微積分 MA1002－A 上課筆記（精簡版） 2019．03．14．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 9.22

The series $\sum_{k=1}^{\infty} a_{k}$ is said to converge to S if the sequence of the partial sum, denoted by $\left\{S_{n}\right\}_{n=1}^{\infty}$ and defined by

$$
S_{n} \equiv \sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

converges to $S . S_{n}$ is called the n-th partial sum of the series $\sum_{k=1}^{\infty} a_{k}$.
When the series converges, we write $S=\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} a_{k}$ is said to be convergent. If $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges, the series is said to be divergent or diverge. If $\lim _{n \rightarrow \infty} S_{n}=\infty$ (or $-\infty$), the series is said to diverge to ∞ (or $-\infty$).

Theorem 9.31

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a non-negative continuous decreasing function. The series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ converges.

Theorem 9.37

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers, and $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \in \mathbb{N}$.

1. If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.
2. If $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} a_{k}$ diverges.

9.4.2 Limit Comparison Test

Theorem 9.42

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers, $a_{n}, b_{n}>0$ for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L
$$

where L is a non-zero real number. Then $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\sum_{k=1}^{\infty} b_{k}$ converges.

Proof. We first note that if $L \neq 0$, then $L>0$ since $\frac{a_{n}}{b_{n}}>0$ for all $n \in \mathbb{N}$. By the fact that
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, there exists $N>0$ such that

$$
\left|\frac{a_{n}}{b_{n}}-L\right|<\frac{L}{2} \quad \text { whenever } \quad n \geqslant N
$$

In other words, $\frac{L}{2}<\frac{a_{n}}{b_{n}}<\frac{3 L}{2}$ for all $n \geqslant N$; thus

$$
0<a_{n}<\frac{3 L}{2} b_{n} \text { and } 0<b_{n}<\frac{2}{L} a_{n} \quad \text { whenever } \quad n \geqslant N
$$

By Theorem 9.37 and Remark 9.38, we find that $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\sum_{k=1}^{\infty} b_{k}$ converges.

Remark 9.43. 1. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then the convergence of $\sum_{k=1}^{\infty} b_{k}$ implies the convergence of $\sum_{k=1}^{\infty} a_{k}$, but not necessary the reverse direction.
2. The condition " $a_{n}, b_{n}>0$ for all $n \in \mathbb{N}$ " can be relaxed by " a_{n} and b_{n} are sign-definite for $n \geqslant N$, where a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ is called sign-definite for $n \geqslant N$ if $c_{n}>0$ for all $n \geqslant N$ or $c_{n}<0$ for all $n \geqslant N$.

Example 9.44. Recall that in Example 9.40 and 9.41 we have shown that the series $\sum_{k=1}^{\infty} \frac{1}{2+3^{k}}$ converges and the series $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ diverges using the direct comparison test. Note that since

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{2+3^{n}}}{\frac{1}{3^{n}}}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\frac{1}{2+\sqrt{n}}}{\frac{1}{\sqrt{n}}}=1
$$

using the convergence of the p-series and the limit comparison test we can also conclude that $\sum_{k=1}^{\infty} \frac{1}{2+3^{k}}$ converges and $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ diverges.

Example 9.45. The general harmonic series $\sum_{k=1}^{\infty} \frac{1}{a k+b}$ diverges for the following reasons:

1. if $a=0$, then clearly $\sum_{k=1}^{\infty} \frac{1}{b}$ diverges.
2. if $a \neq 0$, then $\sum_{k=1}^{\infty} \frac{1}{a k}$ diverges and $\lim _{n \rightarrow \infty} \frac{\frac{1}{a k}}{\frac{1}{a k+b}}=1$.

9.5 The Ratio and Root Tests

9.5.1 The Ratio Test

Theorem 9.46: Ratio Test

Let $\sum_{k=1}^{\infty} a_{k}$ be a series with positive terms.

1. The series $\sum_{k=1}^{\infty} a_{k}$ converges if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$.
2. The series $\sum_{k=1}^{\infty} a_{k}$ diverges (to ∞) if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$.

Proof. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$ exists. Define $r=\frac{L+1}{2}$.

1. Assume that $L<1$. Then for $\varepsilon=\frac{1-L}{2}$, there exists $N>0$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}-L\right|<\frac{1-L}{2} \quad \text { whenever } n \geqslant N
$$

thus

$$
0<\frac{a_{n+1}}{a_{n}}<r \quad \text { whenever } n \geqslant N
$$

Note that $0<r<1$, and the inequality above implies that if $n \geqslant N, a_{n+1}<r a_{n}$. Therefore,

$$
0<a_{n} \leqslant a_{N} r^{n-N} \quad \text { for all } n \geqslant N .
$$

Now, since the series $\sum_{k=1}^{\infty} a_{N} r^{k-N}$ converges, the comparison test implies that $\sum_{k=1}^{\infty} a_{k}$ converges as well.
2. Assume that $L>1$. Then for $\varepsilon=\frac{L-1}{2}$, there exists $N>0$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}-L\right|<\frac{L-1}{2} \quad \text { whenever } n \geqslant N
$$

thus $r<\frac{a_{n+1}}{a_{n}}$ whenever $n \geqslant N$. Note that $r>1$, and the inequality above implies that if $n \geqslant N, a_{n+1}>r a_{n}$. Therefore,

$$
0<a_{N} r^{n-N} \leqslant a_{n} \quad \text { for all } n \geqslant N .
$$

Now, since the series $\sum_{k=1}^{\infty} a_{N} r^{k-N}$ diverges, the comparison test implies that $\sum_{k=1}^{\infty} a_{k}$ diverges as well.

Remark 9.47. When $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$, the convergence or divergence of $\sum_{n=1}^{\infty} a_{k}$ cannot be concluded. For example, the p-series could converge or diverge depending on how large p is, but no matter what p is,

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{n^{p}}=1
$$

Example 9.48. The series $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$ converges since

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1} /(n+1)!}{2^{n} / n!}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0<1
$$

Example 9.49. The series $\sum_{k=1}^{\infty} \frac{k^{2} 2^{k+1}}{3^{k}}$ converges since

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{2} 2^{n+2} / 3^{n+1}}{n^{2} 2^{n+1} / 3^{n}}=\lim _{n \rightarrow \infty} \frac{2}{3} \frac{(n+1)^{2}}{n^{2}}=\frac{2}{3}<1 .
$$

Example 9.50. The series $\sum_{k=1}^{\infty} \frac{k^{k}}{k!}$ diverges since

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1} /(n+1)!}{n^{n} / n!}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e>1 .
$$

9.5.2 The Root Test

Theorem 9.51: Root Test

Let $\sum_{k=1}^{\infty} a_{k}$ be a series with positive terms.

1. The series $\sum_{k=1}^{\infty} a_{k}$ converges if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$.
2. The series $\sum_{k=1}^{\infty} a_{k}$ diverges (to ∞) if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$.

Proof. Suppose that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=L$ exists. Define $r=\frac{L+1}{2}$.

1. Assume that $L<1$. Then for $\varepsilon=\frac{1-L}{2}$, there exists $N>0$ such that

$$
\left|\sqrt[n]{a_{n}}-L\right|<\frac{1-L}{2} \quad \text { whenever } n \geqslant N
$$

thus

$$
0<\sqrt[n]{a_{n}}<r \quad \text { whenever } n \geqslant N
$$

or equivalently,

$$
0<a_{n} \leqslant r^{n} \quad \text { whenever } n \geqslant N .
$$

By the fact that $0<r<1$, the series $\sum_{k=1}^{\infty} r^{k}$ converges; thus the comparison test implies that $\sum_{k=1}^{\infty} a_{k}$ converges as well.
2. Left as an exercise.

Remark 9.52. When $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1$, the convergence or divergence of $\sum_{n=1}^{\infty} a_{k}$ cannot be concluded. For example, the p-series could converge or diverge depending on how large p is, but no matter what p is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{p}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{p}=1
$$

Example 9.53. The series $\sum_{k=1}^{\infty} \frac{e^{2 k}}{k^{k}}$ converges since

$$
\lim _{n \rightarrow \infty}\left(\frac{e^{2 n}}{n^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{e^{2}}{n}=0<1
$$

We also note that the convergence of this series can be obtained through the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{e^{2(n+1)} /(n+1)^{n+1}}{e^{2 n} / n^{n}}=\lim _{n \rightarrow \infty} \frac{e^{2}}{n+1}\left(1+\frac{1}{n}\right)^{-n}=0<1
$$

Example 9.54. The series $\sum_{k=1}^{\infty} \frac{k^{2} 2^{k+1}}{3^{k}}$ converges since

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{2} 2^{n+1}}{3^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2\left(2 n^{2}\right)^{\frac{1}{n}}}{3}=\frac{2}{3}<1
$$

Example 9.55. The series $\sum_{k=1}^{\infty} \frac{k^{k}}{k!}$ diverges since

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{\sqrt{2 \pi n} n^{n} e^{-n}} \frac{\sqrt{2 \pi n} n^{n} e^{-n}}{n!}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{e^{n}}{\sqrt{2 \pi n}}\right)^{\frac{1}{n}}=e>1
$$

here we have used Stirling's formula (9.1.2) to compute the limit.
Remark 9.56. Observe from Example 9.49, 9.50, 9.54 and 9.55, we see that as long as $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ exists, then the limits are the same. This is in fact true in general, but we will not prove it since this is not our focus.

