微積分 MA1002－A 上課筆記（精簡版） 2019．05．02．

Ching－hsiao Arthur Cheng 鄭經敘

Theorem 13.37

Let $z=f(x, y)$ be a differentiable function (of x and y). If $x=g(t)$ and $y=h(t)$ are differentiable functions (of t), then $z(t)=f(x(t), y(t))$ is differentiable and

$$
z^{\prime}(t)=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t) .
$$

Corollary 13.38

Let $z=f(x, y)$ be a differentiable function (of x and y).

1. If $x=u(s, t)$ and $y=v(s, t)$ are such that $\frac{\partial u}{\partial s}$ and $\frac{\partial v}{\partial s}$ exist, then the first partial derivative $\frac{\partial z}{\partial s}$ of the function $z(s, t)=f(u(s, t), v(s, t))$ exists and

$$
z_{s}(s, t)=f_{x}(u(s, t), v(s, t)) u_{s}(s, t)+f_{y}(u(s, t), v(s, t)) v_{s}(s, t)
$$

2. If $x=u(s, t)$ and $y=v(s, t)$ are such that $\frac{\partial u}{\partial t}$ and $\frac{\partial v}{\partial t}$ exist, then the first partial derivative $\frac{\partial z}{\partial t}$ of the function $z(s, t)=f(u(s, t), v(s, t))$ exists and

$$
z_{t}(s, t)=f_{x}(u(s, t), v(s, t)) u_{t}(s, t)+f_{y}(u(s, t), v(s, t)) v_{t}(s, t) .
$$

Theorem 13.41: Implicit Function Theorem (Special case)

Let F be a function of n variables $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $F_{x_{1}}, F_{x_{2}}, \cdots, F_{x_{n}}$ are continuous in a neighborhood of $\left(a_{1}, a_{2}, \cdots, a_{n}\right.$. If $F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=0$ and $F_{x_{n}}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$, then locally near $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ there exists a unique continuous function f satisfying $F\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)=0$ and $a_{n}=$ $f\left(a_{1}, \cdots, a_{n-1}\right)$. Moreover, for $1 \leqslant j \leqslant n-1$,

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \cdots, x_{n-1}\right)=-\frac{F_{x_{j}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)}{F_{x_{n}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)} .
$$

Example 13.42. Find $\frac{d y}{d x}$ if (x, y) satisfies $y^{3}+y^{2}-5 y-x^{2}+4=0$.
Let $F(x, y)=y^{3}+y^{2}-5 y-x^{2}+4$. Then $F_{x}(x, y)=-2 x$ and $F_{y}(x, y)=3 y^{2}+2 y-5$.
Therefore,

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}=\frac{2 x}{3 y^{2}+2 y-5} .
$$

Example 13.43. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if (x, y, z) satisfies $3 x^{2} z-x^{2} y^{2}+2 z^{3}+3 y z-5=0$.

Let $F(x, y, z)=3 x^{2} z-x^{2} y^{2}+2 z^{3}+3 y z-5$. Then $F_{x}(x, y, z)=6 x z-2 x y^{2}, F_{y}(x, y, z)=$ $-2 x^{2} y+3 z$ and $F_{z}(x, y, z)=3 x^{2}+6 z^{2}+3 y$. Therefore,

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)}=\frac{2 x y^{2}-6 x z}{3 x^{2}+6 z^{2}+3 y}
$$

and

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)}=\frac{2 x^{2} y-3 z}{3 x^{2}+6 z^{2}+3 y} .
$$

13.6 Directional Derivatives and Gradients

Let f be a function of two variables. From the discussion above we know that the existence of f_{x} and f_{y} does not guarantee the differentiability of f. Since f_{x} and f_{y} are the rate of change of the function f in two special directions $(1,0)$ and $(0,1)$, we can ask ourselves whether f is differentiable if the rate of change of f exist in all direction.

Definition 13.44

Let f be a function of two variables x and y, and let $\boldsymbol{u}=\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j}$, where $\boldsymbol{i}=(1,0)$ and $\boldsymbol{j}=(0,1)$, be a unit vector. The directional derivative of f in the direction of \boldsymbol{u} at (a, b), denoted by $\left(D_{u} f\right)(a, b)$, is the limit

$$
\left(D_{u} f\right)(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h \cos \theta, b+h \sin \theta)-f(a, b)}{h}
$$

provided this limit exists.

Example 13.45. Find the direction derivative of $f(x, y)=x^{2} \sin 2 y$ at $\left(1, \frac{\pi}{2}\right)$ in the direction of $\boldsymbol{v}=3 \boldsymbol{i}-4 \boldsymbol{j}$.

We first normalize the vector \boldsymbol{v} and find that $\boldsymbol{u}=\frac{3}{5} \boldsymbol{i}-\frac{4}{5} \boldsymbol{j}$ is in the same direction of \boldsymbol{v} and has unit length. Therefore, for $h \neq 0$,

$$
\frac{f\left(1+\frac{3 h}{5}, \frac{\pi}{2}-\frac{4 h}{5}\right)-f\left(1, \frac{\pi}{2}\right)}{h}=\frac{\left(1+\frac{3 h}{5}\right)^{2} \sin \left(\pi-\frac{8 h}{5}\right)-1^{2} \sin \pi}{h}=\left(1+\frac{3 h}{5}\right)^{2} \frac{\sin \frac{8 h}{5}}{h}
$$

thus by the fact that $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$, we find that

$$
\lim _{h \rightarrow 0} \frac{f\left(1+\frac{3 h}{5}, \frac{\pi}{2}-\frac{4 h}{5}\right)-f\left(1, \frac{\pi}{2}\right)}{h}=\lim _{h \rightarrow 0}\left(1+\frac{3 h}{5}\right)^{2} \frac{\sin \frac{8 h}{5}}{h}=\frac{8}{5}
$$

When f is differentiable, the directional derivative can be computed using the chain rule, and we have the following

Theorem 13.46

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. If f is differentiable at $\left(x_{0}, y_{0}\right) \in R$, then for all unit vector $\boldsymbol{v}=\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j}$,

$$
\left(D_{u} f\right)\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \cos \theta+f_{y}\left(x_{0}, y_{0}\right) \sin \theta=(D f)\left(x_{0}, y_{0}\right) \cdot \boldsymbol{u}
$$

Proof. Let $g(t)=f\left(x_{0}+t \cos \theta, y_{0}+t \sin \theta\right)$. Then by the chain rule for functions of two variables,

$$
\left(D_{u} f\right)\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=g^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) \cos \theta+f_{y}\left(x_{0}, y_{0}\right) \sin \theta .
$$

Example 13.47. In this example we re-compute of the direction derivative in Example 13.45 using Theorem 13.46. Note that $f(x, y)=x^{2} \sin 2 y$ is differentiable on \mathbb{R}^{2} since $f_{x}(x, y)=$ $2 x \sin 2 y$ and $f_{y}(x, y)=2 x^{2} \cos 2 y$ are continuous (so that Theorem 13.35 guarantees the differentiability of f). Therefore, Theorem 13.46 implies that

$$
\left(D_{u} f\right)\left(1, \frac{\pi}{2}\right)=\frac{3}{5} f_{x}\left(1, \frac{\pi}{2}\right)-\frac{4}{5} f_{y}\left(1, \frac{\pi}{2}\right)=\frac{3}{5} \cdot 2 \cdot \sin \pi-\frac{4}{5} \cdot 2 \cdot 1^{2} \cdot \cos \pi=\frac{8}{5} .
$$

Unfortunately, the existence of directional derivative of f in all directions does not imply the differentiability of f.

Example 13.48. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

and $\boldsymbol{u}=(\cos \theta, \sin \theta) \in \mathbb{R}^{2}$ be a unit vector. Then if $\cos \theta \neq 0$ (or equivalently, $\theta \neq \frac{\pi}{2}, \frac{3 \pi}{2}$),

$$
\left(D_{u} f\right)(0,0)=\lim _{h \rightarrow 0} \frac{f(h \cos \theta, h \sin \theta)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{3} \cos \theta \sin \theta^{2}}{h\left(h^{2} \cos \theta^{2}+h^{4} \boldsymbol{u}_{2}^{4}\right)}=\frac{\sin \theta^{2}}{\cos \theta}
$$

while if $\cos \theta=0$,

$$
\left(D_{u} f\right)(0,0)=\lim _{h \rightarrow 0} \frac{f(h \cos \theta, h \sin \theta)-f(0,0)}{h}=0 .
$$

Therefore, the directional derivative of f at $(0,0)$ exist in all directions. However, f is not continuous at $(0,0)$ since

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} f(x, y)=0
$$

and

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=y^{2}}} f(x, y)=\lim _{y \rightarrow 0} \frac{y^{2} \cdot y^{2}}{y^{4}+y^{4}}=\frac{1}{2}
$$

which shows that the limit of f at $(0,0)$ does not exist.

Definition 13.49

Let $z=f(x, y)$ be a function of x and y such that $f_{x}(a, b)$ and $f_{y}(a, b)$ exists. Then the gradient of f at (a, b), denoted by $(\nabla f)(a, b)$ or $(\operatorname{grad} f)(a, b)$, is the vector $\left(f_{x}(a, b), f_{y}(a, b)\right)$; that is,

$$
(\nabla f)(a, b)=\left(f_{x}(a, b), f_{y}(a, b)\right)=f_{x}(a, b) \boldsymbol{i}+f_{y}(a, b) \boldsymbol{j}
$$

- Functions of three variables

Definition 13.50

Let f be a function of three variables. The directional derivative of f at (a, b, c) in the direction $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$, where $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1$, is the limit

$$
\left(D_{u} f\right)(a, b, c)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}, c+h u_{3}\right)-f(a, b, c)}{h}
$$

provided that the limit exists. The gradient of f at (a, b, c) is $(\nabla f)(a, b, c)=$ $\left(f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right)$.

Theorem 13.51

Let f be a function of three variables. If f is differentiable at (a, b, c) and \boldsymbol{u} is a unit vector, then

$$
\left(D_{u} f\right)(a, b, c)=(\nabla f)(a, b, c) \cdot \boldsymbol{u}
$$

13.7 Tangent Planes and Normal Lines

- The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that \mathcal{S} is a "surface" (which we have not define yet, but please use the common sense to think about it), and $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane. Given another two point $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ on the surface such that P_{0}, P_{1}, P_{2} are not collinear, let $T_{P_{1} P_{2}}$ denote the plane determined by P_{0}, P_{1} and P_{2}. If the plane "approaches" a certain plane as P_{1}, P_{2} approaches P_{0}, the "limit" is called the tangent plane of \mathcal{S} at P_{0}.

