微積分 MA1002－A 上課筆記（精簡版） 2019．04．16．

Definition 13.6: Level Curves

Let D be a set of ordered pairs of real numbers, and $f: D \rightarrow \mathbb{R}$ be a function of two variables. A level curve (or contour curve) of f is a collection of points (x, y) in D along which the value of $f(x, y)$ is constant.

Definition 13.7: Level Surfaces

Let D be a set of ordered pairs of real numbers, and $f: D \rightarrow \mathbb{R}$ be a function of three variables. A level surface of f is a collection of points (x, y, z) in D along which the value of $f(x, y, z)$ is constant.

Example 13.8. Consider the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the level surface

$$
\{(x, y, z) \mid f(x, y, z)=1\}
$$

is the unit sphere centered at the origin.
Example 13.9. The graph of $f(x, y)=y^{2}-x^{2}$ is called a hyperbolic paraboloid. A level curve of a hyperbolic paraboloid is a hyperbola (or degenerated hyperbola), and each plane perpendicular to the $x y$-plane intersects the graph of $z=f(x, y)$ along a parabola (or degenerated parabola).

13.2 Limits and Continuity

Definition 13.10

Let $\delta>0$ be given. The δ-neighborhood about a point $\left(x_{0}, y_{0}\right)$ in the plane is the open disk centered at $\left(x_{0}, y_{0}\right)$ with radius δ given by

$$
D\left(\left(x_{0}, y_{0}\right), \delta\right) \equiv\left\{(x, y) \mid \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta\right\} .
$$

Definition 13.11

Let R be a collection of points in the plane. A point $\left(x_{0}, y_{0}\right)$ (in R) is called an interior point of R if there exists $\delta>0$ such that

$$
D\left(\left(x_{0}, y_{0}\right), \delta\right) \subseteq R
$$

If every point in R is an interior point of R, then R is called an open region. A point $\left(x_{0}, y_{0}\right)$ is called a boundary point of R if every δ-neighborhood about $\left(x_{0}, y_{0}\right)$ containing points inside R and point outsides R. In other words, $\left(x_{0}, y_{0}\right)$ is a boundary point of R if

$$
\forall \delta>0, D\left(\left(x_{0}, y_{0}\right), \delta\right) \cap R \neq \varnothing \text { and } D\left(\left(x_{0}, y_{0}\right), \delta\right) \cap R^{\complement} \neq \varnothing .
$$

If R contains all its boundary points, then R is called a closed region.

Remark 13.12. For $x \in \mathbb{R}$ and $\delta>0$, let $D(x, \delta)$ denote the interval $(x-\delta, x+\delta)$ (and called the interval centered at x with radius $r)$. Then for each $x \in(a, b)$, there exists $\delta>0$ such that $D(x, r) \subseteq(a, b)$; thus (a, b) is called an open interval. The end-points a, b of the interval are boundary points of the interval, and $[a, b]$ is a closed interval since it contains all its boundary points.

Definition 13.13

Let f be a real-valued function of two variables defined, except possibly at $\left(x_{0}, y_{0}\right)$, on an open disk centered at $\left(x_{0}, y_{0}\right)$, and let L be a real number. Then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta .
$$

Remark 13.14. If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L_{1}$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L_{2}$, then $L_{1}=L_{2}$. In other words, the limit is unique when it exists.

The proof of the following is almost identical to the one of Theorem 1.13.

Theorem 13.15: Properties of Limits of Functions of Two Variables

Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Suppose that the limits

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=K .
$$

both exist, and c is a constant.

1. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} c=c, \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} x=x_{0}$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} y=y_{0}$.
2. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f(x, y) \pm g(x, y)]=L+K$;
3. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f(x, y) g(x, y)]=L K$;
4. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y}{g(x, y)}=\frac{L}{K}$ if $K \neq 0$.

Theorem 13.16: Squeeze

Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Suppose that f, g, h are functions of two variables such that

$$
g(x, y) \leqslant f(x, y) \leqslant h(x, y)
$$

except possible at $\left(x_{0}, y_{0}\right)$, and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} h(x, y)=L$, then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L .
$$

Example 13.17. For $(a, b) \in \mathbb{R}^{2}$, find the limit $\lim _{(x, y) \rightarrow(a, b)} \frac{5 x^{2} y}{x^{2}+y^{2}}$.
First we note that 1-3 of Theorem 13.15 implies that the function $f(x, y)=5 x^{2} y$ and $g(x, y)=x^{2}+y^{2}$ has the property that

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=5 a^{2} b \quad \text { and } \quad \lim _{(x, y) \rightarrow(a, b)} g(x, y)=a^{2}+b^{2} .
$$

Therefore, Theorem 13.15 again shows the following:

1. If $(a, b) \neq(0,0)$, then 4 of Theorem 13.15 implies that

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{5 x^{2} y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{5 a^{2} b}{a^{2}+b^{2}}
$$

2. If $(a, b)=(0,0)$, then we cannot apply 4 of Theorem 13.15 to compute the limit. Nevertheless, since

$$
\left|\frac{5 x^{2} y}{x^{2}+y^{2}}-0\right| \leqslant 5|y| \quad \forall(x, y) \neq(0,0)
$$

the Squeeze Theorem implies that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y}{x^{2}+y^{2}}=0
$$

Example 13.18. Show that the limit $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$ does not exist.
Let $f(x, y)=\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$. By the definition of limits, if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$ exists, then there exists $\delta>0$ such that

$$
|f(x, y)-L|<\frac{1}{2} \quad \text { whenever } \quad 0<\sqrt{x^{2}+y^{2}}<\delta
$$

which implies that

$$
\begin{equation*}
L-\frac{1}{2}<f(x, y)<L+\frac{1}{2} \quad \text { whenever } \quad 0<\sqrt{x^{2}+y^{2}}<\delta . \tag{13.2.1}
\end{equation*}
$$

However, when (x, y) satisfies $0<\sqrt{x^{2}+y^{2}}<\delta$ and $x=y$, then $f(x, y)=0$ while on the other hand, when (x, y) satisfies $0<\sqrt{x^{2}+y^{2}}<\delta$ and $y=0$, then $f(x, y)=1$. This is a contradiction because of (13.2.1).

- Another way of looking at this limit: When (x, y) approaches $(0,0)$ along the line $x=y$ (we use the notation $\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=y}}$ to denote this limit process), we find that

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=y}} f(x, y)=0
$$

and when (x, y) approaches $(0,0)$ along the x-axis (we use the notation $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}}$ to denote this limit process), we find that

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} f(x, y)=1
$$

The uniqueness of the limit implies that the limit of f at $(0,0)$ does not exist.

