微積分 MA1002－A 上課筆記（精簡版） 2019．03．26．

Ching－hsiao Arthur Cheng 鄭經㩓

Theorem 5.41: Cauchy Mean Value Theorem

Let $F, G:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $G^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
\frac{F^{\prime}(c)}{G^{\prime}(c)}=\frac{F(b)-F(a)}{G(b)-G(a)} .
$$

Definition 9.69

If f has n derivatives at c, then the polynomial

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

- The Maclaurin polynomials for some elementary functions:

1. $y=\exp (x)=e^{x}$:

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} .
$$

2. $y=\ln (1+x)$:

$$
P_{n}(x)=\sum_{k=1}^{n} \frac{(-1)^{k+1} x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n+1}}{n} x^{n} .
$$

3. $y=\sin x$:

$$
P_{2 n-1}(x)=P_{2 n}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n}}{(2 n-1)!} x^{2 n-1} .
$$

4. $y=\cos x$:

$$
P_{2 n}(x)=P_{2 n+1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n} .
$$

- Remainder of Taylor Polynomials

The difference $R_{n}(x) \equiv f(x)-P_{n}(x)$, where P_{n} is the n-th Taylor polynomial for f (centered at a certain number c) is called the remainder associated with the approximation P_{n}.

- Integral form of the remainder

Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is $(n+1)$-times continuously differentiable, and $c, x \in(a, b)$. Then the remainder R_{n} associated with the n-th Taylor polynomial for f at c is given by

$$
\begin{equation*}
R_{n}(x)=(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t \tag{9.7.1}
\end{equation*}
$$

Example 9.74. We have shown last time that if $x>0$, then

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots .
$$

The identity above holds for $x \leqslant 0$, and the proof is left as an exercise.
Example 9.75. Consider the function $f(x)=\cos x$ and its (2n)-th Maclaurin polynomial $P_{2 n}$ in Example 9.72. If $x>0$,

$$
\begin{aligned}
\left|f(x)-P_{2 n}(x)\right| & =\left|f(x)-P_{2 n+1}(x)\right| \leqslant\left|\int_{0}^{x} f^{(2 n+2)}(t) \frac{(t-x)^{2 n+1}}{(2 n+1)!} d t\right| \leqslant \int_{0}^{x} \frac{(x-t)^{2 n+1}}{(2 n+1)!} d t \\
& =\left.\frac{-(x-t)^{2 n+2}}{(2 n+2)!}\right|_{t=0} ^{t=x}=\frac{x^{2 n+2}}{(2 n+2)!}
\end{aligned}
$$

while if $x<0$,

$$
\begin{aligned}
\left|f(x)-P_{2 n}(x)\right| & =\left|f(x)-P_{2 n+1}(x)\right| \leqslant\left|\int_{0}^{x} f^{(2 n+2)}(t) \frac{(t-x)^{2 n+1}}{(2 n+1)!} d t\right| \leqslant \int_{x}^{0} \frac{(t-x)^{2 n+1}}{(2 n+1)!} d t \\
& =\left.\frac{(t-x)^{2 n+2}}{(2 n+2)!}\right|_{t=0} ^{t=x}=\frac{(-x)^{2 n+2}}{(2 n+2)!}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|\cos x-\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k}\right| \leqslant \frac{|x|^{2 n+2}}{(2 n+2)!} \quad \forall x \in \mathbb{R} \tag{9.7.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|\sin x-\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}\right| \leqslant \frac{|x|^{2 n+3}}{(2 n+3)!} \quad \forall x \in \mathbb{R} \tag{9.7.3}
\end{equation*}
$$

Moreover, by the fact that

$$
\lim _{n \rightarrow \infty} \frac{\frac{|x|^{2(n+1)+2}}{[2(n+1)+2]!}}{\frac{|x|^{2 n+2}}{(2 n+2)!}}=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+3)(2 n+4)}=0<1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\frac{|x|^{2(n+1)+3}}{[2(n+1)+3]!}}{\frac{|x|^{2 n+3}}{(2 n+3)!}}=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+4)(2 n+5)}=0<1
$$

the ratio test implies that $\sum_{k=0}^{\infty} \frac{|x|^{2 n+2}}{(2 n+2)!}$ and $\sum_{k=0}^{\infty} \frac{|x|^{2 n+3}}{(2 n+3)!}$ converge; thus for each $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{|x|^{2 n+2}}{(2 n+2)!}=\lim _{n \rightarrow \infty} \frac{|x|^{2 n+3}}{(2 n+3)!}=0 .
$$

Therefore,

$$
\begin{aligned}
& \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}+\cdots, \\
& \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}+\cdots .
\end{aligned}
$$

Using (9.7.2), we conclude that

$$
\left|\cos (0.1)-\sum_{k=0}^{3} \frac{(-1)^{k}}{(2 k)!}(0.1)^{2 k}\right| \leqslant \frac{0.1^{8}}{8!}
$$

thus $\cos (0.1) \approx \sum_{k=0}^{3} \frac{(-1)^{k}}{(2 k)!}(0.1)^{2 k} \approx 0.995004165$ which is accurate to nine decimal points.

- Lagrange form of the remainder

Theorem 9.76: Taylor's Theorem

Let $f:(a, b) \rightarrow \mathbb{R}$ be $(n+1)$-times differentiable, and $c \in(a, b)$. Then for each $x \in(a, b)$, there exists ξ between x and c such that

$$
\begin{equation*}
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x) \tag{9.7.4}
\end{equation*}
$$

where the Lagrange form of the remainder $R_{n}(x)$ is given by

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

Proof. We first show that if $h:(a, b) \rightarrow \mathbb{R}$ is m-times differentiable, and $c \in(a, b)$. Then for all $d \in(a, b)$ and $d \neq c$ there exists ξ between c and d such that

$$
\begin{equation*}
\frac{h(d)-\sum_{k=0}^{m} \frac{h^{(k)}(c)}{k!}(d-c)^{k}}{(d-c)^{m+1}}=\frac{1}{m+1} \frac{h^{\prime}(\xi)-\sum_{k=0}^{m-1} \frac{\left(h^{\prime}\right)^{(k)}(c)}{k!}(\xi-c)^{k}}{(\xi-c)^{m}} . \tag{9.7.5}
\end{equation*}
$$

Let $F(x)=h(x)-\sum_{k=0}^{m} \frac{h^{(k)}(c)}{k!}(x-c)^{k}$ and $G(x)=(x-c)^{m+1}$. Then F, G are continuous on $[c, d]$ (or $[d, c]$) and differentiable on (c, d) (or (d, c)), and $G^{\prime}(x) \neq 0$ for all $x \neq c$. Therefore, the Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

$$
\frac{F(d)-F(c)}{G(d)-G(c)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}
$$

and (9.7.5) is exactly the explicit form of the equality above.
Now we apply (9.7.5) successfully for $h=f, f^{\prime}, f^{\prime \prime}, \cdots$ and $f^{(n)}$ and find that

$$
\begin{aligned}
f(d)- & \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(d-c)^{k} \\
(d-c)^{n+1} & =\frac{1}{n+1} \frac{f^{\prime}\left(d_{1}\right)-\sum_{k=0}^{n-1} \frac{\left(f^{\prime}\right)^{(k)}(c)}{k!}\left(d_{1}-c\right)^{k}}{\left(d_{1}-c\right)^{n}} \\
& =\frac{1}{n+1} \cdot \frac{1}{n} \frac{f^{\prime \prime}\left(d_{2}\right)-\sum_{k=0}^{n-2} \frac{\left(f^{\prime \prime}\right)^{(k)}(c)}{k!}\left(d_{2}-c\right)^{k}}{\left(d_{2}-c\right)^{n-1}} \\
& =\cdots \cdots \cdot \\
& =\frac{1}{(n+1) n(n-1) \cdots 3} \frac{f^{(n-1)}\left(d_{n-1}\right)-\sum_{k=0}^{1} \frac{\left(f^{(n-1)}\right)^{(k)}(c)}{k!}\left(d_{n-1}-c\right)^{k}}{\left(d_{n-1}-c\right)^{2}} \\
& =\frac{1}{(n+1)!} \frac{f^{(n)}\left(d_{n}\right)-f^{(n)}(c)}{d_{n}-c}=\frac{1}{(n+1)!} f^{(n+1)}(\xi)
\end{aligned}
$$

for some $c<\xi<d_{n}<d_{n-1}<\cdots<d_{1}<d$ (or $d<d_{1}<d_{2}<\cdots<d_{n}<\xi<c$); thus

$$
f(d)-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(d-c)^{k}=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(d-c)^{n+1}
$$

(9.7.4) then follows from the equality above since $d \in(a, b)$ is given arbitrary.

Example 9.77. In Example 9.71 we compute the Taylor polynomial P_{n} for the function $y=\ln (1+x)$. Note that the Taylor Theorem implies that for all $x>-1$,

$$
\ln (1+x)=P_{n}(x)+R_{n}(x),
$$

where

$$
R_{n}(x)=\frac{1}{(n+1)!}\left(\left.\frac{d^{n+1}}{d x^{n+1}}\right|_{x=\xi} \ln (1+x)\right) x^{n+1}=\frac{(-1)^{n}}{n+1}(1+\xi)^{-n-1} x^{n+1}
$$

for some ξ between 0 and x.

1. If $-1<x<0$, then $R_{n}(x)=\frac{-1}{n+1}\left(\frac{-x}{1+\xi}\right)^{n+1}<0$; thus

$$
\ln (1+x) \leqslant x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n}}{n} x^{n} \quad \forall x \in(-1,0) \text { and } n \in \mathbb{N}
$$

2. If $x>0$, then
(a) $R_{n}(x)<0$ if n is odd; thus

$$
\ln (1+x) \leqslant x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{1}{2 k+1} x^{2 k+1} \quad \forall x>0 \text { and } k \in \mathbb{N}
$$

(b) $R_{n}(x)>0$ if n is even; thus

$$
\ln (1+x) \geqslant x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{-1}{2 k} x^{2 k} \quad \forall x>0 \text { and } k \in \mathbb{N}
$$

