微積分 MA1002－A 上課筆記（精簡版） 2019．04．23．

Definition 13.23

Let f be a function of two variable. The first partial derivative of f with respect to x at $\left(x_{0}, y_{0}\right)$, denoted by $f_{x}\left(x_{0}, y_{0}\right)$, is defined by

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}
$$

provided the limit exists. The first partial derivative of f with respect to y at $\left(x_{0}, y_{0}\right)$, denoted by $f_{y}\left(x_{0}, y_{0}\right)$, is defined by

$$
f_{y}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y}
$$

provided the limit exists. When f_{x} and f_{y} exist for all $\left(x_{0}, y_{0}\right)$ (in a certain open region), f_{x} and f_{y} are simply called the first partial derivative of f with respect to x and y, respectively.

- Notation: For $z=f(x, y)$, the partial derivative f_{x} and f_{y}, can also be denoted by

$$
\begin{aligned}
& \frac{\partial}{\partial x} f(x, y)=f_{x}(x, y)=z_{x}=\frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}(x, y) \\
& \frac{\partial}{\partial y} f(x, y)=f_{y}(x, y)=z_{y}=\frac{\partial z}{\partial y}=\frac{\partial f}{\partial y}(x, y)
\end{aligned}
$$

When evaluating the partial derivative at $\left(x_{0}, y_{0}\right)$, we write

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\left.\frac{\partial}{\partial x}\right|_{(x, y)=\left(x_{0}, y_{0}\right)} f(x, y), \\
f_{y}\left(x_{0}, y_{0}\right) & =\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\left.\frac{\partial}{\partial y}\right|_{(x, y)=\left(x_{0}, y_{0}\right)} f(x, y) .
\end{aligned}
$$

Example 13.25. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Then

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

and

$$
f_{y}(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

- Higher-order partial derivatives:

We can also take higher-order partial derivatives of functions of several variables. For example, for $z=f(x, y)$, we have

$$
\begin{aligned}
& f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
& f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \\
& f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
& f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}
\end{aligned}
$$

The third and fourth cases are called mixed partial derivatives.

Example 13.26. In this example we compute the second partial derivatives of the function given in 13.25 . We have obtained that

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0), \\
0 & \text { if }(x, y)=(0,0),
\end{array}\right.
$$

and

$$
f_{y}(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

If $(x, y) \neq(0,0)$, the quotient rule, the product rule and the chain rule (for functions of one variable) together show that

$$
\begin{aligned}
f_{x x}(x, y) & =\frac{\left(x^{2}+y^{2}\right)^{2} \frac{\partial}{\partial x}\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right)-\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right) \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{4}} \\
& =\frac{\left(x^{2}+y^{2}\right)^{2}\left(4 x^{3} y+8 x y^{3}\right)-\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right) \cdot\left[2\left(x^{2}+y^{2}\right) \cdot(2 x)\right]}{\left(x^{2}+y^{2}\right)^{3}} \\
& =\frac{\left(x^{2}+y^{2}\right)\left(4 x^{3} y+8 x y^{3}\right)-4 x\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right)}{\left(x^{2}+y^{2}\right)^{3}}=\frac{-4 x^{3} y^{3}+12 x y^{5}}{\left(x^{2}+y^{2}\right)^{3}} .
\end{aligned}
$$

Similarly, if $(x, y) \neq(0,0)$,

$$
\begin{aligned}
f_{y y}(x, y) & =\frac{\left(x^{2}+y^{2}\right)^{2}\left(-8 x^{3} y-4 x y^{3}\right)-\left(x^{5}-4 x^{3} y^{2}-x y^{4}\right) \cdot\left[2\left(x^{2}+y^{2}\right) \cdot(2 y)\right]}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-12 x^{5} y+4 x^{3} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}, \\
f_{x y}(x, y) & =\frac{\left(x^{2}+y^{2}\right)\left(x^{4}+12 x^{2} y^{2}-5 y^{4}\right)-4 y\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
& =\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}} \\
f_{y x}(x, y) & =\frac{\left(x^{2}+y^{2}\right)\left(5 x^{4}-12 x^{2} y^{2}-y^{4}\right)-4 x\left(x^{5}-4 x^{3} y^{2}-x y^{4}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
& =\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}} .
\end{aligned}
$$

We note that when $(x, y) \neq(0,0), f_{x y}(x, y)=f_{y x}(x, y)$.
Since $f_{x}(x, 0)=f_{y}(0, y)=0$ for all $x \neq 0$, we find that

$$
f_{x x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{f_{x}(\Delta x, 0)-f_{x}(0,0)}{\Delta x}=0
$$

and

$$
f_{y y}(0,0)=\lim _{\Delta y \rightarrow 0} \frac{f_{y}(0, \Delta y)-f_{y}(0,0)}{\Delta y}=0 .
$$

Finally, we compute $f_{x y}(0,0)$ and $f_{y x}(0,0)$. By definition,

$$
f_{x y}(0,0)=\lim _{\Delta y \rightarrow 0} \frac{f_{x}(0, \Delta y)-f_{x}(0,0)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{\frac{-\Delta y^{5}}{\Delta y^{4}}}{\Delta y}=-1
$$

and

$$
f_{y x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{f_{y}(\Delta x, 0)-f_{y}(0,0)}{\Delta x}=\lim _{\Delta y \rightarrow 0} \frac{\frac{\Delta x^{5}}{\Delta x^{4}}}{\Delta x}=1
$$

We note that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
Remark 13.27. In the previous example, the mixed derivative $f_{y x}(x, y)$ can be computed using a different method for $(x, y) \neq(0,0)$ (as long as $f_{x y}$ is known). We first note that if $(x, y) \neq(0,0)$, then $f(x, y)=-f(y, x)$; thus

$$
\begin{aligned}
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}=\lim _{h \rightarrow 0} \frac{-f(y+h, x)+f(y, x)}{h} \\
& =-\lim _{h \rightarrow 0} \frac{f(y+h, x)-f(y, x)}{h}=-f_{x}(y, x) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f_{y x}(x, y) & =\lim _{h \rightarrow 0} \frac{f_{y}(x+h, y)-f_{y}(x, y)}{h}=\lim _{h \rightarrow 0} \frac{-f_{x}(y, x+h)+f_{x}(y, x)}{h} \\
& =-\lim _{h \rightarrow 0} \frac{f_{x}(y, x+h)-f_{x}(y, x)}{h}=-f_{x y}(y, x) .
\end{aligned}
$$

Since $f_{x y}(x, y)=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}$, we have

$$
f_{y x}(x, y)=-f_{x y}(y, x)=-\frac{y^{6}+9 y^{4} x^{2}-9 y^{2} x^{4}-x^{6}}{\left(y^{2}+x^{2}\right)^{3}}=f_{x y}(x, y) \quad \text { if } \quad(x, y) \neq(0,0)
$$

In the previous example, we see that the mixed derivatives $f_{x y}$ and $f_{y x}$ are identical in one case but are not identical in another cases. In general, we have the following

Theorem 13.28

If f is a function of x and y such that $f_{x y}$ and $f_{y x}$ are continuous on an open disk D, then

$$
f_{x y}(x, y)=f_{y x}(x, y) \quad \forall(x, y) \in D
$$

The theorem above also applies to functions of three or more variables as long as similar condition holds. For example, if $w=f(x, y, z)$ and $f_{x y}, f_{y x}$ are continuous in an "open disk" D on the plane $z=z_{0}$, then

$$
f_{x y}\left(x, y, z_{0}\right)=f_{y x}\left(x, y, z_{0}\right) \quad \forall(x, y) \in D
$$

Example 13.29. Let $f(x, y, z)=y e^{x}+x \ln z$. Then $f_{x}(x, y, z)=y e^{x}+\ln z, f_{y}(x, y, z)=e^{x}$ and $f_{z}(x, y, z)=\frac{x}{z}$. Therefore,

$$
\begin{aligned}
& f_{x y}(x, y, z)=e^{x}=f_{y x}(x, y, z) \\
& f_{x z}(x, y, z)=\frac{1}{z}=f_{z x}(x, y, z) \quad \forall z \neq 0 \\
& f_{y z}(x, y, z)=0=f_{z y}(x, y, z)
\end{aligned}
$$

13.4 Differentiability of Functions of Several Variables

Recall that a function $f:(a, b) \rightarrow \mathbb{R}$ is said to be differentiable at a point $c \in(a, b)$ if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

exists. The differentiability of f at c can be rephrased as follows:

A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be differentiable at $c \in(a, b)$ if there exists $m \in \mathbb{R}$ such that

$$
\lim _{\Delta x \rightarrow 0}\left|\frac{f(c+\Delta x)-f(c)-m \Delta x}{\Delta x}\right|=0 .
$$

or equivalently,

$$
\lim _{x \rightarrow c}\left|\frac{f(x)-f(c)-m(x-c)}{x-c}\right|=0 .
$$

This equivalent way of defining differentiability of functions of one variable motivate the following

Definition 13.30

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. For $\left(x_{0}, y_{0}\right) \in R, f$ is said to be differentiable at $\left(x_{0}, y_{0}\right)$ if there exist real numbers A, B such that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left|f(x, y)-f\left(x_{0}, y_{0}\right)-A\left(x-x_{0}\right)-B\left(y-y_{0}\right)\right|}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0 .
$$

Suppose that f is differentiable at $\left(x_{0}, y_{0}\right)$. When (x, y) approaches $\left(x_{0}, y_{0}\right)$ along the line $y=y_{0}$, we find that

$$
\begin{aligned}
0 & =\lim _{\substack{(x, y) \rightarrow\left(x_{0}, y_{0}\right) \\
y=y_{0}}} \frac{\left|f(x, y)-f\left(x_{0}, y_{0}\right)-A\left(x-x_{0}\right)-B\left(y-y_{0}\right)\right|}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\left|f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)-A\left(x-x_{0}\right)\right|}{\left|x-x_{0}\right|}=\lim _{x \rightarrow x_{0}}\left|\frac{f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{x-x_{0}}-A\right|
\end{aligned}
$$

which implies that the number A must be $f_{x}\left(x_{0}, y_{0}\right)$. Similarly, $B=f_{y}\left(x_{0}, y_{0}\right)$.

