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Definition 9.22

The series
8
ř

k=1

ak is said to converge to S if the sequence of the partial sum, denoted

by tSnu8
n=1 and defined by

Sn ”

n
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an,

converges to S. Sn is called the n-th partial sum of the series
8
ř

k=1

ak.

When the series converges, we write S =
8
ř

k=1

ak and
8
ř

k=1

ak is said to be convergent.

If tSnu8
n=1 diverges, the series is said to be divergent or diverge. If lim

nÑ8
Sn = 8 (or

´8), the series is said to diverge to 8 (or ´8).

Theorem 9.31
Let f : [1,8) Ñ R be a non-negative continuous decreasing function. The series

8
ř

k=1

f(k) converges if and only if the improper integral
ż 8

1
f(x) dx converges.

Theorem 9.37
Let tanu8

n=1, tbnu8
n=1 be sequences of real numbers, and 0 ď an ď bn for all n P N.

1. If
8
ř

k=1

bk converges, then
8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, then
8
ř

k=1

ak diverges.

9.4.2 Limit Comparison Test
Theorem 9.42

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, an, bn ą 0 for all n P N, and

lim
nÑ8

an
bn

= L ,

where L is a non-zero real number. Then
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk con-
verges.

Proof. We first note that if L ‰ 0, then L ą 0 since an
bn

ą 0 for all n P N. By the fact that



lim
nÑ8

an
bn

= L, there exists N ą 0 such that
ˇ

ˇ

ˇ

an
bn

´ L
ˇ

ˇ

ˇ
ă

L

2
whenever n ě N .

In other words, L

2
ă

an
bn

ă
3L

2
for all n ě N ; thus

0 ă an ă
3L

2
bn and 0 ă bn ă

2

L
an whenever n ě N .

By Theorem 9.37 and Remark 9.38, we find that
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk

converges. ˝

Remark 9.43. 1. If lim
nÑ8

an
bn

= 0, then the convergence of
8
ř

k=1

bk implies the convergence of
8
ř

k=1

ak, but not necessary the reverse direction.

2. The condition “an, bn ą 0 for all n P N” can be relaxed by “an and bn are sign-definite
for n ě N , where a sequence tcnu8

n=1 is called sign-definite for n ě N if cn ą 0 for all
n ě N or cn ă 0 for all n ě N .

Example 9.44. Recall that in Example 9.40 and 9.41 we have shown that the series
8
ř

k=1

1

2 + 3k
converges and the series

8
ř

k=1

1

2 +
?
k

diverges using the direct comparison test.

Note that since

lim
nÑ8

1

2 + 3n

1

3n

= 1 and lim
nÑ8

1

2 +
?
n

1
?
n

= 1 ,

using the convergence of the p-series and the limit comparison test we can also conclude

that
8
ř

k=1

1

2 + 3k
converges and

8
ř

k=1

1

2 +
?
k

diverges.

Example 9.45. The general harmonic series
8
ř

k=1

1

ak + b
diverges for the following reasons:

1. if a = 0, then clearly
8
ř

k=1

1

b
diverges.

2. if a ‰ 0, then
8
ř

k=1

1

ak
diverges and lim

nÑ8

1
ak
1

ak+b

= 1.



9.5 The Ratio and Root Tests
9.5.1 The Ratio Test
Theorem 9.46: Ratio Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

an+1

an
ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

an+1

an
ą 1.

Proof. Suppose that lim
nÑ8

an+1

an
= L exists. Define r =

L+ 1

2
.

1. Assume that L ă 1. Then for ε =
1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

1 ´ L

2
whenever n ě N ;

thus
0 ă

an+1

an
ă r whenever n ě N .

Note that 0 ă r ă 1, and the inequality above implies that if n ě N , an+1 ă ran.
Therefore,

0 ă an ď aNr
n´N for all n ě N .

Now, since the series
8
ř

k=1

aNr
k´N converges, the comparison test implies that

8
ř

k=1

ak

converges as well.

2. Assume that L ą 1. Then for ε =
L ´ 1

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

L ´ 1

2
whenever n ě N ;

thus r ă
an+1

an
whenever n ě N . Note that r ą 1, and the inequality above implies

that if n ě N , an+1 ą ran. Therefore,

0 ă aNr
n´N ď an for all n ě N .

Now, since the series
8
ř

k=1

aNr
k´N diverges, the comparison test implies that

8
ř

k=1

ak

diverges as well. ˝



Remark 9.47. When lim
nÑ8

an+1

an
= 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p

is, but no matter what p is,
lim
nÑ8

(n+ 1)p

np
= 1 .

Example 9.48. The series
8
ř

k=1

2k

k!
converges since

lim
nÑ8

2n+1/(n+ 1)!

2n/n!
= lim

nÑ8

2

n+ 1
= 0 ă 1 .

Example 9.49. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n+ 1)22n+2/3n+1

n22n+1/3n
= lim

nÑ8

2

3

(n+ 1)2

n2
=

2

3
ă 1 .

Example 9.50. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(n+ 1)n+1/(n+ 1)!

nn/n!
= lim

nÑ8

(
1 +

1

n

)n

= e ą 1 .

9.5.2 The Root Test
Theorem 9.51: Root Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

n
?
an ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

n
?
an ą 1.

Proof. Suppose that lim
nÑ8

n
?
an = L exists. Define r =

L+ 1

2
.

1. Assume that L ă 1. Then for ε =
1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ
n
?
an ´ L

ˇ

ˇ ă
1 ´ L

2
whenever n ě N ;



thus
0 ă n

?
an ă r whenever n ě N

or equivalently,
0 ă an ď rn whenever n ě N .

By the fact that 0 ă r ă 1, the series
8
ř

k=1

rk converges; thus the comparison test

implies that
8
ř

k=1

ak converges as well.

2. Left as an exercise. ˝

Remark 9.52. When lim
nÑ8

n
?
an = 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p

is, but no matter what p is,

lim
nÑ8

n
?
np =

(
lim
nÑ8

n
?
n
)p

= 1 .

Example 9.53. The series
8
ř

k=1

e2k

kk
converges since

lim
nÑ8

(e2n
nn

) 1
n
= lim

nÑ8

e2

n
= 0 ă 1 .

We also note that the convergence of this series can be obtained through the ratio test:

lim
nÑ8

e2(n+1)/(n+ 1)n+1

e2n/nn
= lim

nÑ8

e2

n+ 1

(
1 +

1

n

)´n

= 0 ă 1 .

Example 9.54. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n22n+1

3n

) 1
n
= lim

nÑ8

2(2n2)
1
n

3
=

2

3
ă 1 .

Example 9.55. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(nn

n!

) 1
n
= lim

nÑ8

( nn

?
2πnnne´n

?
2πnnne´n

n!

) 1
n
= lim

nÑ8

( en
?
2πn

) 1
n
= e ą 1 ,

here we have used Stirling’s formula (9.1.2) to compute the limit.

Remark 9.56. Observe from Example 9.49, 9.50, 9.54 and 9.55, we see that as long as
lim
nÑ8

an+1

an
and lim

nÑ8

n
?
an exists, then the limits are the same. This is in fact true in general,

but we will not prove it since this is not our focus.
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