微積分 MA1002－A 上課筆記（精簡版） 2019．04．18．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 13.10

Let $\delta>0$ be given. The δ-neighborhood about a point $\left(x_{0}, y_{0}\right)$ in the plane is the open disk centered at $\left(x_{0}, y_{0}\right)$ with radius δ given by

$$
D\left(\left(x_{0}, y_{0}\right), \delta\right) \equiv\left\{(x, y) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta\right\}
$$

Definition 13.11

Let R be a collection of points in the plane. A point $\left(x_{0}, y_{0}\right)$ (in R) is called an interior point of R if there exists $\delta>0$ such that

$$
D\left(\left(x_{0}, y_{0}\right), \delta\right) \subseteq R
$$

If every point in R is an interior point of R, then R is called an open region. A point $\left(x_{0}, y_{0}\right)$ is called a boundary point of R if every δ-neighborhood about (x_{0}, y_{0}) containing points inside R and point outsides R. In other words, $\left(x_{0}, y_{0}\right)$ is a boundary point of R if

$$
\forall \delta>0, D\left(\left(x_{0}, y_{0}\right), \delta\right) \cap R \neq \varnothing \text { and } D\left(\left(x_{0}, y_{0}\right), \delta\right) \cap R^{\complement} \neq \varnothing
$$

If R contains all its boundary points, then R is called a closed region.

Definition 13.13

Let f be a real-valued function of two variables defined, except possibly at $\left(x_{0}, y_{0}\right)$, on an open disk centered at $\left(x_{0}, y_{0}\right)$, and let L be a real number. Then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta .
$$

13.2.1 Continuity of functions of two variables

Definition 13.19

A function f of two variables is continuous at a point $\left(x_{0}, y_{0}\right)$ in an open region R if $f\left(x_{0}, y_{0}\right)$ is defined and is equal to the limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$; that is,

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right) .
$$

In other words, f is continuous at $\left(x_{0}, y_{0}\right)$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right|<\varepsilon \quad \text { whenever } \quad \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta .
$$

The function f is continuous in the open region R if it is continuous at every point in R.

Remark 13.20. 1. Unlike the case that f does not have to be defined at $\left(x_{0}, y_{0}\right)$ in order to consider the limit of f at $\left(x_{0}, y_{0}\right)$, for f to be continuous at a point $\left(x_{0}, y_{0}\right) f$ has to be defined at $\left(x_{0}, y_{0}\right)$.
2. A point $\left(x_{0}, y_{0}\right)$ is called a discontinuity of f if f is not continuous at $\left(x_{0}, y_{0}\right)$. $\left(x_{0}, y_{0}\right)$ is called a removable discontinuity of f if $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists.

Theorem 13.21

Let f and g be functions of two variables such that f and g are continuous at $\left(x_{0}, y_{0}\right)$.

1. $f \pm g$ is continuous at $\left(x_{0}, y_{0}\right)$.
2. $f g$ is continuous at $\left(x_{0}, y_{0}\right)$.
3. $\frac{f}{g}$ is continuous at $\left(x_{0}, y_{0}\right)$ if $g\left(x_{0}, y_{0}\right) \neq 0$.

Theorem 13.22

If h is continuous at $\left(x_{0}, y_{0}\right)$ and g is continuous at $h\left(x_{0}, y_{0}\right)$, then the composite function $g \circ h$ is continuous at $\left(x_{0}, y_{0}\right)$; that is,

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(g \circ h)(x, y)=g\left(h\left(x_{0}, y_{0}\right)\right) .
$$

13.3 Partial Derivatives

Definition 13.23

Let f be a function of two variable. The first partial derivative of f with respect to x at $\left(x_{0}, y_{0}\right)$, denoted by $f_{x}\left(x_{0}, y_{0}\right)$, is defined by

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}
$$

provided the limit exists. The first partial derivative of f with respect to y at $\left(x_{0}, y_{0}\right)$, denoted by $f_{y}\left(x_{0}, y_{0}\right)$, is defined by

$$
f_{y}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y}
$$

provided the limit exists. When f_{x} and f_{y} exist for all $\left(x_{0}, y_{0}\right)$ (in a certain open region), f_{x} and f_{y} are simply called the first partial derivative of f with respect to x and y, respectively.

- Notation: For $z=f(x, y)$, the partial derivative f_{x} and f_{y}, can also be denoted by

$$
\frac{\partial}{\partial x} f(x, y)=f_{x}(x, y)=z_{x}=\frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}(x, y)
$$

and

$$
\frac{\partial}{\partial y} f(x, y)=f_{y}(x, y)=z_{y}=\frac{\partial z}{\partial y}=\frac{\partial f}{\partial y}(x, y) .
$$

When evaluating the partial derivative at $\left(x_{0}, y_{0}\right)$, we write

$$
f_{x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\left.\frac{\partial}{\partial x}\right|_{(x, y)=\left(x_{0}, y_{0}\right)} f(x, y)
$$

and

$$
f_{y}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\left.\frac{\partial}{\partial y}\right|_{(x, y)=\left(x_{0}, y_{0}\right)} f(x, y) .
$$

Example 13.24. For $f(x, y)=x e^{x^{2} y}$, find f_{x} and f_{y}.
Note that f_{x} is obtained by treating y as a constant and differentiate f with respect to x. Therefore, the product rule implies tat

$$
f_{x}(x, y)=\left(\frac{\partial}{\partial x} x\right) e^{x^{2} y}+x\left(\frac{\partial}{\partial x} e^{x^{2} y}\right)=e^{x^{2} y}+x \cdot e^{x^{2} y} \cdot 2 x y=\left(1+2 x^{2} y\right) e^{x^{2} y}
$$

Similarly,

$$
f_{y}(x, y)=\left(\frac{\partial}{\partial y} x\right) e^{x^{2} y}+x\left(\frac{\partial}{\partial y} e^{x^{2} y}\right)=x^{3} e^{x^{2} y}
$$

Example 13.25. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Then if $(x, y) \neq(0,0)$, we can apply the quotient rule (and product rule) to compute the partial derivatives and obtain that

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x}\left[x y\left(x^{2}-y^{2}\right)\right]-x y\left(x^{2}-y^{2}\right) \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{\left(x^{2}+y^{2}\right)\left[y\left(x^{2}-y^{2}\right)+2 x^{2} y\right]-x y\left(x^{2}-y^{2}\right) \cdot(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

If $(x, y)=(0,0)$, we cannot use the quotient rule to compute the derivative since the denominate is 0 (so that 4 of Theorem 13.15 cannot be applied), and we have to compute $f_{x}(0,0)$ using the definition. By definition,

$$
f_{x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=0
$$

Therefore,

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Similarly,

$$
f_{y}(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

- Geometric meaning of partial derivatives: Let $f(x, y)$ be a function of two variable, $\left(x_{0}, y_{0}\right)$ be given, and $z_{0}=f\left(x_{0}, y_{0}\right)$. Consider the graph of the function $z=f\left(x, y_{0}\right)$ (of one variable) on the $x z$-plane. If the graph $z=f\left(x, y_{0}\right)$ has a tangent line at $\left(x_{0}, z_{0}\right)$, then the slope of the tangent line at $\left(x_{0}, z_{0}\right)$ is given by

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

and this limit, if exists, is $f_{x}\left(x_{0}, y_{0}\right)$. This is called the slopes in the x-direction of the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$. Similarly, the slope of the tangent line of the graph of $z=f\left(x_{0}, y\right)$ at $\left(y_{0}, z_{0}\right)$ is $f_{y}\left(x_{0}, y_{0}\right)$, and is called the slopes in the y-direction of the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$.

- Partial derivatives of functions of three or more variables:

The concept of partial derivatives can be extended to functions of three or more variables. For example, if $w=f(x, y, z)$, then

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=f_{x}(x, y, z)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x} \\
& \frac{\partial w}{\partial y}=f_{y}(x, y, z)=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y, z)-f(x, y, z)}{\Delta y} \\
& \frac{\partial w}{\partial z}=f_{z}(x, y, z)=\lim _{\Delta z \rightarrow 0} \frac{f(x, y, z+\Delta z)-f(x, y, z)}{\Delta z}
\end{aligned}
$$

In general, if $w=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, then there are n first partial derivatives denoted by

$$
\frac{\partial w}{\partial x_{k}}=f_{x_{k}}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, n
$$

- Higher-order partial derivatives:

We can also take higher-order partial derivatives of functions of several variables. For example, for $z=f(x, y)$,

1. Differentiate twice with respect to x :

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}
$$

2. Differentiate twice with respect to y :

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
$$

3. Differentiate first with respect to x and then with respect to y :

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y}
$$

4. Differentiate first with respect to y and then with respect to x :

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}
$$

The third and fourth cases are called mixed partial derivatives.

