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Theorem 5.41: Cauchy Mean Value Theorem

Let F,G : [a, b] Ñ R be continuous on [a, b] and differentiable on (a, b). If G 1(x) ‰ 0

for all x P (a, b), then there exists c P (a, b) such that

F 1(c)

G 1(c)
=

F (b) ´ F (a)

G(b) ´ G(a)
.

Definition 9.69
If f has n derivatives at c, then the polynomial

Pn(x) =
n

ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f .

‚ The Maclaurin polynomials for some elementary functions:

1. y = exp(x) = ex:

Pn(x) =
n

ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
.

2. y = ln(1 + x):

Pn(x) =
n

ÿ

k=1

(´1)k+1xk

k
= x ´

x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ +

(´1)n+1

n
xn .

3. y = sinx:

P2n´1(x) = P2n(x) =
n

ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+

x5

5!
´

x7

7!
+ ¨ ¨ ¨ +

(´1)n

(2n ´ 1)!
x2n´1 .

4. y = cosx:

P2n(x) = P2n+1(x) =
n

ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+

x4

4!
´

x6

6!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n .

‚ Remainder of Taylor Polynomials
The difference Rn(x) ” f(x)´Pn(x), where Pn is the n-th Taylor polynomial for f (centered
at a certain number c) is called the remainder associated with the approximation Pn.



‚ Integral form of the remainder

Suppose that f : (a, b) Ñ R is (n + 1)-times continuously differentiable, and c, x P (a, b).
Then the remainder Rn associated with the n-th Taylor polynomial for f at c is given by

Rn(x) = (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.1)

Example 9.74. We have shown last time that if x ą 0, then

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ .

The identity above holds for x ď 0, and the proof is left as an exercise.

Example 9.75. Consider the function f(x) = cosx and its (2n)-th Maclaurin polynomial
P2n in Example 9.72. If x ą 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt

ˇ

ˇ

ˇ
ď

ż x

0

(x ´ t)2n+1

(2n+ 1)!
dt

=
´(x ´ t)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

x2n+2

(2n+ 2)!
,

while if x ă 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt

ˇ

ˇ

ˇ
ď

ż 0

x

(t ´ x)2n+1

(2n+ 1)!
dt

=
(t ´ x)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

(´x)2n+2

(2n+ 2)!
.

Therefore,
ˇ

ˇ

ˇ
cosx ´

n
ÿ

k=0

(´1)k

(2k)!
x2k

ˇ

ˇ

ˇ
ď

|x|2n+2

(2n+ 2)!
@x P R . (9.7.2)

Similarly,
ˇ

ˇ

ˇ
sinx ´

n
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1

ˇ

ˇ

ˇ
ď

|x|2n+3

(2n+ 3)!
@x P R . (9.7.3)

Moreover, by the fact that

lim
nÑ8

|x|2(n+1)+2

[2(n+ 1) + 2]!

|x|2n+2

(2n+ 2)!

= lim
nÑ8

x2

(2n+ 3)(2n+ 4)
= 0 ă 1



and

lim
nÑ8

|x|2(n+1)+3

[2(n+ 1) + 3]!

|x|2n+3

(2n+ 3)!

= lim
nÑ8

x2

(2n+ 4)(2n+ 5)
= 0 ă 1

the ratio test implies that
8
ř

k=0

|x|2n+2

(2n+ 2)!
and

8
ř

k=0

|x|2n+3

(2n+ 3)!
converge; thus for each x P R,

lim
nÑ8

|x|2n+2

(2n+ 2)!
= lim

nÑ8

|x|2n+3

(2n+ 3)!
= 0 .

Therefore,

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+

x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+

x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .

Using (9.7.2), we conclude that

| cos(0.1) ´

3
ÿ

k=0

(´1)k

(2k)!
(0.1)2k

ˇ

ˇ

ˇ
ď

0.18

8!
;

thus cos(0.1) «
3

ř

k=0

(´1)k

(2k)!
(0.1)2k « 0.995004165 which is accurate to nine decimal points.

‚ Lagrange form of the remainder

Theorem 9.76: Taylor’s Theorem

Let f : (a, b) Ñ R be (n + 1)-times differentiable, and c P (a, b). Then for each
x P (a, b), there exists ξ between x and c such that

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n +Rn(x) , (9.7.4)

where the Lagrange form of the remainder Rn(x) is given by

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .



Proof. We first show that if h : (a, b) Ñ R is m-times differentiable, and c P (a, b). Then for
all d P (a, b) and d ‰ c there exists ξ between c and d such that

h(d) ´
m
ř

k=0

h(k)(c)

k!
(d ´ c)k

(d ´ c)m+1
=

1

m+ 1

h 1(ξ) ´
m´1
ř

k=0

(h 1)(k)(c)

k!
(ξ ´ c)k

(ξ ´ c)m
. (9.7.5)

Let F (x) = h(x) ´
m
ř

k=0

h(k)(c)

k!
(x ´ c)k and G(x) = (x ´ c)m+1. Then F,G are continuous on

[c, d] (or [d, c]) and differentiable on (c, d) (or (d, c)), and G 1(x) ‰ 0 for all x ‰ c. Therefore,
the Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

F (d) ´ F (c)

G(d) ´ G(c)
=

F 1(ξ)

G 1(ξ)
,

and (9.7.5) is exactly the explicit form of the equality above.
Now we apply (9.7.5) successfully for h = f , f 1, f 11, ¨ ¨ ¨ and f (n) and find that

f(d) ´
n
ř

k=0

f (k)(c)

k!
(d ´ c)k

(d ´ c)n+1
=

1

n+ 1

f 1(d1) ´
n´1
ř

k=0

(f 1)(k)(c)

k!
(d1 ´ c)k

(d1 ´ c)n

=
1

n+ 1
¨
1

n

f 11(d2) ´
n´2
ř

k=0

(f 11)(k)(c)

k!
(d2 ´ c)k

(d2 ´ c)n´1

= ¨ ¨ ¨ ¨ ¨ ¨

=
1

(n+ 1)n(n ´ 1) ¨ ¨ ¨ 3

f (n´1)(dn´1) ´
1

ř

k=0

(f (n´1))(k)(c)

k!
(dn´1 ´ c)k

(dn´1 ´ c)2

=
1

(n+ 1)!

f (n)(dn) ´ f (n)(c)

dn ´ c
=

1

(n+ 1)!
f (n+1)(ξ)

for some c ă ξ ă dn ă dn´1 ă ¨ ¨ ¨ ă d1 ă d (or d ă d1 ă d2 ă ¨ ¨ ¨ ă dn ă ξ ă c); thus

f(d) ´

n
ÿ

k=0

f (k)(c)

k!
(d ´ c)k =

1

(n+ 1)!
f (n+1)(ξ)(d ´ c)n+1 .

(9.7.4) then follows from the equality above since d P (a, b) is given arbitrary. ˝

Example 9.77. In Example 9.71 we compute the Taylor polynomial Pn for the function
y = ln(1 + x). Note that the Taylor Theorem implies that for all x ą ´1,

ln(1 + x) = Pn(x) +Rn(x) ,



where
Rn(x) =

1

(n+ 1)!

(
dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
xn+1 =

(´1)n

n+ 1
(1 + ξ)´n´1xn+1

for some ξ between 0 and x.

1. If ´1 ă x ă 0, then Rn(x) =
´1

n+ 1

(
´x

1 + ξ

)n+1

ă 0; thus

ln(1 + x) ď x ´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ +

(´1)n

n
xn @x P (´1, 0) and n P N .

2. If x ą 0, then

(a) Rn(x) ă 0 if n is odd; thus

ln(1 + x) ď x ´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ +

1

2k + 1
x2k+1 @x ą 0 and k P N .

(b) Rn(x) ą 0 if n is even; thus

ln(1 + x) ě x ´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ +

´1

2k
x2k @x ą 0 and k P N .


