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‚ Lagrange form of the remainder

Theorem 9.76: Taylor’s Theorem

Let f : (a, b) Ñ R be (n + 1)-times differentiable, and c P (a, b). Then for each
x P (a, b), there exists ξ between x and c such that

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n +Rn(x) , (9.7.1)

where the Lagrange form of the remainder Rn(x) is given by

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .

Example 9.78. In this example we show that

ln(1 + x) =
8
ÿ

k=1

(´1)k´1xk

k
= x ´

x2

2
+

x3

3
+ ¨ ¨ ¨ +

(´1)n´1xn

n
+ ¨ ¨ ¨ @x P (0, 1] . (9.7.2)

Note that Taylor’s Theorem implies that for all x ą ´1, there exists ξ between 0 and x such

that the remainder associated with Pn(x) =
n
ř

k=1

(´1)k´1xk

k
is given by

Rn(x) =
(´1)n

n+ 1
(1 + ξ)´n´1xn+1 .

Note that since ξ is between 0 and x, we always have

0 ă
x

1 + ξ
ă 1 @x P (0, 1] ;

thus |Rn(x)| ď
1

n+ 1
for all x P (0, 1] and (9.7.2) is concluded because

lim
nÑ8

ˇ

ˇRn(x)
ˇ

ˇ = 0 @x P (0, 1] .

Example 9.79. In this example we compute ln 2. Note that using (9.7.2) we find that

ln 2 = 1 ´
1

2
+

1

3
´

1

4
+ ¨ ¨ ¨ +

(´1)n´1

n
+Rn(1) ,

where
Rn(1) =

1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
1n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)



for some ξ between 0 and 1. Since ξ could be very closed to 0, in this case the best we can
estimate Rn(1) is

ˇ

ˇRn(1)
ˇ

ˇ ď
1

n+ 1
.

Therefore, to evaluate ln 2 accurate to eight decimal point, it is required that n = 108.
Let c =

e

2
« 1.359140914. Then

ln c = ln
(
1 + (c ´ 1)

)
= (c ´ 1) ´

(c ´ 1)2

2
+ ¨ ¨ ¨ +

(´1)n´1

n
(c ´ 1)n +Rn(c ´ 1) ,

where Rn(c ´ 1) is given by

Rn(c ´ 1) =
1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
(c ´ 1)n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)(c ´ 1)n+1

for some ξ between 0 and c ´ 1. Note that
ˇ

ˇRn(c)
ˇ

ˇ ď
(c ´ 1)n+1

n+ 1
;

thus the value

(c ´ 1) ´
(c ´ 1)2

2
+

(c ´ 1)3

3
´

(c ´ 1)4

4
+ ¨ ¨ ¨ +

1

17
(c ´ 1)17

to approximate ln c is accurate to eight decimal points
(
since 1

18
0.418 ă 10´8

)
. On the other

hand, we have ln 2 = 1 ´ ln c, so the value

1 ´ (c ´ 1) +
(c ´ 1)2

2
´

(c ´ 1)3

3
+

(c ´ 1)4

4
+ ¨ ¨ ¨ ´

1

17
(c ´ 1)17

to approximate ln 2 is also accurate to eight decimal points.

9.8 Power Series
Recall that for all x P R, we have shown that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ ,

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+

x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+

x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .



The identities above show that the functions y = exp(x), y = cosx, y = sinx an be defined
using series whose terms are multiples of monomials of x. These kind of series are called
power series. To be more precise, we have the following
Definition 9.80: Power Series

Let c be a real number. A power series (of one variable x) centered at c is an infinite
series of the form

8
ÿ

k=0

ak(x ´ c)k = a0 + a1(x ´ c)1 + a2(x ´ c)2 + ¨ ¨ ¨ ,

where ak is independent of x and represents the coefficient of the k-th term.

Theorem 9.81

Let taku8
k=0 be a sequence of real numbers. If

8
ř

k=0

akd
k converges, then

8
ř

k=0

ak(x ´ c)k

converges absolutely for all x P (c ´ |d|, c+ |d|).

Proof. First we note that since
8
ř

k=0

akd
k converges, lim

nÑ8
and

n = 0; thus the boundedness of
convergent sequence implies that there exists M ą 0 such that

|and
n| ď M @n P N .

Suppose that |x ´ c| ă |d|. Then there exists ε ą 0 such that |x ´ c| ă |d| ´ ε. Then

|an||x ´ c|n = |an||d|n
|x ´ c|n

(|d| ´ ε)n

( |d| ´ ε

|d|

)n

ď M
( |d| ´ ε

|d|

)n

.

Therefore, by the convergence of geometric series with ratio between ´1 and 1, the direct
comparison test implies that the series

8
ř

n=0

an(x ´ c)n converges absolutely. ˝

Corollary 9.82
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists R ą 0 such that the series converges absolutely for |x´ c| ă R and
diverges for |x ´ c| ą R.

3. The series converges absolutely for all x.



Definition 9.83: Radius of Convergence and Interval of Convergence
Let a power series centered at c be given. If the power series converges only at c,
we say that the radius of convergence of the power series is 0. If the power series
converges for |x ´ c| ă R but diverges for |x ´ c| ą R, we say that the radius of
convergence of the power series is R. If the power series converges for all x, we say
that the radius of converges of the power series is 8. The set of all values of x for
which the power series converges is called the interval of convergence of the power
series.

Remark 9.84. The radius of convergence of a power series centered at c is the greatest
lower bound of the set

␣

r ą 0
ˇ

ˇ there exists x P (c ´ r, c+ r) such that the power series diverges
(

.

Example 9.85. Consider the power series
8
ř

k=0

k!xk. Note that for each x ‰ 0,

lim
nÑ8

ˇ

ˇ(n+ 1)!xn+1
ˇ

ˇ

ˇ

ˇn!xn
ˇ

ˇ

= lim
nÑ8

(n+ 1)|x| = 8 ;

thus the ratio test implies that the power series
8
ř

k=0

k!xk diverges for all x ‰ 0. Therefore,

the radius of convergence of
8
ř

k=0

k!xk is 0, and the interval of convergence of
8
ř

k=0

k!xk is t0u.

Example 9.86. Consider the power series
8
ř

k=0

3(x ´ 2)k. Note that for each x P R,

lim
nÑ8

n
a

3|x ´ 2|n = lim
nÑ8

3
1
n |x ´ 2| = |x ´ 2| ;

thus the ratio test implies that the power series
8
ř

k=0

3(x´2)k converges absolutely if |x´2| ă 1

and diverges if |x ´ 2| ą 1. Therefore, the radius of convergence is 1.
To see the interval of convergence, we still need to determine if the power series converges

at end-point 1 or 3. However, the power series clearly does not converge at 1 and 3; thus
the interval of convergence is (1, 3).

Example 9.87. Consider the power series
8
ř

k=1

xk

k2
. Note that for each x P R,

lim
kÑ8

ˇ

ˇ

ˇ

xk+1

(k + 1)2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xk

k2

ˇ

ˇ

ˇ

= lim
kÑ8

k2|x|

(k + 1)2
= |x| ;



thus the ratio test implies that the power series
8
ř

k=0

xk

k2
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.

To see the interval of convergence, we note that
8
ř

k=1

1

k2
converges since it is a p-series

with p = 2, and
8
ř

k=1

(´1)k

k2
converges since it converges absolutely (or simply because it is

an alternating series). Therefore, the interval of convergence of the power series is [´1, 1].


	Power Series

