微積分 MA1002－A 上課筆記（精簡版） 2019．03．21．

Ching－hsiao Arthur Cheng 鄭經敘

9.7 Taylor Polynomials and Approximations

Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is $(n+1)$-times continuously differentiable; that is, $\frac{d^{k} f}{d x^{k}}$ is continuous on (a, b) for $1 \leqslant k \leqslant n+1$, then for $x \in(a, b)$, the Fundamental Theorem of Calculus and integration-by-parts imply that

$$
\begin{aligned}
f(x)-f(c)= & \int_{c}^{x} f^{\prime}(t) d t=\left.f^{\prime}(t)(t-x)\right|_{t=c} ^{t=x}-\int_{c}^{x} f^{\prime \prime}(t)(t-x) d t \\
= & -f^{\prime}(c)(c-x)-\int_{c}^{x} f^{\prime \prime}(t)(t-x) d t \\
= & f^{\prime}(c)(x-c)-\left[\left.f^{\prime \prime}(t) \frac{(t-x)^{2}}{2}\right|_{t=c} ^{t=x}-\int_{c}^{x} f^{\prime \prime \prime}(t) \frac{(t-x)^{2}}{2} d t\right] \\
= & f^{\prime}(c)(x-c)-\left[-\frac{f^{\prime \prime}(c)}{2}(c-x)^{2}-\int_{c}^{x} f^{\prime \prime \prime}(t) \frac{(t-x)^{2}}{2} d t\right] \\
= & f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\int_{c}^{x} f^{\prime \prime \prime}(t) \frac{(t-x)^{2}}{2} d t \\
= & \cdots \cdots \\
= & f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& +(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t,
\end{aligned}
$$

where the last equality can be shown by induction. Therefore,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t \tag{9.7.1}
\end{equation*}
$$

Definition 9.69

If f has n derivatives at c, then the polynomial

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

Example 9.70. The n-th Maclaurin polynomial for the function $f(x)=e^{x}$ is

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{n} \frac{1}{k!} x^{k}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} .
$$

Example 9.71. The n-th Maclaurin polynomial for the function $f(x)=\ln (1+x)$ is given by

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=1}^{n} \frac{(-1)^{k-1}(k-1)!}{k!} x^{k}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n-1}}{n} x^{n},
\end{aligned}
$$

here we have used $g^{(k)}(x)=(-1)^{k-1}(k-1)!(x+1)^{-k}$ to compute $g^{(k)}(0)$.
The n-th Taylor polynomial for the function $g(x)=\ln x$ at 1 is given by

$$
\begin{aligned}
Q_{n}(x) & =\sum_{k=0}^{n} \frac{g^{(k)}(1)}{k!}(x-1)^{k}=\sum_{k=1}^{n} \frac{g^{(k)}(1)}{k!}(x-1)^{k}=\sum_{k=1}^{n} \frac{(-1)^{k-1}(k-1)!}{k!}(x-1)^{k} \\
& =\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}(x-1)^{k} \\
& =(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+\frac{(-1)^{n-1}}{n}(x-1)^{n},
\end{aligned}
$$

here we have used $g^{(k)}(x)=(-1)^{k-1}(k-1)!x^{-k}$ to compute $g^{(k)}(1)$. We note that $Q_{n}(x)=$ $P_{n}(x-1)($ and $g(x)=f(x-1))$.

Example 9.72. The (2n)-th Maclaurin polynomial for the function $f(x)=\cos x$ is given by

$$
\begin{aligned}
P_{2 n}(x) & =\sum_{k=0}^{2 n} \frac{f^{(k)}(0)}{k!} x^{k}=1+\sum_{k=1}^{2 n} \frac{f^{(k)}(0)}{k!} x^{k}=1+\sum_{k=1}^{n} \frac{f^{(2 k-1)}(0)}{(2 k-1)!} x^{2 k-1}+\sum_{k=1}^{n} \frac{f^{(2 k)}(0)}{(2 k)!} x^{2 k} \\
& =1+\sum_{k=1}^{n} \frac{f^{(2 k)}(0)}{(2 k)!} x^{2 k}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

here we have used $f^{(k)}(x)=\cos \left(x+\frac{k \pi}{2}\right)$ to compute $f^{(k)}(0)$. We also note that $P_{2 n}(x)=$ $P_{2 n+1}(x)$ for all $n \in \mathbb{N}$.

The $(2 n-1)$-th Maclaurin polynomial for the function $g(x)=\sin x$ is given by

$$
\begin{aligned}
Q_{2 n-1}(x) & =\sum_{k=0}^{2 n-1} \frac{g^{(k)}(0)}{k!} x^{k}=\sum_{k=1}^{2 n-1} \frac{g^{(k)}(0)}{k!} x^{k}=\sum_{k=1}^{n} \frac{g^{(2 k-1)}(0)}{(2 k-1)!} x^{2 k-1}+\sum_{k=1}^{n} \frac{g^{(2 k)}(0)}{(2 k)!} x^{2 k} \\
& =\sum_{k=1}^{n} \frac{g^{(2 k-1)}(0)}{(2 k-1)!} x^{2 k-1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n-1}}{(2 n-1)!} x^{2 n-1},
\end{aligned}
$$

here we have used $g^{(k)}(x)=\sin \left(x+\frac{k \pi}{2}\right)$ to compute $g^{(k)}(0)$. We also note that $Q_{2 n-1}(x)=$ $Q_{2 n}(x)$ for all $n \in \mathbb{N}$.

Remark 9.73. Using the Maclaurin polynomial given in Example 9.70 and 9.72, conceptually we can explain why the Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$. Note that the $(2 n)$-th Maclaurin polynomial for exp, cos, sin are

$$
\begin{aligned}
& P_{2 n}^{e}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{2 n}}{(2 n)!} \\
& P_{2 n}^{c}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
& P_{2 n}^{s}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{(-1)^{n-1}}{(2 n-1)!} x^{2 n-1} .
\end{aligned}
$$

Substitution $x=i \theta$, we find that

$$
P_{2 n}^{e}(i \theta)=P_{2 n}^{c}(\theta)+i P_{2 n}^{s}(\theta) \quad \forall \theta \in \mathbb{R}
$$

9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value $f(x)$ by the Taylor polynomial, we look for the difference $R_{n}(x) \equiv f(x)-P_{n}(x)$, where P_{n} is the n-th Taylor polynomial for f (centered at a certain number c). The function R_{n} is called the remainder associated with the approximation P_{n}.

- Integral form of the remainder

Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is $(n+1)$-times continuously differentiable, and $c, x \in(a, b)$. By (9.7.1), we find that if P_{n} is the n-th Taylor polynomial for f at c, then

$$
\begin{equation*}
R_{n}(x)=(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t \tag{9.7.2}
\end{equation*}
$$

Example 9.74. Consider the function $f(x)=\exp (x)=e^{x}$. If P_{n} is the n-th Maclaurin polynomial for f, the remainder R_{n} associated with P_{n} is given by

$$
R_{n}(x)=(-1)^{n} \int_{0}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t=(-1)^{n} \int_{0}^{x} e^{t} \frac{(t-x)^{n}}{n!} d t
$$

Therefore, if $x>0$,

$$
\begin{equation*}
\left|e^{x}-\sum_{k=0}^{n} \frac{x^{k}}{k!}\right|=\left|\int_{0}^{x} e^{t} \frac{(t-x)^{n}}{n!} d t\right| \leqslant \int_{0}^{x} e^{t} \frac{(x-t)^{n}}{n!} d t \leqslant \int_{0}^{x} e^{x} \frac{x^{n}}{n!} d t=\frac{e^{x} x^{n+1}}{n!} \tag{9.7.3}
\end{equation*}
$$

Note that for each $x>0$, the series $\sum_{k=0}^{\infty} e^{x} \frac{x^{n+1}}{n!}$ converges since

$$
\lim _{n \rightarrow \infty} \frac{e^{x} \frac{x^{(n+1)+1}}{(n+1)!}}{e^{x} \frac{x^{n+1}}{n!}}=\lim _{n \rightarrow \infty} \frac{x}{n+1}=0
$$

thus the n-th term test shows that $\lim _{n \rightarrow \infty} e^{x} \frac{x^{n+1}}{n!}=0$. Therefore, for each $x>0$,

$$
\lim _{n \rightarrow \infty}\left|e^{x}-\sum_{k=0}^{n} \frac{x^{k}}{k!}\right|=0
$$

or equivalently,

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

In particular, if $x=1$, (9.7.3) implies that

$$
\left|e-\sum_{k=0}^{n} \frac{1}{k!}\right| \leqslant \frac{e}{n!}
$$

thus $\left|e-\sum_{k=0}^{17} \frac{1}{k!}\right|<10^{-8}$.

