s, t) + fy

(
u(s, t), v(s, t)

)
vt(s, t) .

Theorem 13.41: Implicit Function Theorem (Special case)

Let F be a function of n variables (x1, x2, ¨ ¨ ¨ , xn) such that Fx1 , Fx2 , ¨ ¨ ¨ , Fxn

are continuous in a neighborhood of (a1, a2, ¨ ¨ ¨ , an. If F (a1, a2, ¨ ¨ ¨ , an) = 0 and
Fxn(a1, a2, ¨ ¨ ¨ , an) ‰ 0, then locally near (a1, a2, ¨ ¨ ¨ , an) there exists a unique
continuous function f satisfying F (x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1)) = 0 and an =

f(a1, ¨ ¨ ¨ , an´1). Moreover, for 1 ď j ď n ´ 1,

Bf

Bxj
(x1, ¨ ¨ ¨ , xn´1) = ´

Fxj
(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))

Fxn(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))
.

Example 13.42. Find dy

dx
if (x, y) satisfies y3 + y2 ´ 5y ´ x2 + 4 = 0.

Let F (x, y) = y3 + y2 ´ 5y ´ x2 + 4. Then Fx(x, y) = ´2x and Fy(x, y) = 3y2 + 2y ´ 5.
Therefore,

dy

dx
= ´

Fx(x, y)

Fy(x, y)
=

2x

3y2 + 2y ´ 5
.

Example 13.43. Find Bz

Bx
and Bz

By
if (x, y, z) satisfies 3x2z ´ x2y2 + 2z3 + 3yz ´ 5 = 0.



Let F (x, y, z) = 3x2z´x2y2+2z3+3yz´5. Then Fx(x, y, z) = 6xz´2xy2, Fy(x, y, z) =

´2x2y + 3z and Fz(x, y, z) = 3x2 + 6z2 + 3y. Therefore,

Bz

Bx
= ´

Fx(x, y, z)

Fz(x, y, z)
=

2xy2 ´ 6xz

3x2 + 6z2 + 3y

and
Bz

By
= ´

Fy(x, y, z)

Fz(x, y, z)
=

2x2y ´ 3z

3x2 + 6z2 + 3y
.

13.6 Directional Derivatives and Gradients
Let f be a function of two variables. From the discussion above we know that the existence
of fx and fy does not guarantee the differentiability of f . Since fx and fy are the rate of
change of the function f in two special directions (1, 0) and (0, 1), we can ask ourselves
whether f is differentiable if the rate of change of f exist in all direction.
Definition 13.44

Let f be a function of two variables x and y, and let u = cos θi+sin θj, where i = (1, 0)

and j = (0, 1), be a unit vector. The directional derivative of f in the direction of u
at (a, b), denoted by (Duf)(a, b), is the limit

(Duf)(a, b) = lim
hÑ0

f(a+ h cos θ, b+ h sin θ) ´ f(a, b)

h

provided this limit exists.

Example 13.45. Find the direction derivative of f(x, y) = x2 sin 2y at
(
1,

π

2

)
in the direc-

tion of v = 3i ´ 4j.
We first normalize the vector v and find that u =

3

5
i ´

4

5
j is in the same direction of v

and has unit length. Therefore, for h ‰ 0,

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,

π

2

)
h

=
(1 +

3h

5
)2 sin

(
π ´

8h

5

)
´ 12 sin π

h
=

(
1 +

3h

5

)2 sin 8h

5

h
;

thus by the fact that lim
hÑ0

sinh

h
= 1, we find that

lim
hÑ0

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,

π

2

)
h

= lim
hÑ0

(
1 +

3h

5

)2 sin 8h

5

h
=

8

5
.



When f is differentiable, the directional derivative can be computed using the chain rule,
and we have the following
Theorem 13.46

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0) P R, then for all unit vector v = cos θi+sin θj,

(Duf)(x0, y0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ = (Df)(x0, y0) ¨ u .

Proof. Let g(t) = f(x0 + t cos θ, y0 + t sin θ). Then by the chain rule for functions of two
variables,

(Duf)(x0, y0) = lim
hÑ0

g(h) ´ g(0)

h
= g 1(0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ .

Example 13.47. In this example we re-compute of the direction derivative in Example 13.45
using Theorem 13.46. Note that f(x, y) = x2 sin 2y is differentiable on R2 since fx(x, y) =

2x sin 2y and fy(x, y) = 2x2 cos 2y are continuous (so that Theorem 13.35 guarantees the
differentiability of f). Therefore, Theorem 13.46 implies that

(Duf)
(
1,

π

2

)
=

3

5
fx
(
1,

π

2

)
´

4

5
fy
(
1,

π

2

)
=

3

5
¨ 2 ¨ sinπ ´

4

5
¨ 2 ¨ 12 ¨ cos π =

8

5
.

Unfortunately, the existence of directional derivative of f in all directions does not imply
the differentiability of f .

Example 13.48. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

xy2

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and u = (cos θ, sin θ) P R2 be a unit vector. Then if cos θ ‰ 0
(
or equivalently, θ ‰

π

2
,
3π

2

)
,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= lim

hÑ0

h3 cos θ sin θ2

h(h2 cos θ2 + h4u4
2)

=
sin θ2

cos θ

while if cos θ = 0,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= 0 .



Therefore, the directional derivative of f at (0, 0) exist in all directions. However, f is not
continuous at (0, 0) since

lim
(x,y)Ñ(0,0)

y=0

f(x, y) = 0

and

lim
(x,y)Ñ(0,0)

x=y2

f(x, y) = lim
yÑ0

y2 ¨ y2

y4 + y4
=

1

2

which shows that the limit of f at (0, 0) does not exist.

Definition 13.49
Let z = f(x, y) be a function of x and y such that fx(a, b) and fy(a, b) exists. Then
the gradient of f at (a, b), denoted by (∇f)(a, b) or (gradf)(a, b), is the vector
(fx(a, b), fy(a, b)); that is,

(∇f)(a, b) =
(
fx(a, b), fy(a, b)

)
= fx(a, b)i + fy(a, b)j .

‚ Functions of three variables

Definition 13.50
Let f be a function of three variables. The directional derivative of f at (a, b, c) in
the direction u = (u1, u2, u3), where u2

1 + u2
2 + u2

3 = 1, is the limit

(Duf)(a, b, c) = lim
hÑ0

f(a+ hu1, b+ hu2, c+ hu3) ´ f(a, b, c)

h

provided that the limit exists. The gradient of f at (a, b, c) is (∇f)(a, b, c) =(
fx(a, b, c), fy(a, b, c), fz(a, b, c)

)
.

Theorem 13.51
Let f be a function of three variables. If f is differentiable at (a, b, c) and u is a unit
vector, then

(Duf)(a, b, c) = (∇f)(a, b, c) ¨ u .



13.7 Tangent Planes and Normal Lines
‚ The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and P0 = (x0, y0, z0) is a point on the plane. Given another two point P1 = (x1, y1, z1)

and P2 = (x2, y2, z2) on the surface such that P0, P1, P2 are not collinear, let TP1P2 denote
the plane determined by P0, P1 and P2. If the plane “approaches” a certain plane as P1, P2

approaches P0, the “limit” is called the tangent plane of S at P0.
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